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Abstract In this paper, we study a stochastic fractional integro-differential equation with
impulsive effects in separable Hilbert space. Using a finite dimensional subspace, semigroup
theory of linear operators and stochastic version of the well-known Banach fixed point theo-
rem is applied to show the existence and uniqueness of an approximate solution. Next, these
approximate solutions are shown to form a Cauchy sequence with respect to an appropriate
norm, and the limit of this sequence is then a solution of the original problem. Moreover,
the convergence of Faedo—Galerkin approximation of solution is shown. In the last, we have
given an example to illustrate the applications of the abstract results.
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1 Introduction

Stochastic differential equation is an emerging field drawing attention from both theoretical
and applied disciplines. In many real world phenomenon, the deterministic models often
fluctuate due to random influences or noise, so we have to move from deterministic models
to stochastic models. Stochastic differential equation involves randomness into mathematical
description of the phenomenon and thus helps to understand more precise description of it,
therefore, these differential equations play an important role in option pricing, forecast of
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the growth of population, electromagnetic theory, heat conduction in material with memory
etc. The theory of stochastic differential equation can also be successfully applied to various
problems outside mathematics for example in chemistry, economics, epidemiology, mechan-
ics, finance and several fields in engineering. For recent works on the existence results of
mild solutions for stochastic integro-differential equations see [7,11,12,20,33,36,39]. There
have been good literature available on this field see [13,18,29,30].
The fractional differential equations are the generalization of ordinary differential equations
to arbitrary non integer orders. The fact that the fractional derivative(integral) is an oper-
ator which includes integer order derivative(integral) as special case, is the reason why in
present fractional differential equations becomes very popular and many applications are
available. Fractional differential equations also provide an appropriate tool for the descrip-
tion of hereditary properties of various materials and processes. In recent years, fractional
differential equations have drawn attention to many researchers and the solutions of fractional
differential equations in analytical and numerical sense have been finding out. Fractional dif-
ferential equations have lots of applications in the field of fluid flow, viscoelasticity, control
theory of dynamical systems, electrical networks, probability and statistics, dynamical pro-
cesses in self-similar and porous structures, electrochemistry of corrosion, optics and signal
processing, nonlinear oscillations of earthquake, rheology, Bio-sciences etc. For more details
on fractional differential equations and applications, we refer to books [21,27,32,35] and
papers [8-10,14,25,39,40].
On the other hand, the differential equations involving impulse effects arise naturally in
the description of phenomena that are subjected to sudden changes in their states, such as
population dynamics, biological systems, optimal control, chemotherapeutic treatment in
medicine, mechanical systems with impact, financial systems. In these models, the processes
are characterized by the fact that they undergo abrupt changes of state at certain moments
of time between intervals of continuous evolution. The presence of impulses implies that
the trajectories of the system do not necessarily preserve the basic properties of the non-
impulsive dynamical systems. For the study of impulsive differential equations, we refer to
books [5,24] and papers [9,14,16,17,20,33,37,38].
The Faedo—Galerkin approximation provide a better tool for numerical approximation of the
equation and to study more regular solutions of the equations by imposing higher consis-
tency on the given data. This method may also be appropriate in the variational formulation
to find the solutions of the equations under weaker assumptions on the data. Initially, Segal
[34], Murakami [26], Heinz and Von Wahl [19] studied about the existence, uniqueness and
finite-time blow-up of solutions to the functional Cauchy problem in a separable Hilbert
space. Then using the existence results of Heinz and von Wahl [19], Bazley [1,2] showed
the uniform convergence of the approximations to solutions of the semilinear wave equa-
tion on any closed subinterval. Using the idea of Bazley [1,2], Miletta [28] established the
existence of the mild solution and proved convergence results to the functional Cauchy prob-
lem by using the Faedo—Galerkin approximations in a separable Hilbert space. Bahuguna
and Srivastava [3] extended the results of Miletta [28] and considered the Faedo—Galerkin
approximations of the solutions to the functional integro-differential equation. Later on,
P. Balasubramaniam [6] studied the Faedo—Galerkin approximate solutions for Stochastic
semilinear integro-differential equation in Hilbert Space. Recently, Chadha and Pandey [10]
discussed the approximation of the solution for neutral fractional differential equation with
nonlocal conditions in an arbitrary separable Hilbert space.

Motivated by the above work, the focus of this investigation is the approximation of mild
solutions for the following stochastic fractional integro-differential equation with impulsive
effects in separable Hilbert space
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DPlu(t) + G(t,u)] + Ault) = F(t, ur, ulbu(), H)])

t
/ a(t —)k(s,ug)dw(s), 0 <t <T <00, t #1t;

(1.1)

Au|t:tj:1j(1/ltj), j:l,2,...,r, }"EN, (12)

u) =¢), tel[-7,0], >0, (1.3)

where the state u(-) takes values in a separable Hilbert space (H, || - ||, (-)). “D” denotes the
Caputo fractional derivative of order p, 0 < p < 1.0 <t <fp < --- < t, < T are pre

fixed numbers. Aul;— =t denotes the jump of u(f) at 1 = 7 i.e. Aul=; = u(t+) - u(f)
where u(t,+) and u(t ) represent the right and left limits of u(¢) at ¢ = ¢; respectively. A :
D(A) CH— Hisa closed positive definite, self adjoint linear operator with dense domain
D(A) such that —A is the infinitesimal generator of an analytic semigroup {S(¢) : t+ > 0}
in H. The map a is such that a? e L,OC(O, oo) forsome 1 < p < oco0. F, G, I, b and k
are suitably defined functions satisfying certain conditions to be stated later. u; denotes the
function defined by u;(v) = u(¢ + v) for v € [—t, 0], here u, represents the time history of
the state from the time r — T up to the present time ¢. Let (C, || - ||, ()) be another separable
Hilbert space. {w(¢) : t > 0} is a given K-valued Wiener process defined on a complete
probability space (£2, S, {J;}/>0, P) with a finite trace nuclear covariance operator Q > 0.
The initial data u is an Jp— adapted random variable independent of the winer process.

This manuscript develop a continuation and generalization of the existing results in the
literature in two ways. First, we study the Faedo—Galerkin approximate solution to the impul-
sive stochastic fractional integro-differential equation with impulsive effects, to the best of
our knowledge this problem has not been discussed earlier in the literature and second, the
results in the manuscript constitute impulsive effects and stochastic invariant of some exist-
ing results, for instance,[4,9,10,22,23], which permit us to introduce the noise as well as
impulses in the physical models. Further, in past few years, the integro-differential equation
with impulsive effects have emerged as a new area of investigation as it describes a kind
of system present in the real world, therefore, the stochastic fractional integro-differential
equation with impulsive effects deserves a deep study.

