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Abstract The Nash multiplicity sequence was defined by Lejeune-Jalabert as a non-
increasing sequence of integers attached to a germ of a curve inside a germ of a hypersurface.
Hickel generalized this notion and described a sequence of blow ups which allows us to
compute it and study its behavior. In this paper, we show how this sequence can be used to
compute some invariants that appear in algorithmic resolution of singularities. Moreover, this
indicates that these invariants from constructive resolution are intrinsic to the variety since
they can be read in terms of its space of arcs. This result is a first step connecting explicitly
arc spaces and algorithmic resolution of singularities.
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1 Introduction

Consider a variety X of dimension d over a field k. By a resolution of singularities we mean
a proper birational morphism
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X
φ←− X ′

such that X ′ is regular. In addition we require that φ induces an isomorphism on the set
of regular points of X , and that the exceptional divisor φ−1(Sing(X)) has normal crossing
support.

In [17], Hironaka proved that given a variety over a field of charateristic zero it is possible
to find a resolution of singularities of X defined by a sequence of blow ups at smooth centers.
Moreover, it is possible to construct such a sequence by means of some invariants attached to
the points of X (see [3,25,26]). The study of those invariants becomes interesting as soon as
they provide an algorithm for the construction of a resolution of singularities for any variety
over a field of characteristic zero. Furthermore, they may also give insight into the resolution
phenomenon, in order to solve the problem for more general fields. Through these invariants,
one can define resolution functions, which stratify X in locally closed sets, so that there is a
canonical (regular) center to blow up at each step of the resolution sequence. Then resolution
is achieved via the construction of a finite sequence of blow ups.

Oneof the ingredients that onemay take into account for this stratification is themultiplicity
function (see [30]). The multiplicty is an upper semi-continuous function defined at each
point ξ of a variety X . If X is defined over C then the multiplicity at ξ is the smallest rank
of the generic fiber for all possible local morphisms (X, ξ) −→ (Cd , 0). If X is a reduced
equidimensional scheme, then X is regular if and only if the multiplicity equals one at every
point.

1.1 Constructive resolution of singularities

In short, a constructive resolution of singularities of X is given by an upper semi-continuous
function

f : X −→ (�,≥),

where (�,≥) is some well ordered set. The maximum value of f determines the first smooth
center C ⊂ X to blow up: X

π1←− X1. Right after this blow up, a new upper semi-continuous
function f1 : X1 −→ (�,≥) is defined, in such a way that f1(π

−1
1 (ξ)) = f (ξ) for any

ξ ∈ X\C , and f1(ξ ′) < f (ξ) whenever π1(ξ
′) = ξ ∈ C . If f is appropiately constructed so

that it is constant if and only if X is smooth, then resolution is achieved after a finite number
of steps. One way to construct such a function is to associate a string of invariants to each
point.

Looking at the multiplicity function on X may be a good starting point when attempting
to construct a resolution of singularities of X . But unfortunately, the strata defined by the
multiplicity functionmay be non smooth. Thus, the use of other invariants becomes necessary
in order to refine the stratification so that one can have a smooth stratum to choose as the
center of the first blow up. The most important of these invariants is the so called Hironaka’s
order function (see [13] or Definition 2.5 in this paper). From it, many other invariants may be
defined (see Sect. 2.8). If we choose the multiplicity function as the first coordinate of f , C is
contained in Max mult(X), the closed subset of X where the multiplicity reaches its highest
value. Now fix some point ξ ∈ Max mult(X). Locally, in a neighbourhood of ξ , a finite local
projection p to some smooth scheme of dimension d = dim(X) can be defined, inducing a
bijection between Max mult(X) and its image (see [5,6]). There, Hironaka’s order function
can be defined at each point in the image of Max mult(X). This function, which we will for
the moment denote by ord(d)

ξ (X), does not depend on the projection (if it is general enough).
Moreover, it can be shown that lowering the maximum multiplicity in a neighbourhood
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Nash multiplicities and resolution invariants… 177

of ξ is equivalent to solving a suitable problem in a d-dimensional smooth scheme. This
gives the possibility of constructing a resolution of singularities of X by resolving such
problems, which simplifies the process. We will refer to ord(d)

ξ (X) as Hironaka’s order

function in dimension d (see Sect. 2.5 for full details). It can be shown that ord(d)
ξ (X) is the

next relevant coordinate of f , refining the stratum Max mult(X) (see Sect. 2.8), so we will
consider

f (ξ) = (multξ (X), ord(d)
ξ (X), . . .).

Surprisingly, ord(d)
ξ (X) can readily be read by looking at a suficiently general arc in L(X),

as our main result, Theorem 3.6, shows.

1.2 Arcs

There are many other approaches to the study of singularities. Jet and arc spaces of varieties
often appear among them.Many properties of the jet schemes and the arc scheme of a variety
are linked to its singularities. See for instance the works of Ein, Ishii, Mustaţă and Yasuda
where some singularity types are characterized through topological or geometrical properties
of the associated arc schemes [10–12,19,22,23].

It is in this context of arc spaces where the Nash multiplicity sequence appears. It was
defined by Lejeune–Jalabert [20] as a non-increasing sequence of positive integers attached to
a germ of a curve inside a germ of a hypersurface. Hickel generalized this notion to arbitrary
codimension [16] and defined a sequence of blow ups (at points) that allows us to compute
Nash multiplicity sequences and study their behaviour. Given a variety X , fix an arc through
a point ξ ∈ Max mult(X) (not necessarily closed). By means of its graph � ⊂ X × A

1, the
arc ϕ defines a sequence of blow ups at points:

X0 = X × A
1 X1

π1
. . .

π2
Xr ,

πr

ξ0 = (ξ, 0) ξ1 . . . ξr

where ξi is the intersection of the exceptional divisor of πi and the strict transform of the
graph � in Xi for i = 1, . . . , r . The Nash multiplicity sequence is then the sequence

m0 ≥ m1 ≥ . . . ≥ mr ≥ 1,

in which mi is the multiplicity of Xi at ξi for i = 0, . . . , r (see Sect. 3.2 for details).