2 Preliminaries and assumptions

Let (22, 3, {S/}r>0, P) be afiltered complete probability space such that the filtration {J;},>0
is a right continuous increasing family and Jp contains all P-null sets. w(¢) is a K-valued
Q-Wiener process with respect to {J;};>0. A H-valued random variable is a J-measurable
function u(¢) : Q — H and the collection of random variables S = {u(t) : @ — Hlt €
[0, T} is called a stochastic process. We assume that there exists complete orthonormal
system er, k > 1 in K, a bounded sequence of nonnegative real numbers Ax such that
Qer = Miex, k = 1,2,..., and a sequence {§k} of real valued mutually independent
Brownian motions such that

(@), &) =Y _viler. O)B(t), ek, t>0.

k=1

In order to define stochastic integrals with respect to the Q-Wiener process w (¢), we introduce
the subspace Ky = Ql/ 2(K) of K which is endowed with the inner product (i, V)x, =
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(0~12%, 0~1/2%) is a Hilbert space. We assume that 3, = 3¢, where 3¢ is the o —algebra
generated by (w(s) : 0 < s < 1). Let £2(2, 3, P; H) = £2(2; H) denote the Banach space
of strongly-measurable, square integrable random variables equipped with norm

2\1/2
lull zo@,70 = Ellulz)'?,

where E is defined as integration with respect to probability measure P. Let Eg = Lr(Ko, H)
denote the space of all Hilbert-Schmidt operators from Ko to H with the norm

1912 =77 ((90'2) (90'7))

for¢ € E(Z). Clearly, for any bounded linear operators ¢ € L(K, H), this norm reduces to

o0
1% = Tr(@Q¢") = Y IV dexll’.

: k=1

Since —A the infinitesimal generator of an analytic semigroup {S(¢) : ¢+ > 0} in H. Therefore
there exists constants C > 1 and § > 0 such that ||S(#)|| < Ce® .t > 0. Moreover

dﬂl
H drm
where C,,, m = 1,2, ... are some positive constants. Hence without loss of generality, we
might accept S(¢) is uniformly bounded by C i.e. ||S(7)|| < C and 0 € p(—A), the resolvent
set of —A. Then for 0 < o < 1, it is possible to define the fractional power A% as a closed

linear operator on its domain D(A%), being dense in 7{ and we denote the Banach space
D(A%) by Hy endowed with the norm

S| <Cp, t>0, m=172,...

lulle = 1A%ull, u € D(A%),
which is equivalent to the graph norm of A%.

Lemma 2.1 ([31]) Let —A be the infinitesimal generator of an analytic semigroup {S(t) :
t = 0} such that | S(t) |[< C, fort > 0and 0 € p(—A). Then,

1. Fora € (0, 1], D(A%) is a Hilbert space.
2. The operator A*S(t) is bounded for every t > 0 and

IAS@)| < Cr Y,
lAS()] < Se.

For more details on fractional power operators see Pazy [31].
Now, we have some basic definitions of fractional calculus.

Definition 2.2 [35] The fractional integral of order p for a function F € LY(R") is defined
by

1
IPF(t) = ﬁ/o (t—s)P"'F(s)ds, t>0, p=>0.

Definition 2.3 [21] The Caputo fractional derivative of order p for a function F €
C" 10, T); H) N £'((0, T); H) is defined by

t
‘DPF(t) = ﬁfo (t — )" P F" (5)ds,

wherem — 1 < p < m, m = [p] 4 1 and [p] denotes the integral part of the real number p.
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Lemma 2.4 [13], For any r > 1 and for arbitrary L%-valued predictable process h(-),

2r t r
<c,(f Euh(s)niods), Vi e[0,00).
0 2

/ Chdo)

0

sup E’
s€[0,t]

where C, = (r(2r — 1))".

Let C = PC([—1, t], Hy) be the Banach space formed by all strongly measurable H,-
valued stochastic processes on [—t, #] such that u is continuous everywhere except for a
finite number of points ¢; such that u is left continuous at #; and the right limit u(t;r) exists
for j =1,2,...,r, endowed with the supremum norm,

[—z.1]

12
||u||,,a=< sup EnA“u(s)nZ) .
se

Set Cf ! = PC([—7. 1] Ha-1) = {u € C : Ellu(x) —uWIF_; < Llx =y Vx,y €
[—7, t]}, where L is a positive constant and 0 < o < 1.
In order to prove main results we require the following assumptions:

(H1) A: D(A) C H — H is a closed, positive definite, self adjoint linear operator with
dense domain D(A) such that A has a pure point spectrum 0 < Ag < A; < --- anda
corresponding complete orthonormal system {v; } so that

AYi = A, (Y, ¥j) = 6ij,

where (-, -) is the inner product in H and §;; is the Kronecker delta function i.e. —A
is the infinitesimal generator of an analytic semigroup {S(¢) : t > 0} in H.

(H2) Let U; € Dom(G) is an open subset of [0, T'] x Cg_] and for each (¢, u) € U, there
is a neighborhood V| C Uj. There exist positive constants 0 < o < 8 < 1, such that
the function A?G is continuous for (t,u) € [0,T] x Cg ~! such that

EIAPG(t,u) — APG(s, )II* < Lg {It —s* +Eu — vl ,_,}.
E|lAPG (1, w)|I* < L,

where (¢, u), (s, v) € V] and L is a positive constant.

(H3) Let U, C Dom(F)isanopensubsetof [0, T]x C§ x Hy—1 and foreach (¢, u, v) € U,
there is a neighborhood V> C Us. The nonlinear map F : [0, T] x C§ X He—1 — H
satisfies

ENF(t,u, @) — F(s,v, 0> < L[|t — s +Ellu — v|§, +Ela —v1%_,].

where 0 < y1 < 1, (t,u, ) € V2, (s,v,7) € V2 and L is a positive constant.
(H4) Let Uz € Dom(b) is an open subset of H, X [0, T'] and for each (u, t) € Us there is
a neighborhood V3 C Us. The map b : H, x [0, T] — [0, T] satisfies

b, 1) — b(v, $)I* < Ly [Ellu —vlly + |t — 5],

where 0 < y» < 1, (u, 1), (v, s) € V3,b(.,0) = 0 and L, is a positive constant.
(HS) The nonlinear map & is defined from [0, T'] x C into Eg and there exists a nonnegative
function Ly € L] (0, 00), where 1 < g < o0, (1/p) + (1/q) = 1, such that

Ellk(z, u) = k(t, )7y < LeEllu = v]§ o
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and

Ellk(t, )%y < L.
2

(H6) The functions I : C§ — Hy, j = 1,2, ..., r are continuous and there exists positive
constants L ; such that

Ell1j () = ;)5 < LiEJu— vl 4
and
EN7;)3 < Lj.
Define the function ¢ by

~ o, te[-7,0]
o) = {¢(0), t €10, To).

Definition 2.5 [13] A stochastic process {u : [—7, To] = He}, 0 < To < T is called a mild
solution for the system (1.1)—(1.3) if

1. u(r) is measurable, J;-adapted and has Cadlag paths on ¢ € [—1, Tp].
2. u(t)y e CEN C‘;f_1 and for every t > s > 0, the function s — AQ,(t —s)G(s, uy)ds is
integrable such that u satisfies the following stochastic integral equation

$(1), t€l—7,05;
Sp(O[P(0) + G0, (O] — G(t, uy) + Jo@ =570, — $)AG(s, uy)ds
u(t) = +f0t (t — 5)P1 Qp(t —F (s, ug, ulb(u(s), s)]) + foA a(s —r)k(r,u,)dw(r)lds
+ Y Sy =ty 1 € [0, Tp).
O<tj<t

with initial value ¢~5(t) € Eg(Q, Hg) forallt € [—1,0],
where

Sp(t) = /oo £p(0)S(tP0)do,
0

oo
0,1) = p/ 0¢,(0)S(t°0)dob.
0
I |
Here ¢,(0) = %9175 X ¥,(0 ) is a probability density function defined on (0, 00)
ie., £,(0) >0, [77¢,(0)d0 =1 and

i r 1
@) ==Y (—1ylg=mo—t TP T D) )0 < 6 < .
T n!

n=1
For more details see [15,40].

Lemma 2.6 ([40]) The operators {S,(t),t = 0} and {Q,(t),t > 0} are bounded linear
operators such that

. C CoT(2—a)t—P
@ 15,0zl < Clizll. 10,0zl < 855 11zll and A Q,(n)z]] < LSS g,

forany z € H.
(ii) The families {S,(t) : t > 0} and {Q, () : t > 0} are strongly continuous.
(iii) If S(t) is compact, then S,(t) and Q,(t) are compact operators for any t > 0.
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3 Existance of approximate solutions

Let H,, denote the finite dimensional subspace of H spanned by {v, ¥1, ..., ¥,} and let
" :'H — H, be the corresponding projection operator forn =0, 1,2, .. ..
For R > 0, set

Br={uecyncy s lu—alf,, <R|.

Assumptions (H3)—-(H4) and u € C;’fo imply that F (s, us, u[b(u(s), s)]) is continuous on
[0, To]. Therefore there exists a positive constant N such that

EIIF (s, s, ulb(u(s), )DI? < Ly [T3" + RA 4+ LLy) + LLy Ty | + No = N,

where Ny = E||F (0, $(0), ¢(0))||. Choose 0 < Ty < T such that

M(R) =N + lla*I L ©,10) 1 Lk Il L 0,70 (3.1)
r
9 =2 A" PP Lg +rC? Y Lj < 1/12, (3.2)
j=1
- ~ R
E[(Sy(t) — DA“[$(0) + Gu (0, pONI? +EJA* PP Le T (1 + L) < 7’ (3.3)

<pcl+a,gr<1—<a—ﬂ)>>2 "
G

L+ pB—a) 20(f —a) — 1
pCoT (2 — @) 2 Tzﬂ(l a)—1 ,
+<m> MR a1 t7C ZL (3.4)
5<PC1+a—ﬂF(l —« +ﬂ))2 T()Zp(ﬂ a)—1
I +pB—a) 20(B —a) — 1
( pCeT (2 — ) )2 e

Fl+p(d—a)/) 2p(1—a)—1
(LyQ+LLy)+M®R) <1 -0 < 1. (3.5)

LgllA™!|

We define

Gn [0, Tol x C*71 — H; Gu(t,uy) = G(t, P'uy),
Fp [0, Tol x C% X Ho—y — H; Fy(t, ur, ulbu(t), 1) = F(t, P"us, P"ul(b(P"u(1), 1)),
K 2 10, Tol X C% — L3 ky(t, ur) = k(t, P"uy),

and
n- Cg — Has Ij,n(ut) = Ij(Pnut)-
Now, consider the map ®,, : Bg — Br given by

$(1), tel-1,0l;
Sp(DIPO0) + Gu(0, $ON] = Gult, ur) + [5(t = )77 0t = )AG (s, us)ds

(Du)(t) = +f0[(t — )7L Q,(t — $)[Fy(s, ug, ulb(u(s), s)1) + Jo als = Pky(r, up)do (r)lds
+ Y Syt —tpliugy). 1[0, Tl.
O<tj<t
(3.6)
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Theorem 3.1 Let (H1)—-(HO6) hold and 50) IS ﬁg(Q, Hy) forall t € [—t,0]. Then there
exists a unique u,, € Bg such that ®,u, =u, Yn=0,1,2,....

Proof First we show that ®,u € C%O N C%O_l. Clearly ®,, : C‘Y’fo — C‘}io. Therefore we
show that ®,u € C%Ufl for any u € C%(;l. For u € C%;l and 0 < ¢/ < t” < Ty, using

. . . . . n m ]n_l n m .
Holder inequality and inequality ( E - ai> <n E G , where a; are nonnegative
1= 1=
constants, we have

E[(®,u)(t") — (@uu)(t)|2_,
< 6{ (S, (") — Sp (")) (BO) + G (0, O,

+ENAY P2 (APG (" ) — APG (' u)))?