1.3 Our results

In this work, we analyze a connection of arc spaces with the problem of resolution of
singularities. We study the Nash multiplicity sequence for arcs in varieties, and find a
relation between the structure of this sequence and some invariants of resolution. In par-
ticular, for an algebraic variety X of dimension d , we are in position to give a relation
between the length ρX,ϕ of the first step of the sequence (before the Nash multiplicity
decreases for the first time) and Hironaka’s order function in dimension d . We introduce
an invariant for X and ϕ at ξ which is sharper than ρX,ϕ and which we will denote by rX,ϕ .
More precisely, we will see that ρX,ϕ = [

rX,ϕ

]
. For this invariant, we prove the following

result:
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Main Theorem (3.6) Let X be a variety of dimension d . Let ξ be a point in Max mult(X).
Then,

ord(d)
ξ (X) = min

ϕ

{
rX,ϕ

ord(ϕ)

}
,

where ϕ runs through all arcs in X through ξ .
As we mentioned before, this minimum is achieved for any arc which is generic enough

with respect to the tangent cone of X at ξ .
When we work with a hypersurface X , computing invariants and giving a local expression

of the equation of X is much easier than when we deal with a variety of higher codimension.
To avoid this difficulty, we rely on the results on local presentations attached, in this case,
to the multiplicity (see [30]). They allow us to work locally with a set of hypersurfaces with
weights.
Rees algebras happen to provide a useful tool for the study of these local presentations
and their behaviour under blow ups. They keep track locally of the behaviour of resolution
functions before and after blowing up at smooth centers. We will also see that our problem
can be translated into a problem of resolution of Rees algebras.

Our work is organized as follows. In Sect. 2, we present some preliminary definitions and
results on Rees algebras, as well as some examples motivating their use and their connection
to algorithmic resolution. We also include some comments about the resolution invariants
we want to focus on. Section 3 is devoted to arcs and the Nash multiplicity sequence. It is in
Sect. 4 where we finally connect all the previous concepts and state our main result (Theorem
3.6). The proof of the main result is given in Sect. 5 where we first prove it in the simpler
case of a hypersurface. Then we deduce the general case from this one, making use of what
we know from [30] about local presentations attached to the multiplicity.

2 Rees algebras and their use in resolution of singularities

2.1 Rees algebras

Definition 2.1 Let R be a Noetherian ring. A Rees algebra G over R is a graded ring,1 that
is:

G =
⊕

l∈N
Il W

l ⊂ R[W ]

for some ideals Ii ∈ R, i ∈ N such that I0 = R and Ii I j ⊂ Ii+ j , ∀i, j ∈ N, which is
also a finitely generated R-algebra. That is, there exist some f1, . . . , fr ∈ R and weights
n1, . . . , nr ∈ N such that

G = R
[

f1W n1 , . . . , fr W nr
]
. (2.1)

Remark 2.2 Rees algebras can be defined over aNoetherian scheme V in the obviousmanner,
that is, G will be locally at each ξ ∈ V as in (2.1), with Spec(R) ⊂ V an open affine subset.

Definition 2.3 Let G1 and G2 be two Rees algebras. We denote by G1 	 G2 the small-
est Rees algebra containing both of them. If G1 = R[ f1W n1 , . . . , fr W nr ] and G2 =
R[g1W m1 , . . . , gl W ml ], then G1 	 G2 = R[ f1W n1 , . . . , fr W nr , g1W m1 , . . . , gl W ml ]. If
G′
2 = R′[g1W m1 , . . . , gl W ml ], where R′ ⊂ R is a subring, by abuse of notation we will

1 W is just a variable in charge of the degree of the Ii .
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sometimes denote by G1 	 G′
2 the Rees algebra G1 	 G2, where G2 is the extension of G′

2 to
a Rees algebra over R.

2.1.1 Notations and conventions

From now on we will assume k to be a field of characteristic zero, unless otherwise stated.
We will also assume R to be a smooth k-algebra, or V to be a smooth scheme over k.

Definition 2.4 Let G be a Rees algebra over R. The singular locus of G, Sing(G), is the
closed set given by all the points ξ ∈ Spec(R) such that νξ (Il) ≥ l, ∀l ∈ N.2 Equivalently,
if G = R[ f1W n1 , . . . , fr W nr ], then it can be shown [15, Proposition 1.4] that

Sing(G) = {
ξ ∈ Spec(R) : νξ ( fi ) ≥ ni , ∀i = 1, . . . , r

}
.

Note that the singular locus of the Rees algebra over V generated by f1W n1 , . . . , fr W nr does
not coincide with the usual definition of the singular locus of the subvariety of V defined by
f1, . . . , fr .

We will sometimes refer to the singular locus of a Rees algebra as the closed set attached to
it.

Definition 2.5 We define the order of an element f W n ∈ G at ξ ∈ Sing(G) as

ordξ ( f W n) = νξ ( f )

n
.

We define the order of the Rees algebra G at ξ ∈ Sing(G) as the infimum of the orders of the
elements of G at ξ , that is

ordξ (G) = inf
f W n∈G{ordξ ( f W n)}.

Actually, one could define the order of an OV -Rees algebra G at any point ξ ∈ V , but for
our purposes, only the order at points in Sing(G) will be needed.

Theorem 2.6 [15, Proposition 6.4.1] Let G = R[ f1W n1 , . . . , fr W nr ] be a Rees algebra and
let ξ ∈ Sing(G). Then

ordξ (G) = min
i=1...r

{ordξ ( fi W ni )}.

Definition 2.7 Let G be a Rees algebra over R. LetP ⊂ R be a prime ideal. We say thatP is
a permissible center for G if R/P is a regular ring and νP (G) ≥ 1. That is, P is permissible
for G if it defines a smooth closed set in Spec(R) which is also contained in Sing(G). If G
is a Rees algebra over V , a closed set Y ⊂ V is a permissible center for G if it is a regular
subvariety contained in Sing(G).

Definition 2.8 [28, Definition 6.1] Let G be a Rees algebra on V . A G-permissible transfor-
mation

V
π← V1,

2 Here νξ (I ) denotes the order of the ideal I in the regular local ring RMξ
, where Mξ is the ideal defining

the point ξ .
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is the blow up of V at a permissible center Y ⊂ V . We denote then by G1 the transform of G
by π , which is defined as

G1 :=
⊕

l∈N
Il,1W l ,

where
Il,1 = IlOV1 · I (E)−l (2.2)

for l ∈ N and E the exceptional divisor of the blow up V ←− V1.

Definition 2.9 Let G be a Rees algebra over V . A resolution of G is a finite sequence of
blow ups,

V = V0 V1
π1

. . .
π2

Vl
πl

G = G0 G1 . . . Gl

(2.3)

at permissible centers Yi ⊂ Sing(Gi ), i = 0, . . . , l − 1, such that Sing(Gl) = ∅, and the
exceptional divisor of the composition V0 ←− Vl is a union of hypersurfaces with normal
crossings. Recall that a set of hypersurfaces {H1, . . . , Hr } in a smooth n-dimensional V has
normal crossings at a point ξ ∈ V if there is a regular system of parameters x1, . . . , xn ∈
OV,ξ such that if ξ ∈ Hi1 ∩ · · · ∩ His , and ξ /∈ Hl for l ∈ {1, . . . , r}\{i1, . . . , is}, then
I(Hi j )ξ = 〈xi j 〉 for i j ∈ {i1, . . . , is}; we say that H1, . . . , Hr have normal crossings in V if
they have normal crossings at each point of V .

In [17], Hironaka proves resolution of singularities of varieties over fields of characteristic
zero by showing that the maximum value of the Hilbert Samuel function can be lowered after
a sequence of blow ups at suitable regular centers. To this end, he proceeds as follows. Let
X be an algebraic variety over a (perfect) field k, let max HS(X) be the maximum value of
the Hilbert Samuel function on X , let Max HS(X) be the maximum stratum of this function,
and let ξ ∈ Max HS(X). Then in some (étale) neighborhood of ξ there is an immersion of X
in some smooth V and a Rees algebra G strongly attached to Max HS(X) (see Example 2.17
below; see also [18]). Then he shows that a resolution of G induces a sequence of blow ups
over X that ultimately leads to a lowering of max HS(X). To conclude, he proves that such
resolution exists when the characteristic is zero:

Theorem 2.10 [17] Let k be a field of characteristic zero, and let R be a smooth k-algebra.
Given a Rees algebra G over R, there exists a resolution of G.

The previous result is existencial. The following theorem says that, in fact, resolution of
Rees algebras can be constructed; i.e., given a Rees algebra G in a smooth V defined over
a field of characteristic zero, there is a procedure that indicates how to actually construct a
sequence of blow ups that leads to a resolution. See also [3,25].

Theorem 2.11 [13, Theorem 3.1] Let k be a field of characteristic zero, and let R be a
smooth k-algebra. Given a Rees algebra G over R, it is possible to construct a resolution
of G.

For more details about transformations and resolution of Rees algebras, we refer to [8,13].

Remark 2.12 To construct a resolution of G, we use the so called resolution invariants.
The most important resolution invariant is Hironaka’s order function, ordξG, at a point ξ ∈
Sing(G) [18]. All other invariants derive from it (see Sect. 2.8 and [8,9,14,18]).
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Remark 2.13 For some purposes, during the resolution, one may need to keep track of more
information than that given by the Rees algebra itself. We refer to (V (n),G(n)) as a pair,
where V (n) is an n-dimensional smooth scheme of finite type, and G(n) a Rees algebra over
V (n). We understand by basic object a triple (V (n),G(n), E), where (V (n),G(n)) is a pair and
E is a set of smooth hypersurfaces in V (n) (possibly empty) so that their union has normal
crossings. For more details and the definition of transformations and resolution of pairs and
basic objects, we refer to [13].

2.2 Motivation I

In general, Rees algebras represent a very interesting tool, since many problems in resolution
of singularities can be codified by them. We mention here a few examples that may help
getting an overall impression of their use.

Example 2.14 Resolution of singularities of a hypersurface. Consider a hypersurface
X ⊂ V . Then I (X) is locally principal. Set G = OV [I (X)W b], where b is the maximum
multiplicity of X (see Example 2.25), which we will denote by maxmult(X). A resolution
of G as (2.3) gives a simplification of the points of multiplicity b of X , that is, the induced
sequence X ←− Xl will be such that max mult(Xl) < b. One can resolve the singularities
of X by iterating this process until Xr is such that max mult(Xr ) = 1.

Example 2.15 Resolution of G = OV [I (X)W ]. Let V be a smooth scheme over a field of
characteristic zero. Let now X ⊂ V be a closed reduced equidimensional subscheme, defined
by I (X) ⊂ OV . Let G = OV [I (X)W ]. By Theorem 2.11, one can construct a resolution of
Rees algebras for G:

V = V0 V1
π1

. . .
π2

Vr
πr

G = G0 G1 . . . Gr

(2.4)

such that Sing(Gr ) = ∅, and so that the exceptional locus of V ←− Vr is a union of smooth
hypersurfaces with normal crossings. Let us show now how a resolution of singularities of
X can be obtained: For any i ∈ {1, . . . , r}, the transform I (X)(i) of I (X) in OVi , defined by
I (X)(i) := I1,i as in (2.2), is supported in the exceptional locus (which has normal crossings)
as well as in the strict transform of X by V ←− Vi . The condition Sing(Gr ) = ∅ implies
that the maximum order of I (X)(r) is less than one, so for some j ∈ {1, . . . , r}, the strict
transform X j−1 of X in Vj−1 is a connected component of the center of the transform π j , and
hence is permissible. In particular, this implies that X j−1 is regular and has normal crossings
with the exceptional divisor. Therefore

V = V0 V1
π1

. . .
π2

Vj
π j

∪ ∪ ∪ ∪
X = X0 X1 . . . X j

(2.5)

is a resolution of singularities of X (see [14, Proof of Theorem 1.5] for a precise proof of
this result in the language of basic objects).

Example 2.16 Log-resolution of ideals. A Log-resolution of an ideal I on a smooth scheme
V is a proper birational morphism of smooth schemes, say V ′ −→ V , so that the total
transform of I , IOV ′ , is an invertible ideal in V ′ supported on smooth hypersurfaces having
only normal crossings. A resolution of G = R[I W ] gives a Log-resolution of I . In [15],
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Encinas and Villamayor proved, by using Rees algebras, that for two ideals with the same
integral closure, one obtains the same algorithmic Log-resolution.

In this work, we use Rees algebras to give an answer to a problem of computing a sequence
of multiplicities. As we will see, we translate our problem into a resolution of some specific
Rees algebras (see Sect. 4).