’

t
+ / [A*~F (" — )P~ 0, (" —5)
0

— (' =)7L Q1 — )IPEIAP Gy (s, ug)|ds
t!/
+ / 1A — )71, (" — ) IPEIAP (s, uy) |2ds
t/

+ fo AT = 9P 0,7 — ) — (F — 517 Q6 — sHIP
[EnFn(s, g, ulb(u(s), NI + /0 lats = DPEN ur)nigdr}ds

+ /, . 1A @ = )77 Q, (1" — s)||2[IE||(Fn (s, us, bLh(u(s), HD)|*
+ [ lats =PIk 6 ur)llf:gdr]ds

Y ENS, (" — 1) = Sy — rj))lj,n(ut_,»ni_l}
j=1

<3 3.7)

i=1

For u € 'H, we have

"

t" d t
[S((zH)P8) — S((t)P)]u = / ES(r”O)udz = / ,09t”_1AS(t”6’)udt.
t t
Therefore

Ji<6 </0 §p(9)]E||S(t”)p9> — SEPONA*" (B(0) + G, (0, $(0))[1d6)

1"

2
o0 d _ _
<6 (/0 £p(0) |:/ ElldtS(ﬂ)e)”dt} (¢ (0) + G, (0, ¢(0)))|Ia_1d0)
t/

<Mt — 1), (3.8)
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where M; = 6C?E||($(0) + G, (0, pO) 2,

H < 6IAT T PIPLG L = P+ luyr — |G o]
< 6IA T PIPLGI — 1+ u@” +v) —u@ + )51 Yve[-1,0]
< 6IlA* T PIPLe (L + Lyt =1
<Myt — 1), (3.9)

where M> = 6||A~'=#|2Ls(1 + L).

A[(" =P8, —5) — (' —5)P71S, (' — 5))]

o d d
= 6/0 p(©) [ES(O =)= — TR S)p9)|t=t/] do

oo 2
=6 / £ (0) [ / L S - s)pQ)dt:| de
0 t d

<6C(t" —1). (3.10)

Therefore

O d d :
J3 <6/0 (/0 Cp(G)[ES((I =) )= — TR S)p9)|z=z/}d9>

AP PE AP G (s, x,)II7ds
<M3(1" — 1), (3.11)

J4<6<pca ﬁr(z_(a_ﬂ))> / (t// )Zp(ﬁ a+1)— 2E”AﬂG (Y MY)” dS
LI +p(d—a+p)

(,o a_ﬂr(2—(a—ﬁ))> (" — 1")2PB—atD-1
<6 Lg ,
Fd+pd—a+p) 2p(B—a+1)—1

t 00 d2
6 fo ( /0 ;p(9>[ / sz((r—s)Pe)dr}de) IA“ 21PN + lla* | e || Lell Lo 1ds
t/

<My(t” — 1'%, (3.13)

pCa1I'G —a)
g <6<1“(1 +p2—a))

(3.12)

J5 <

W

[=))

) [ (" — $)P DN 1 ||a?| o | Lill e 1ds

pCo—1I'B — @) " —t )2p2-a)=1
<6(m) MR =y —1 (3.14)
Iy <Ms(t” 1), (3.15)

where M3 = 6C3|A*P=Y2LG Ty, My = 6C3|A*2|2M(R)Tp and Ms = rC3|A™"|?
Z;:l L are constants. Using (3.7)—(3.15), we have the map @, : C%;l — C%;l is well
defined. Now we will prove that &, : B — Br i.e. &, € Bg for any u € By
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E[[(@yu)(1) = Ol < 6=E||(Sp(t) — DAY[F(0) + G (0, FONII2
+ENA* P2 AP Gy (e, u) — AP G, (0, $(0)) |12
(PCHaﬂsF(l — (a — ﬂ))) TZP(/S )=l

T+ p(B—a) 29—y 179
pCoT(2 — a) 2 2p(1 a)—1 5
+<F(1+p(1—a>>) MR =17 7C ZL’}

It follows from (3.3) and (3.4) that,
El[(®@,u)(t) — (0)]12 <

Taking supremum over (0, 7] we obtain that ®, maps Bg into Bg.
Now we show that @, is a contraction map. For u, v € Bg and —7 < ¢ < 0, we have

E|(®,u)(t) — (D,0) ()12 = Elld(r) — ()12
Fort € (0, Tp] and u, v € Bg, we have

El[(@,u) (1) — (@)l

< S{HA“*ﬁanuAﬂGn(r, ur) — AP G (1, v)|)?
- /0 It =)~ Qpt =) AT FIPENAP G (s, us) — AP Gou(s, vy) | ds
+ /0 = 5! Q0 (t = )A|PE|| Fy (s, us, ulb(u(s), $)])
— Fu(s, v, v[b(v(s), )D*ds + /0 - )P0, — 5)AY|?
( fo lats = NPEIKG, 1) — kO, vr>||2dr)ds

1 NSg(t = 1) Ujn(ury) — I,A,n<vtj)>||§,}

j=1
s Cria T —a+p)\> TPF~07! _
<5[||A°‘ s ‘||2LG+('° Lapl( ﬁ)) 0 LolA™"]
CU+pB-ay ) 2oB-w—1
2p(1—a)—1

pCaT2—a) \* Ty
( ) (Ly(1+ LLp) + M(R))

Fd+pd—-a)/) 2p(1 —a) -1

.
+ rC? ZLj]Euu — v},
j=1

Using (3.5) and taking supremum over ¢ € (0, Tp], we get

El[(@nu)(t) — (@) < Ellu — |3, 4

@ Springer
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Thus ®,, is a strict contraction on Bg. Therefore by Banach contraction principle, there exists
a unique u, € Bg such that ®,u, = u, i.e. u, satisfies the approximate integral equation

¢, 1el-7.05;
Sp(O[P0) + G (0, GON] — G (t, (un)e) + [t — )P~ 0t — $)AG, (s, (un)s)ds
UnO) = 4 [T —5)PLQ (= $)[Fu(s, (n)s, tn[bttn(s), $)])
+ Jo als = rka(r, (un))dw (r)lds + ZFI Sp(t = 1)) Ijn(un)i)), 1 €10, To).

(3.16)

[m}

Lemma 3.2 Let (H1)—(HS) hold and g(t) € Eg(Q, D(A%Y)) forallt € [—t, 0]. Then there
exists a constant Ny,, independent of n, such that

ElunI% < Ny, 0<p <1, —t<t<T.
Moreover, if 5(0) € Eg(Q, D(A)), there exists a constant Ny, independent of n, such that
Ellun))2 <No. 0<pu<1, 0<t<T.