2.3 Motivation II: local presentations

When one tries to study certain closed subsets of a variety X , one often needs to consider
some equations { f1, . . . , fr } ⊂ R with weights {n1, . . . , nr } ⊂ Z>0 that describe the closed
set in question:

C = ∩r
i=1{η ∈ V : νη( fi ) ≥ ni },

in a way that the expression is stable under blow ups at suitably chosen centers. We call such
a representation a local presentation. Example 2.14 is a particular case of this representation.
Let us see another example:

Example 2.17 Let X be a variety over a perfect field k. Let HS(X) be the Hilbert–Samuel
function on X . This is an upper semicontinuous function3 on X ,

HS(X) : X −→ (NN,≤)

ξ �→ HS(X)(ξ),

where N
N is ordered lexicographically. Let maxHS(X) and MaxHS(X) denote the maxi-

mum value of HS(X) in X and the closed subset of points where HS(X) reaches this value
respectively. Pick ξ ∈ MaxHS(X). Then (see [18]), it is possible to find, locally in an étale
neighbourhood of ξ , an immersion of X in a smooth scheme V and equations f1, . . . , fr

such that I (X) =< f1, . . . , fr >,

MaxHS(X) = ∩r
i=1MaxHS({ fi = 0}),

and such that this condition is preserved by blow ups with smooth centers in MaxHS(X) and
by smooth morphisms, in terms of the strict transforms of X and of the fi . Let us translate
this it into the language of Rees algebras: let G = OV,ξ [ f1W μ1 , . . . , fr W μr ], where μi is
the maximum order of fi for i = 1, . . . , r . Then

Sing(G) = MaxHS(X),

and for any sequence of G-permissible transformations

V = V0 V1
π1

. . .
π2

Vl
πl

G = G0 G1 . . . Gl ,

(2.6)

we have

Sing(Gl) = MaxHS(Xl).

Resolving the Rees algebra G is equivalent to making maxHS(X) decrease.

3 Actually, the Hilbert–Samuel function has to be modified in order to be semicontinuous (see [2]). Here we
refer to this modification of the Hilbert–Samuel function.
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The previous example shows that Rees algebras appear as an appropriate language to
represent such a set of equations and weights, and allow us to describe the transformations
on the subset C we are interested in via well defined transformations of the associated Rees
algebra (see (2.2)). It is very important to understand to which extent a given algebra can
represent C . For this purpose we will consider the following transformations:

Definition 2.18 A local sequence on a variety V is a sequence of morphisms

V = V0
φ1←− V1

φ2←− · · · φl←− Vl

where each φi is either a blow up at a regular center or a smooth morphism, such as an open
inmersion or a projection from a product by some affine space (see for example (3.2)).

Definition 2.19 Let G be a Rees algebra over OV . A G-local sequence over V is a local
sequence over V as in Definition 2.18,

V = V0 V1
φ1

. . .
φ2

Vl
φl

G = G0 G1
ψ1

. . .
ψ2 Gl ,

ψl

(2.7)

such that whenever φi is a blow up, it is in particular a blow up at a permissible center
Yi−1 ⊂ Sing(Gi−1) ⊂ Vi−1, and then Gi is the transform of Gi−1 by the rule in Definition
2.8; if φi is a smooth morphism, then Gi is the pullback of Gi−1 by φi (see [7, Definition
3.2]).

Definition 2.20 Let G be a Rees algebra over V , and consider a G-local sequence
over V as in (2.7). This sequence determines a collection of closed sets, namely
{Sing(G),Sing(G1), . . . ,Sing(Gl)}. We will refer to this collection (or branch) of closed
sets as the one defined by or attached to the sequence (2.7). If we consider all possible G-
local sequences over V , we obtain a tree of closed sets for G, which we denote by FV (G)

(see [7, Section 3]).

For the next examples, let us recall a few concepts and notations:

Notation 2.21 Let F be an upper semicontinuous function defined on varieties, that is, for
each variety, there is

F(X) = FX : X −→ (�,≥), (2.8)

where (�,≥) is awell ordered set.Wewill denote bymax F(X) themaximumvalue achieved
by FX in X . We will use Max F(X) to denote the set of points of X in which F achieves this
maximum value, that is:

Max F(X) = {η ∈ X : FX (η) ≥ max F(X)} = {η ∈ X : FX (η) = max F(X)}.
Note that Max F(X) is a closed set.

Definition 2.22 Let F be an upper semicontinuous function defined on varieties. An FX -
local sequence is a local sequence on X (Definition 2.18) such that, whenever φi is a blow
up, the center is contained in Max FXi−1 .

Definition 2.23 (see [8, Definition 28.4]) An upper semicontinuous function F defined on
varieties as (2.8) is said to be representable via local embeddings if, for each X and each
ξ ∈ X , in an étale neighbourhood of ξ , we can find a closed immersion X ↪→ V and a Rees
algebra G over OV,ξ such that
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1. the Rees algebra G satisfies:
Sing(G) = Max FX ; (2.9)

2. any FX -local sequence
X = X0 ← X1 ← · · · ← Xr (2.10)

such that
m = max FX = max FX1 = · · · = max FXr−1 ≥ max FXr (2.11)

induces a G-local sequence of Rees algebras over V

V = V0 ← V1 ← · · · ← Vr

X = X0 ← X1 ← · · · ← Xr

G =G0 ← G1 ← · · · ← Gr

such that for i = 1, . . . , r ,

Sing(Gi ) = {η ∈ Xi : FXi (η) = m},
with Sing(Gr ) = ∅ if and only if max FXr < m and

3. any G-local sequence over V induces an FX -local sequence as (2.10) satisfying (2.11).

Example 2.24 Hilbert–Samuel The results of Hironaka [17,18] show that it is possible to
resolve the singularities of a variety (over a perfect field) if we know how to lower the
maximum value of the Hilbert–Samuel function of the variety through a finite sequence of
blow ups. Then, to construct a resolution of the singularities of a given variety X , one just
needs to iterate the process a finite number of times.

On the other hand, the Hilbert–Samuel function is upper semicontinuous, and it is rep-
resentable for any variety X via local embeddings (see [18] and Example 2.17). Thus, for
each point ξ ∈ X we can find, in an étale neighbourhood of ξ , an immersion of X into a
smooth scheme V and an OV,ξ -Rees algebra GX such that Sing(GX ) = MaxHS(X) and
this identity is preserved by G-local sequences over V as long as the maximum value of
the Hilbert–Samuel function of X does not decrease. From this, it will follow that finding a
sequence of blow ups

X = X0 ← X1 ← · · · ← Xr

such that maxHS(X0) = · · · = maxHS(Xr−1) > maxHS(Xr ) is equivalent to finding a
resolution of the Rees algebra GX .

A similar statement holds for the multiplicity of a variety defined over a perfect field, see
Example 2.38 and [30]:

Example 2.25 Multiplicity The multiplicity of an equidimensional variety X at a point
η ∈ X is given by an upper semicontinuous function

mult(X) : X −→ N

η �−→ mult(X)(η) = multη(X) = mult(OX,η)

where mult(OX,η) stands for the multiplicity of the local ring at the maximal idealMη. Let
m be the maximum multiplicity of X . The set

Maxmult(X) = {η ∈ X : multη(X) ≥ m} = {η ∈ X : multη(X) = m}
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is closed, and themultiplicity is representable via local embeddings for X (see [30, Proposition
5.7 and Theorem 7.1]).

Therefore, just as for the Hilbert–Samuel function in Example 2.24, we can attach a Rees
algebra G to mult(X) so that resolving G is equivalent to decreasing the maximum value of
mult(X).

By Theorem 2.11, the resolution for such an algebra can be constructed whenever k is a
field of characteristic zero. It is not known if this is true for fields of positive characteristic.

2.4 Equivalence of Rees algebras

Given an upper semicontinuous function F as in (2.8) which is representable via local embed-
dings, the choice of a Rees algebra satisfying the properties of Definition 2.23 is not unique.
To begin with, for a given X , there are many possible choices for the immersion X ↪→ V ,
but we will mention this problem later. On the other hand, once an immersion is fixed, we
can attach a different Rees algebra to a neighbourhood of each point ξ ∈ X . This choice is
not unique either. Therefore, given two possible choices of Rees algebras, G and G′, attached
to a fixed point ξ ∈ Max F(X), it would be desirable to compare the algorithmic resolution
of G to that of G′, and vice versa. To deal with this problem, we need the notion of weak
equivalence of Rees algebras.

Definition 2.26 [7, Definition 3.5] We say that two OV -Rees algebras G and H are weakly
equivalent if:

1. Sing(G) = Sing(H),
2. Any G-local sequence over V

G = G0 ←− G1 ←− · · · ←− Gl

induces an H-local sequence over V

H = H0 ←− H1 ←− . . . ←− Hl

and vice versa, and moreover the equality in (1.) is preserved, that is
3. Sing(G j ) = Sing(H j ) for j = 0, . . . , l.

Example 2.27 Let V be a smooth scheme over a field k of characteristic zero. Let X be a
hypersurface in V . Denote now by b the maximum multiplicity of X . Then, locally at each
point, there exists a Rees algebraG representingmult(X) via local embeddings (see Examples
2.17, 2.38 and Definition 2.23). This algebra G is unique up to weak equivalence.

The following definitions and results give a flavour of what this equivalence relation means:

Definition 2.28 ARees algebra over V , G = ⊕n≥0 In W n is integrally closed if it is integrally
closed as an OV -ring in Quot(OV )[W ]. We denote by G the integral closure of G.
Definition 2.29 Two Rees algebras are integrally equivalent if their integral closure in
Quot(OV )[W ] coincides.
Definition 2.30 A Rees algebra G = ⊕n≥0 In W n over V is differentially closed (or a Diff-
algebra) if there is an affine open covering of V , {Ui } such that for every D ∈ Diff(r)(Ui ) and
h ∈ In(Ui ), we have D(h) ∈ In−r (Ui ) whenever n ≥ r , where Diff(r)(Ui ) is the locally free
sheaf of k-linear differential operators of order r or less. In particular, In+1 ⊂ In for n ≥ 0.
We denote by Diff(G) the smallest differential Rees algebra containing G (its differential
closure). (See [28, Theorem 3.4] for the construction.)
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Theorem 2.31 [7, Theorem 3.11] Let G1 and G2 be two Rees algebras over V . Then G1 and
G2 are weakly equivalent if and only if Diff(G1) = Diff(G2).
Corollary 2.32 Let G1 and G2 be two weakly equivalent Rees algebras over V . Then for all
η ∈ Sing(G1) = Sing(G2), we have ordηG1 = ordηG2.

Corollary 2.33 Let G1 and G2 be two weakly equivalent Rees algebras. Then a constructive
resolution of G1 induces a constructive resolution of G2 and vice versa (see [8, Remark 11.8]).

Remark 2.34 Let X be a variety, and fix an immersion X ↪→ V . Any two local presentations
of X attached to the multiplicity or to the Hilbert–Samuel function are weakly equivalent
by definition, and therefore Corollary 2.32 applies: fixed an immersion for X , the order of
a Rees algebra attached to a local presentation at any point of its singular locus does not
depend on the local presentation, and neither does the resolution. The previous results give
an answer to the problem of compatibility of Rees algebras over V .

2.5 Elimination algebras

In the following examples, one can observe that, in some cases, the relevant information
regarding the simplification of the multiplicity of a variety X (d) ↪→ V (n) can be reflected in
a lower dimensional version of V (n). In order to generalize this idea, we have the concept of
elimination, which we introduce next.

2.6 Example I: hypersurface case

Example 2.35 Let S be a regular d-dimensional k-algebra of finite type, with d > 0. Let
V (n) = Spec(S[x]), where n = d + 1. There is an injective morphism

S
β∗

−→ S[x],
and an induced smooth projection

V (n) β−→ V (d) = Spec(S). (2.12)

Let X be a hypersurface in V (n), X = Spec(S[x]/ f (x)), where f is a polynomial in x of
degree b > 1 with coefficients in S. Let ξ (n) be a point in the closed set of multiplicity b of X .
We can suppose that the maximal ideal Mξ (n) of ξ (n) in S[x] is given by < x, z1, . . . , zd >

for a regular system of parameters {z1, . . . , zd} in S. The image ξ (d) of ξ (n) by the projection
(2.12) is defined by the maximal idealMξ (d) =< z1, . . . , zd >. Then, the Rees algebra G(n)

X
over S[x]

G(n)
X = Diff(S[x][ f W b]) ⊂ S[x][W ]

represents the multiplicity function on X locally at ξ (n).

Let us suppose that, in addition, f has the form of Tschirnhausen:

f (x) = xb + Bb−2xb−2 + · · · + Bi xi + · · · + B0 ∈ S[x], (2.13)

where Bi ∈ S for i = 0, . . . , b − 2 and4 ordξ (Bi ) ≥ b − i . The following lemma shows that
for X as in Example 2.35, the meaningful part of f ∈ S[x] (regarding the multiplicity) is
given by the coefficients Bi , which are already in S.