Proof Fort € [—t, 0], applying A* on both the sides of (3.16) and taking norm, we have
Ellun 1% < 16012 < 1613 -

For ¢ € [to, T], on applying A on both the sides of (3.16) and taking norm, we have
Ellun ()1}, < 6{ 1A S,()[G(0) + Gu(0. gONII* + IA* P IPEN AP G (. ()|
+ /0 t It —)"7' 0t — ) AP P AP Gy (s, (un)s)|Pds
+ /0, 1 =710t — ) A2
[Ell Fu (5. (n)s. unlbn(s), HDI* + /O laGs = PPElkn(r, (), [2drids

+r Y 18,0 - zj)|2||A“1,~(un>t,-||2}

j=1

< 6{0,% P11 30) + G (0, $ONI + 14" PP Lg

<pC1+u—ﬁF(1—M+ﬂ)> e

L +p(B—w) 2p(— ) — 1

pC, T2 — ) 2 T2p(1 w—1 5 }
+<r<1+p(1—m>> MR =1 +C ZL’

g Nt0~

From Theorem 3.1, there exists a unique u,, € Bg which satisfies (3.16). Now using Part (a)
of Theorem 6.13 in Pazy [31] we have S(¢) : H — L£2(2, D(A*)) fort > 0and 0 < p < 1.
Also Theorem 2.4 in Pazy [31] implies thatifu € £,(2, D(A)) then S(*)u € L2(2, D(A)).
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Arlgi Theorem 6.8 in Pazy [31limplies Lr(2, D(A)) C L7(2, D(A*)) for0 < u < 1. Thus
if §(t) € £9(Q, D(A)) then (t) € LI(Q, D(AM)) for 0 < p < 1 and we get,

Ellun ()17, <6{CZ||$(0) + G0, gODII7, + AP Lg

<,0C1+,47,3F(1 —u+ ﬁ))l T02ﬂ(/3—u)—1
T+ p(B—w) 208 — 1) — 1

pCul' (2 — ) 2 TZD(l w1 5
+<F(1+p(1—u))> MR =1 +C ZL’}

<Np.

Lg

4 Convergence of solutions

Theorem 4.1 Let (H1)—(H6) hold and g(t) € [I(Z)(Q, D(A%)) forallt € [—t, 0]. Then the
sequence {u,} € Bgr is a Cauchy sequence and therefore converges to a function u € Bg
satisfying (3.16).

Proof For 0 < t; < t, we have
Ellun(t) — um 113
< 6{c2||A“—ﬂ IPEA# G (0, $(0)) — AP G (0, $(0))1?
+ AP IPENAP Gt (un)e — AP G (2, (um)0) 11

1 t
([0 =i -oatenp
0 1

X ENAP G, (s, (un)s — AP G (s, um)s) |12 ds
th t
+ (/0 +f, >||<r — )P, — s)A“nZ[JEnFn(s, (ttn)s un[b(ttn (), 5)1)
Iy
— Fn (s, (tm)ss m Dt (s), DI
+ / Jals — P)PEky (r, (ttn)r) — k(7. (um)r)uzdr}ds
0
+ Y 1Syt = t)PEN L (un)yy) — Ij,m(um),,)ni}. (4.1)
j=1
Here

C?| A% F|PE| AP G, (0, $(0)) — AP G, (0, 5(0))) )12
< CHA*PIPLGE|(P" — P™$O)]2_,
< CHA*PNPLGE|(P" — P™)A“G(0)]I,
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and
Ell Fu (s, (n)s, tn[b(ttn(5), $)1) = Fun (s, Wm)s o [bCm (s), DI
2AE| Fu (s, (n)s tn[b(tn (), $)1) = Fu (S, (tm)s i [b(tm(5), )1
FE( Fo (s, tm)ss tin[Dt (5), 1) — Fue(S. (ttm)s. e [b (1t (5), )DI]
< 2Ly (1+ LLp)E(un — unll} o + LEI(P" = P15
HIATHPENP" = P™ut b (). 131
Also

E[(P" — P™uw|? o <EJA*H(P" — P")A Uy |} < ———E| A w2

)\2(,1/‘ o)
Therefore, we have
E”Fn(& (Un)s, un[b(un(s)v ) — Fp (s, (Um)s, um[b(um(s)7 S)])”z
1
<2L (1 + LLE ]y — ]2 +2Lf[ B A"y |2
m

+||A H?
3200

E | A"t [b(ttm (5), s>]||2]
Similarly
ENAP G, (s, (un)s) — APGo(s, (m)s)|1?
S 2B AP G (s, (un)s — AP G (s, (um)s) 1> 4 2EI AP Gy (s, (um)s — AP G (s, (um)s) |1
—1,2 2 1
<2LglA7Y [Euun — iy + PR —ta Bl A I }

and

Ellkn (s, (tn)s) — km (s, @m)s) |1
< 2UEkn (s, (tn)s) — kn (s, @) ) 4 Ellkn (5, m)s — ki (s, (tm)s) 1]

1
< 2Lk |:]E||un —Unm ”?,a }\Z(M o) E”Aﬂum ||2:|

The first and third integrals of (4.1) can be estimated as

’

/ 1@ = P10, — ) AT B REIAP G (s, (un)s — AP Gon(s, (tm)y) [ Pdls
0

2
<2L <0C1+a—ﬂr(1 —o+ .3)> (to — t6)2'0(ﬂ_a)_2t6,
L1+ p(—a+p)

f/
/0 e — )P0, — s)A“nz[EnF,z(s, (ttn)s tn[b(n(s), 5)])
— Fon (s, () sy bt (s), DI

+ / la(s — 1) PEllk (r, (un)r) — kn (um»)nzdr}ds
0

pPCeT 2 —a) \? I\20(1—a)—2,/
< 2M(R)<m) (to — 1) 1.
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Second and fourth integrals of (4.1) can be estimated as

t
/ It — )P0yt — )ATTPIPENAP G (s, un)s — AP G (s, (um)s) 17 dss
1

< 2<pC1+a—ﬂF(1 —a+ 5))2LG”A_1”2( NtoTozp(ﬂ—a)—l
S\ TU+p-atp) 20208 —a) — 1)

t
+ / (t — )PP 2E luy, — up, ||?_ads),
t(’) '

t
f It —$)P"1Q,t — 5)A” ||2[E||Fn (s, (n)ss un[b(un(s), $)1)
)
- Fm(s’ (um)s, um[b(”m(s)» S)])”z
+ / la(s — r)*Ellkn (r, (wn)r) — ki (r, <um)r>||2dr}ds
0

2( pCoT'(2 — @)

m) /(z 5) P 2[ $+ LLY)Euy — w2,

! AP
+Lf( ey Bl A" [ + 2(H)EuA“um[b(um(s),s)]||2

1
+/0 |a(S — r)|2Lk(E||Mn — Uy ”%,C( + WE”AMum ||%)dri|ds
m

2p(l—a)—1
pCel 2 —a) \? i 5 N, T,
o == = ) LA+ A L
(F(l—i—p(l—a)) (L AT e WL l20) 36255 5 o

t
+(Ly(1+LLy) + lla* |l Lo | Lkl ze) f (t — )10 2E |lu, — umn?,ads]-
1

Thus (4.1) can be estimated as

Ellutn (£) — wn (1)
< 6C2A* PP LGE|(P" — P™)A%G(0)]

N,

—p—1)2 2 !