4 For simplicity, we will sometimes write ξ when we refer to the image of ξ(n) by most of the maps we use
in this article. In particular, we will often write ordξ meaning ord

ξ(n) or ordξ(d) .
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Lemma 2.36 Let X be given by f as in (2.13). Then

G(n)
X = S[x][xW ] 	 Diff(S[x][Bb−2W 2, . . . , Bi W b−i , . . . , B0W b]).

Proof In order to compute the differential closure of S[x][ f W b], let us start by computing
the (b − 1)-th derivative of f W b with respect to x : one can see that xW ∈ G(n)

X . Therefore

f2W b = f W b − (xW )b ∈ G(n)
X and, if we consider xW and f2W b among the generators

of G(n)
X , there is no need to include f W b. To continue, we compute the (b − 2)-th derivative

of f2W b with respect to x obtaining, up to a nonzero constant, Bb−2W 2 ∈ G(n)
X . Just like in

the previous step, it is possible to verify that f3W b = f2W b − (Bb−2W 2)(xW )b−2 ∈ G(n)
X ,

and that f2W b can be generated by xW , Bb−2W 2 and f3W b. By iterating this argument,
one concludes that the set consisting of xW and Bi W b−i for i = 0, . . . b − 2 is contained in
G(n)

X and, in addition, the differential closure of the S[x]-Rees algebra generated by this set5
corresponds exactly to G(n)

X . ��

Example 2.37 Instead of (2.13), suppose now that f is of the form

f (x) = xb + Db−1xb−1 + · · · + Di xi + · · · + D0 ∈ S[x], (2.14)

where Di ∈ S, Db−1 �= 0 and ordξ (Di ) ≥ b − i for i = 0, . . . b −1. After a suitable change,

namely x̃ = x + Db−1
b , we obtain

f (x) = f̃ (x̃) = x̃b + Bb−2 x̃b−2 + · · · + B0 ∈ S[x̃], Bi ∈ S, ordξ (Bi ) ≥ b − i.

2.7 Example II: multiplicity of a variety

Example 2.38 (see [30, 7.1]) Let X be a variety of dimension d over k of maximum multi-
plicity b, and let ξ ∈ X be a point in Maxmult(X). We have, after possibly replacing X by an
étale neighbourhood of ξ , a smooth k-algebra S of dimension d and a finite and transversal
projection

βX : X −→ Spec(S) = V (d), (2.15)

that is, a finite projection of generic rank b. Note that βX induces a homeomorphism between
Maxmult(X) and its image ([8, Appendix A], [30, 4.8]), and an injective finite morphism

S −→ B = S[θ1, . . . , θn−d ] ∼= S[x1, . . . , xn−d ]/I (X).

As a consequence, we have a local immersion of X in a smooth n-dimensional space

V (n) = Spec(S[x1, . . . , xn−d ])
in a neighbourhood of ξ , and it can be shown that there exist f1, . . . , fn−d ∈ I (X) ⊂
S[x1, . . . , xn−d ] such that for some positive integers b1, . . . , bn−d the Rees algebra

G(n)
X = Diff(OV (n),ξ [ f1W b1 , . . . , fn−d W bn−d ]) (2.16)

represents mult(X) : X −→ N locally at ξ . In addition, for i = 1, . . . , n − d ,

fi ∈ S[xi ] (2.17)

5 Note that it is already differentially closed with respect to x .

123



188 A. Bravo et al.

and it is the minimal polynomial of θi over S (see [30, 7.1] for more details). Note that
S[x1, . . . , xn−d ] −→ B ∼= S[x1, . . . , xn−d ]/I (X) is a surjective map and that for any
i = 1, . . . n − d the following diagram commutes:

S[x1, . . . , xn−d ] S[x1, . . . , xn−d ]/( f1, . . . , fn−d) B 0

S[xi ] S[xi ]/( fi )

S

(2.18)

Due to (2.17), we can perform changes of variables for all of the xi as in 2.37 in order to
obtain an expression as in (2.13) for each of the fi . We will therefore assume that, when we
consider a local presentation attached to the multiplicity for X as (2.16), the fi have the form
of Tschirnhausen.

Remark 2.39 In the particular case in which, locally at ξ , B = S[θ1], necessarily I (X) =
( f1), B ∼= k[x1]/( f1), and hence X is a hypersurface in V (n).

Given an n-dimensional smooth scheme of finite type V (n), and a Rees algebra G(n) over
V (n), which we will consider as a pair from now on, it would be useful to find a new pair
(V (n−e),G(n−e)) of dimension n − e < n, so that a resolution of G(n−e) induces a resolution
of G(n), since the first one could be easier to find.

Definition 2.40 Let G(n) be a differential Rees algebra over V (n), and let ξ ∈ Sing(G(n)) be
a closed point. For a suitable6 e ≥ 1 and a smooth transversal7 projection (also admissible8),

β : V (n) −→ V (n−e)

in a neighbourhood of ξ , we define an elimination algebra G(n−e) of G(n) as G(n) ∩ OV (n−e)

up to integral closure.

For a complete description of the properties asked to the projections, and of elimination
algebras, we refer to [5,6], [8, 16 and Appendix A], [30] and [28, Theorem 4.11 and Theorem
4.13].

2.7.1 Properties

1. The projection β induces a homeomorphism between Sing(G(n)) and β(Sing(G(n))) =
Sing(G(n−e)).

6 No larger than the invariant τ at ξ , see [1] for more details.
7 This condition just means that the intersection of Ker(dβ) and the tangent space of G(n) at ξ is 0. This
guarantees that β induces a homeomorphism between Sing(G(n)) and β(Sing(G(n))).
8 For this, it suffices to have G(n) differentially closed with respect to β, that is, closed under the action of the
sheaf of relative differential opperators DiffV (n)/V (n−e) .
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2. Any G(n)-local sequence over V (n) induces a G(n−e)-local sequence over V (n−e) and a
commutative diagram

G(n) = G(n)
0 G(n)

1 . . . G(n)
r

V (n) = V (n)
0

β

V (n)
1

β1

. . . V (n)
r

βr

V (n−e) = V (n−e)
0 V (n−e)

1 . . . V (n−e)
r

G(n−e) = G(n−e)
0 G(n−e)

1 . . . G(n−e)
r

(2.19)

where G(n−e)
i is an elimination algebra of G(n)

i for i = 0, . . . , r , and the βi are smooth

G(n)-admissible projections inducing therefore homeomorphisms between Sing(G(n)
i )

and Sing(G(n−e)
i ).