+ 12 4% LG<E||un —ttmf o + Az(uﬂa))
m

pcl+a_,sr(1—a+ﬂ>>2 22
+12<LG( T+ p—a+B) (to — 1)

2
+ M(R)( pCe ' (2 — Ol)))) (to — t(/))z,o(lfa)72>t(/)

'd+po(l -«
. |:]2<,0C1+o(—ﬂr(l —w +ﬂ)) i 71” TZP(ﬂ*ot)*l
F'ad+p(—a+p)) CpB—a)—1)

_ 2
+ 12<M) (L4 ||A_1||2)
a))

rad+opd-
2p(1—a)—1
/S Ny,
2p(1 —a) — 1 ]2m-)

+ lla®ll Lo I Lillze)
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' _ 2
+/ {12<PC1+a7ﬁF(1 ot-i—ﬂ)) Lol A~ [2(t — 5)20B—0=2
fo I'(1+ p(—a+B))

N <,0C0,1"(2—a)
'+ p(l—w))

2
) (Ly(1+ LLp) + lla®|lLr | L]l o)

,
(t — s)z”(l_“)_zllEHun — um} ods +6rC* Y " LiE|u, — um||3j,a
j=1

D3 ! e
m fo

,
+ (= POy — unll] ods +6rC? Y LiEluy —unllf o (42)
j=1

where

Dy =12|A* P12 Lg,

Criapl(1 —a 4+ 6)\> (B
= =12(Lc<prl<+1 T ﬂ))ﬂ)> (o =iy 77

2
+M(R)( PCaF(Z—Ot) ) (to_t(/))z,o(lfa)72>’

r(+p(l —a))
D3 =6C> Ny A P2 Lg (16115, + 12N, 1A P72 Lg

Cro aT(1 — 2 T2p(ﬂ—or)—1
PClia—pl( a+ﬂ)) LollA™

I+ p(=a+p)) 2p(B—a)—1)

2p(1—a)—1
pCalT 2 —a) \? i 5 T,
2N 2= ) (Ly(1+ A Lillpa) =%,
- ‘°<r(1+p(1—a)) LA+ 1A + e Ll 3 By

Dy =12<Pcl+a—ﬁr(1 —a+ ﬁ))zLG”A_l =
T+ p(—a+B)

+ 12N,0<

pCal' 2 —a) \? 2
. 12<m> (L(1+ LLy) + a1 o | Li ] 2o)-

Replace ¢ by 7 + v in the above inequality, where v € [t} — ¢, 0], we get
3
Ellun (t +v) =t (¢ + )12 < DiEllity — wnl?o + Dot + — >
A’
t+v
L A
f
+ 1+ =T E uy — 7 o ds
r
+6rC* Y " LiElluy — tllf, o

Jj=1
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Now put s — v = y in the integral term of above inequality and we get

D3
Ellun(t +v) — up(t + V)”i < DiE|lu, — Mm”ia + D2t6 + W
m

t
#Du [ 1=y

/
tofv

+ (=P E uy — unll 4, o dy

.
+6rC* Y LiElluy — unl? o
j=1

2 / Ds
< DiEllun — umll; o + D2t + =05
P
t
+ D4/ [(t —y)*rtfro=2
1
+ (0 = )P O Ry — w2 o dy

r
-|- 6rC2 Z LJ]E”un - Mm“tzj,a'
j=1

Thus,

Ds3
sup  Ellun(t + ) — (¢ + )5 SDIE|lun — o + Doty + 0,705
1;,—1<v<0 Am

t
+ Dy f [(1 —y)? o2
%
+ =) O 2Ry — w4 dy

,
+6rC*Y LiElun =l 4 4.3)
j=1

Since u, (t +v) = 5(1‘ +v) fort + v < 0 and n > ng. Therefore, we have

sup  Elluy(t +v) — @+ )2 < sup  Elluy(t 4+ v) — up(t +v)|3
—1—t<v<0 0<v+1<y

+ sup Elluny(t +v) — up(t + )2

1,—1<v<0
“4.4)
For ¢ € (0, )], we have from (4.2)
2 2 / Ds
Ellun(t +v) — um(t + )y < D1E[u, — umlly o + Doty + W
m
.
2 2

+6rC?Y " LiEllup = unll o (4.5)

Jj=1
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where D5 = 6C2N,, || A*~#~! ||2LG||<;~S||%,M + 12N, || A% P=1)|2 L. Using (4.3) and (4.5) in
(4.4), we get

D3 + Ds
sup  Elluy (1 +v) = um (¢ + )z <2D1Ellun — |17, +2D2t5 + 550
—t< vt Am

t
+ Dy / [(r =y P
1
+ @ = PO PR uy — | 4 dy

,
+12rC? Y " LiEluy — un 7 4

j=1
,
Since 2D + 12rC? Z L; <1, we have
j=1
1 D3 + Ds
Eflun(6) = um@)]3 < ; [Zth{) =
m

(1 — 2Dy + 12rc2ZLj
j=1

t
+ Dy / [ = )P Pm072 4 (1 = )P OB Juy — umni,mdy}.
%

From Lemma 5.6.7 in Pazy [31], there exists a constant M such that

2 1
Ellun (@) — um @y <

r

(1 — 2Dy +12rC? ZL])
j=1

D D
|:2D2[(/)+ s 5] .