3. Any G(n−e)-local sequence over V (n−e) induces a G(n)-local sequence over V (n) and
a commutative diagram as above where G(n−e)

i is an elimination algebra of G(n)
i for

i = 0, . . . , r , andwithβi smoothG(n)-admissible projections inducing homeomorphisms
between Sing(G(n)

i ) and Sing(G(n−e)
i ).

4. Properties 1-3 characterize the elimination algebra G(n−e) up to weak equivalence.
5. Any resolution of G(n) induces a resolution of G(n−e) and vice versa.

6. For any two elimination algebrasG(n−e) and Ğ(n−e) ofG(n), given byprojectionsV (n) β−→
V (n−e) and V (n) β̆−→ V̆ (n−e) respectively, we have the same order at the image of ξ (see
[5, Theorem 10.1]). That is,

ordξG(n−e) = ordξ Ğ(n−e).

Let us define

ord(n−e)
ξ (G(n))

as the order ordξG(n−e) (the order at the image of ξ ) for any elimination algebra G(n−e)

of G(n) of dimension n − e. Hence ord(n−e)
ξ (G(n)) is an invariant for G(n) at ξ .

In particular, given X ⊂ V (n) and a Rees algebra G(n) representing the multiplicity of X ,
as in Example 2.38, we wish to find a Rees algebra in dimension d = dim(X) which is an
elimination algebra of G(n). The reason for this will be explained in Sect. 2.8. The following
theorem guarantees that this is possible:

Theorem 2.41 Let X ⊂ V (n) be a d-dimensional variety over a field of characteristic zero,
and G(n)

X a Rees algebra over V (n) representing the multiplicity of X. Then it is possible

to find a smooth projection β : V (n) −→ V (d) inducing an elimination algebra G(d)
X of

G(n)
X . Moreover, the order ord(d)

ξ (G(n)
X ) := ordβξG(d)

X does not depend on the choice of the

embedding or of the algebra G(n)
X .

Proof This fact follows from [8, Section 21, Theorem 28.8, Theorem 28.10 and Example
28.2]. ��
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Example 2.42 Let us suppose that X is a hypersurface of dimension d , and consider the
Rees algebra G(n)

X representing the multiplicity of X , as in Example 2.35. There is a Rees

algebra G(d)
X over S, the elimination algebra of G(n)

X , given by

G(d)
X = Diff(S[x][ f W b]) ∩ S[W ] (2.20)

describing the image by (2.12) ofMaxmult(X) (or equivalently, the set of points ofmaximum
multiplicity of the image of X by (2.12)). For a description of this elimination algebra see
Lemma 2.44 below.

Example 2.43 Let us go back to Example 2.37. It is worth noting that G(d)
X is invariant

under translations of the variable x , see [27], and hence the S[x]-Rees algebra generated by
f W b ∈ S[x][W ] and the S[x̃]-Rees algebra generated by f̃ W b ∈ S[x̃][W ] give equivalent
elimination algebras Diff(S[x][ f W b]) ∩ S[W ] and Diff(S[x̃][ f̃ W b]) ∩ S[W ] respectively
(and now we are in the situation of Example 2.35).

Lemma 2.44 Let X be given by f as in Example 2.35. Then the elimination algebra of G(n)
X

relative to (2.12) is (up to integral closure)

G(d)
X = Diff(S[Bb−2W 2, . . . , Bi W b−i , . . . , B0W b]). (2.21)

Proof Considering the expression given by Lemma 2.36, (2.21) follows from the facts that
Bi ∈ S for i = 0, . . . , b − 2, and that G(n−e) = G(n) ∩ OV (n−e) . ��
Remark 2.45 One can see G(n)

X as the smallest S[x]-Rees algebra containing xW and G(d)
X .

By abuse of notation, we will simply write

G(n)
X = S[x][xW ] 	 G(d)

X ,

meaning that we extend both algebras to Rees algebras over the same ring and apply 	
afterwards (see Definition 2.3).

Lemma 2.46 Let X be a hypersurface, given by f as in Example 2.35. Let G(d)
X be the

elimination algebra of G(n)
X as in (2.20). Then for ξ ∈ Sing(G(n)

X ),

ordξ (G(d)
X ) = min

i=0,...,b−2

{
ordξ (Bi )

(b − i)

}
. (2.22)

Proof By the expression of G(d)
X given in Lemma 2.44, it is clear that it is enough to prove

that, for any i , the element Bi W b−i has lower order than any of its derivatives in ξ . The
element Bi W b−i has order ordξ (Bi )

b−i in ξ , while the order of its j-th derivative (for j < b − i)

is greater than or equal to ordξ (Bi )− j
b−i− j , and for any pair of positive integers A ≥ A′, A

A′ ≤ A−k
A′−k

for any k < A′. On the other hand, any element generated by the Bi and their derivatives has
greater order (see [4, Proposition 3.11]). ��
Remark 2.47 Let X be a hypersurface given by f as in Example 2.37. Then the result in
Lemma 2.46 can be applied after a variable change.

Example 2.48 If X is as in Example 2.38, for any i ∈ {1, . . . , n − d}, fi ∈ S[xi ] is the
equation of a hypersurface Hi in a scheme of dimension n̄ = d + 1, Spec(S[xi ]) and, by
Remark 2.45:

G(n̄)
Hi

= Diff(S[xi ][ fi W bi ]) = S[xi ][xi W ] 	 G(d)
Hi

.
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By extending this algebra to OV (n),ξ , we obtain

G(n)
Hi

= Diff(OV (n),ξ [ fi W bi ]) = OV (n),ξ [xi W ] 	 G(d)
Hi

.

Hence, (2.16) can be written as

G(n)
X = G(n)

H1
	 . . . 	 G(n)

Hn−d
= OV (n),ξ [x1W, . . . , xn−d W ] 	 G(d)

H1
	 . . . 	 G(d)

Hn−d
.

This gives an easy expression for the elimination algebra of G(n)
X relative to the projection

Spec
(
S

[
x1, . . . , xn−d

]) = V (n) −→ V (d) = Spec(S),

namely

G(d)
X = G(d)

H1
	 . . . 	 G(d)

Hn−d
.