)\'%n(ll«_a)

Because 1) is arbitrary and letting m — oo, the right hand side may be made as small as
desired by taking 7 sufficiently small and we get the required result. O

Theorem 4.2 Let (H1)—(H6) hold and ¢(0) € L5(Q, D(A%)) forallt € [—t,0]. Then
there exists a unique function u, € Br and unique u € Bg satisfying

¢(0), 1e[-T,0k _
Sp(FO0) + Gu(0. GON] = Gt (wn)o) + [5(t = )" Qp(t = $)AGu(s, (un)s)ds

nlt) = + fot = )P0, (1 = [ Fu(s, (un)s, tn [b(tn ), )1
+ [y als = Pky(r, (un)r)dw(r)lds + ijl Sp(t =t 1jnun)s). 1 €10, To).
4.6)
and
$(1), tel—,0%
Sp(D[P(0) + G0, p(0)] — G(t,up) + [yt — )P~ Qp(t — ) AG(s, uy)ds
u(t) =

+f(;(t —5)P71Q,(t — $)[F (s, us, M[ZZ(M(S), D
—I—f(‘; a(s — rk(r,u)dw(r))ds + ijl Syt — tj)lj,,,u,j), t € [0, Ty].
4.7

such that u, — u in Bgr asn — 00.
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Proof Let 5(0) € Lr(R2, D(A%)) for all + € [—1,0]. Since for t € (0,71, there exists
u, € Bg such that A%u,(t) - A%u(t) € Bgr asn — oo and u(t) = u,(t) = ¢(¢) for all
t € [—1,0]. Also for t € [—7, T], we have A%u,,(t) — A%u(t) in L,(2, H) as n — oo.
Furthermore, since for each u, € Bg, we have u € Br and forany 0 <1 < T,

lim  sup Elu,(r) — u()]2 = 0.

n=>00 4 +<T
Also, we have

sup B[ F(s. (un)s, un[b(n(s), 5)1) — F(s, s, ulb(u(s), s)DII?
s€ltg,T]

<2[Ly(L 4 LLp)E|uy — ul? 4 + L E|(P" — Dugl2
+IAYIZEN(P" — Dulb(u(s), )1I12)] — 0,

and
sup EIAPG, (s, (un)s) — APG (s, up)|?
s€ltg,T]
<2LGII AT P[Elluy — ull} , + EI(P" = Dugl|3] — 0,
and

sup Ellkn (s, (un)s — k(s, ug)||* < 2Li[Elluy — ull} o + EI(P" — Dus||2] — 0,

s€lr.T]

as n — oo. For t(’) € (0, ), rewrite Eq. (3.16) as

(1) =S, (D[PO0) + Gu(0, $(O)] = Gu(t, (un),)

) t
+ (/ ’ +f )(t - S)p_lQp(t —$)AG, (s, (uy)s)ds
0 %
t) t
+ (/0 +f )(r — )77 0t = ) Fa s, ). unlblitn(5). )
fo

s r
+ / a(s —r)k,(r, (up)r)do(r)lds + Z Sp(t — i) jn(un)y; 4.8)
0 ‘
j=1
The first and third integrals of (4.8) can be estimated as

2 pC1—pl(1 +,3)>2T2(pﬂ—l)

t/
H/OO([fs)p—lAl—ﬁQp(t7S)A/3Gn(s, (un)s)ds T B o 1,

<LG<

1) s
H /0 0(1 —5)P71 Qp(t = )[Fn(s, (un)s, unlb(un(s), s)1) +/0 a(s —r)kn(r, (un)r)dow(r)lds

c \2 ,,_
< MR =L 1272,
T+ p)

Thus we conclude that

- - t
un () = Sp()[P(0) + G (0, p(0)] + G (2, (un)s) — // (t =)' Qu(t — )AGu (s, (n)s)ds
fy

t s
—/ (t—S)p’lQp(t—S)[Fn(s, (un)s,un[b(un(S),S)])+/ a(s — )k, (r, (up),)dow(r)lds
1 0

pcl_ﬁr<1+ﬂ>)2 20p1) < pC )2 zp—z]/
<|og( 22 TP M(R T, :
<[ G( rat+ep )0 T Fag,y) oo

= St = ) un)y,
j=1

@ Springer



Existence and approximation of solution to stochastic... 199

Letting n — oo in the above inequality, we get

t
u(t) = S, (M[0) + GO, p(0)] + G(t, ur) *// (t =)' Qp(t — )AG(s, ug)ds
)

t s
—/ (t—S)"_lQp(t—S)[F(s,us,u[b(u(S),S)])+/ a(s —r)k(r,uy)dow(r)lds
1y 0

PCrL-pT (L + B\ 2pp—1) ( pC )2 2/)72]/
g[“( T+ B )T" MO FaTp) oo

=Y Splt = 1)1 ()

j=1

Since t(’) is arbitrary and hence we conclude that u (¢) satisfies Eq. (4.7). ]

5 Faedo—Galerkin approximations

Forany 0 < Ty < T, we have a unique u satisfying the integral equation

~

¢(1), tel-7,0l;_
Sp(O[P0) + G0, $(ON] — Gt u) + [yt — )P~ Qp(t — )AG (s, uy)ds
+Jo 6 = 9710t = IF (5, us, ulb(u(s), )1

+f05 a(s —r)k(r,u,)dw(r)lds + ijl Spt —tj)1jpur;, t €0, Tol.

u(t) =

5.1
Also we have a unique solution u,, of the approximate integral equation
$(), tel-t,0; _
SpM[¢(0) + GO, P"P(0)] — Gz, P" (un)r)
+ fot = )P0, (t — $)AG(s, P"(up),)ds
+f(;(t — )P0, (t = )[F (s, P"(un)s. P un[b(P"up(s), 5)])

+ [S als—rk(r, P"(un),)de(r)lds+ Z;:1 Sp(t—t) 1), 1 € [0, To).
(5.2)

uy(t) =

Now, if we project (5.2) onto H,, we get the Faedo-Galerkin approximations u,(f) =
P"u,(t) satisfying

P'(t), te[-1,0];
Sp(t) P"[9(0) + G(0, P"¢(0))] — P"G (¢, (itn):)
+ Jot = )P71Q,(t — $)AP"G (s, (@y)s)ds
(=0 4 [ = 5)P71Q,(t — [P F (s, @)y, Balb@n(s), ) G
+ [y a(s — r)P"k(r, (i) dw(r)]ds

r o~
+Z,:1 Sp(t — 1) P"1;(@n)i,), 1 € [0, Tyl.
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Solutions u of (5.1) and #,, of (5.3) have the representations

u) =Y ojuj. o) = @@).u;), j=0.1,...;

j=0
W) =Y oM Ouj, ol 6) = @) up), =01, (5.4)
j=0

as a consequence of Theorems 3.1 and 4.1, we have the following results.
Corollary 5.1 Let (H1)-(H®6) hold. Then
(@) ifp(r) € £(2)(Q, D(A®) forallt € [—t, 0], then

lim sup  EJA%[@,(t) — (D] = 0.

=30y >m,—1<t<Tp)
(b) if $(1) € L2A(Q, D(A) forall t € [—1,0], then
lim sup E| A% () — i (D] = 0.

00 tn>m, —t <1< To}

Theorem 5.2 Let (H1)-(H6) hold and let $(t) S Lg(Q, D(A?) forallt € [—z,0]. Then,
there exist a unique i, € By satisfying

Pg(t), te€[—1,0];
Sy P"[$(0) + G(0, P"$(0))] — P"G(t, (itn);)
+ fot = $)P71Q,(t — $)AP G (s, (in)s)ds
+ fot = 9)P71Q,(t = )[P"F (s, (in)s.
T [b(@n(s). ) + [y als — r) P k(r, (@))do(r)]ds

r -~
+Zj=1 Sp(t = t))P"1;(in)i,), 1 € [0, Tp).

(1) = (5.5)

and u € By satisfying

¢(0), 1e[-7,0%_
Sp(D[$0) + G0, pON] — G(t, us) + [o(t = )P Qp(t — $)AG (s, ug)ds
u(ty = 1+ Jo & =710, (t = )IF (s, us, ulbu(s), $)])

+de a(s —rk(r,u)dw(r)lds + Z Syt — t_/)lj,nu,j, t € [0, To].
j=1
(5.6)

such that i, (t) — u(t) asn — oo in Bg.
Proof We have
Ellin (1) — u®)l3 = EllP"un(t) — P"u(t) + P"u(t) — u(@®)|;
SEIP" (un (1) — (@)l + EI(P" = Du@®)llg-
By Theorem 4.2, we have
lim  sup Elu,(t) —u()|? = 0.

"= tel-rT]
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Thus, this completes the proof of the theorem. O
Now for the convergence aj'.’ to o, we have the following convergence result.

Theorem 5.3 Let (H1)-(H6) hold. Then
(a) ifa(O) € L‘,g(Q, D(A%) forallt € [—t, 0], then

lim sup | Y AFE[of (1) — oi()]* | =0. (5.7)
=0 te[—1,Tp] i—o
(b) if $(0) € LI(2., D(A)), then
n
lim sup | Y AEllo} (1) — 0i(1)]* | =0. (5.8)
"0 rel-7,Tol | 2y

Proof Since

EIIA @, (1) — u) > = D E[A% (0] (1) — 0i (1))ui |
i=0

D [GHOREAGIT

i=0
Therefore
n
[l A% @ (6) — u)|* = Y 3“Ell(0] (1) — oi (1)ui |17,
i=0
taking lim both sides and using Theorem 5.2, we obtain the required result. O
n—o0
6 Example

Consider the fractional differential equation in the separable Hilbert space H = £2(0, 1)

DALV (1, x) 4+ G(t, x, 0 V(1 + v, x)] — 02V (1, x) = Fi(x, V(t,x) + Fa(t,x, V({t +v,x))
+ flat — 5K (s, x, 9, V(s, x)dw(s), x€© 1), e 0 Hud, D

AV(t, X)|i=12 = %,

V(0 =V, 1) =0,

1 V(v,
V(V,x):ﬁ‘l_.,‘(/v(li)x), _7:<V<0»

(6.1)

where
Fi(x, V(t,x)) = /X W(s, x)V (s, h(D)|V(t,s)])ds,
0

and F, : R4 x [0, 1] x Ris measurable in x, locally Holder continuous in ¢, locally Lipschitz
continuous in V, uniformly in x, N € N. We also assume that W ¢ Cl([O, 1] x [0, 1], R)
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and i : Ry — Ry is locally Holder continuous in ¢ with 2(0) = 0. K € Lo (K, H) and
a? € £9(0, 00) and w is a standard Winer process.
Define operator A such that

Au = —u" with u € D(A) =H)0, 1) NH>(0, 1). (6.2)

Here — A is infinitesimal generator of an analytic semigroup S(¢). Moreover, A has a discrete
spectrum with the eigenvalues of the form k%72 for k € N, whose corresponding(normalized)
eigenfunctions are given by ex(x) = /2 sin k7 x. Therefore for u € D(A)

u(x) = Z < u(x),er(x) > er(x).

keN

Now, fora = 1/2, D(A'Y?) (denoted by H1,2) is a Banach space endowed with the norm

lull12 = [|AY2ul| foru e D(A'Y?).

Also, define the space
¢/”? = C(—t.11, D(A"?), 1€[0,T],

endowed with the sup norm

1/2
leliiz= sup lleWlla, @eC/>

—Tv<t
Then, we have

AVy(x) = an < u(x), ex(x) > ex(x) withu € D(A'?).
keN

The Eq. (6.1) can be reformulated as the following abstract stochastic fractional integro-
differential equation with impulsive effects in H = £2(0, 1)

DP[ut) + G, u) + Au@®)dt =F (¢, us, u[b(u(t), t)])dt
t
+/ a(t — s)k(s, ug)dw(s),
0

Au(t)|t=172 =1 (ur),
u(0) =4(0), (6.3)

where u(t) = V(t, -) i.e. u(t)(x) = V (¢, x), A is defined in (6.2), the function G : [0, T] x
D(A'Y2) - H is defined as

G(t,u)(x) = G(t,x, 0, V(t + v, x)).
The function F : [0, T] x Hy/2 x H_1,2 is defined as
F(t,6,9)(x) = Fi(x,9) + Fa(t, x, §),
where
Fi(x,¢) = /0 W eMdy,  Fat,x, $) < Z(t. )L+ @l ,1)-
After a simple calculation, we get

E|Fi(x, ¢1) — Fi(x, 92)I* < LyEllg1 — 921,
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and

E|| Fa(t, x, 1) — Fa(s, x, $2) > < L(t — s/ + E|ld1 — o).

The function b : HOl (0, 1) x RT — R defined by b(u(t), t) = h(t)|u(t)| satisfies

[b(u, )] = [hOu@] < [hlloo X lulloo, ¢ €[0,1]

As h is a Holder continuous function, there exists a positive constant Ly, and y € (0, 1] such

that

For

For

|h(t) — h(s)| < Lplt —s|V, t,s €[0,1].
uy, uy € Hy (0, 1), we have
by, 1) = b(uz, $)1* = |h(®)[|ur| — |ua|]] + (h(1) = h(s))uz|?
SNSRIl = uallf o )+ Lale = szl

2 2 2 2y
< max {1413, LalualZo} (Bller =2l +10 =)

Ui, Uy € D(Al/z), we have
16E|u1 — u2}
12 +un@+uli,

EN(up) — T @)}, <

It can be easily checked that the assumptions (H 1)—(H6) are satisfied. Therefore we may

use

the results established in the earlier sections to obtain approximate solutions and their

convergence.
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