An explanation of this elimination can be found in [8, Remark 16.10]. The elimination algebra
G(d)

X will be differentially closed (see [29, Proposition 5.1]). See Theorem 2.50 for the role

of G(d)
X in algorithmic resolution.

2.8 Algorithmic resolution

A variety X of dimension d over a field of characteristic zero can be desingularized by
a sequence of blow ups at smooth centers [17]. Algorithmic resolutions provide a way to
construct such sequences, attending to suitable invariants associated to the points of X [3,
13,25,26].

2.8.1 Resolution functions

For the construction of an algorithm of resolution [13], consider a well ordered set (�,≥)

and an upper semicontinuous function defined on varieties F(X) = FX , FX : X −→ (�,≥)

such that for any X , Max FX ⊂ X is a closed and smooth subset, and FX is constant on X if

and only if X is smooth. Set Max FX as the center of the first blow up X
π1← X1. The function

FX must satisfy FX (ξ) > FX1(ξ
′) whenever ξ = π1(ξ

′) ∈ Max FX . Given a variety X , the
algorithm will give us a sequence of blow ups by iterating the process, that is,

X = X0
π1←− X1

π2←− · · · πr←− Xr ,

with πi being the blow up at Max FXi−1 for i = 1, . . . , r .

2.8.2 Invariants

When it comes to the construction of the resolution function, we use invariants of the varieties
in order to assign a value (in fact, a set of values) to each point reflecting the complexity
of the singularities. Examples 2.24 and 2.25 give upper semicontinuous functions which are
often useful for this construction.

As a first coordinate of the resolution function FX , we can consider the Hilbert–Samuel
function or themultiplicity at each point. In particular, wewill be interested in considering the
multiplicity. We will compare the values of FX at different points using the lexicographical
order, and this first coordinate will allow us to focus already on the stratum of maximum
value of the multiplicity in X .
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For each ξ ∈ Maxmult(X), we know that we can attach a local presentation and an algebra
G(n)

X for the multiplicity. We have already said that the order of G(n)
X at ξ is the most important

resolution invariant at ξ . Therefore, let us take it as the second coordinate of FX .
If X is a d-dimensional variety, then it can be shown that there are suitable admissible

projections to smooth (n − i)- dimensional schemes V (n−i), and elimination algebras G(n−i),
i = 1, . . . , n − d . For the following coordinates, we will use the orders ordξG(n−i)

X of the
eliminations as in 2.7.1 (6), for i = 1, . . . , n − d (see 2.41):

FX (ξ) = (multξ (X), ordξG(n)
X , ord(n−1)

ξ G(n)
X , . . . , ord(d+1)

ξ G(n)
X , ord(d)

ξ G(n)
X , . . .).

(2.23)
These invariants behave well under weak equivalence of Rees algebras. More precisely:

Remark 2.49 Twoweakly equivalent Rees algebras G and G′ share their resolution invariants
and hence the constructive resolution of each of them induces the constructive resolution of
the other one. This follows from the fact that all invariants thatwe consider for the construction
or the resolution functions derive from Hironaka’s order function ([7, 10.3],[13, 4.11, 4.15])
together with Corollary 2.32. In particular, this is the case for Rees algebras coming from
different local presentations once we have fixed an immersion (see 2.4).

Among the orders in (2.23), the next theorem will tell us that ord(d)
ξ G(n)

X is the first inter-
esting one, since all the previous are necessarily equal to 1, and therefore this will be the
coordinate we will focus on for our results.

Theorem 2.50 [8, 16.7] Let X be a d-dimensional variety, and let (V (n),G(n)) be an n-
dimensional pair attached to X at a point ξ ∈ Max mult(X). Then for any e < n − d we
have ord(n−e)

ξ G(n) = 1.

Thus, FX can actually be constructed as

FX (ξ) = (multξ (X), ord(d)
ξ G(n)

X , . . .). (2.24)

It follows from 2.7.1 that ord(d)
ξ G(n)

X does not depend on the choice of the elimination algebra.
It neither depends on the immersion, by Theorem 2.41. Our main result (Theorem 3.6) will
show that this invariant, ord(d)

ξ G(n)
X , can be obtained from the arcs in X through ξ .

3 Arc spaces and Nash multiplicity sequences

3.1 The space of arcs of X

Let X be an algebraic variety over afield k of characteristic zero. Let us suppose, for simplicity,
that X is affine. Otherwise, since we will work locally, it would be enough to consider open
affine subsets of X . Thus, say X = Spec(R) for some k-algebra of finite type R.

Definition 3.1 The space of arcs of X , L(X), is a k-scheme whose K -valued points are the
morphisms

ϕ : R −→ K [[t]] (3.1)

for any extension K of k. We say that the prime ϕ−1(〈t〉) ⊂ R is the center of the arc ϕ in X .
We denote by Lξ (X) the space of arcs of X through a (not necessarily closed) point ξ ∈ X ,
i.e., those arcs in L(X) with center ξ .
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Remark 3.2 It should be noticed that, for a given X , L(X) is not necessarily of finite type,
and therefore it is not an algebraic variety over k.

There is a long bibliography where one can find the basics of arc spaces. For instance, we
refer to [31] for more details on the construction of L(X).

Definition 3.3 We define the order of an arc ϕ ∈ L(X) through ξ ∈ X , ϕ : OX,ξ −→ K [[t]]
as the largest positive integer n such that ϕ(Mξ ) ⊂ (tn), where Mξ is the maximal ideal of
the local ring OX,ξ , and denote it by ord(ϕ) if ξ is clear from the context.

3.2 Rees algebras and Nash multiplicity sequences

In [20], Lejeune-Jalabert introduced a sequence of positive integers attached to an arc in
a germ of a hypersurface at a point, and she called it the Nash multiplicity sequence. This
sequence is non increasing:

m0 ≥ m1 ≥ m2 ≥ · · · ≥ mk ≥ 1

and stabilizes for some k ∈ N.
Later, in [16], Hickel generalized this sequence for varieties of higher codimension. The

way in which he constructs the sequence, involves a sequence of blow ups determined by
the chosen arc. For this construction, Hickel works with arcs inside of a germ of a variety
at a point (analytic context). We will work with arcs inside of a local neighbourhood of the
variety at the point (local algebraic context). We will explain now this construction carefully,
to show the computation of the Nash multiplicity sequence from this local algebraic point of
view.

3.2.1 Nash multiplicity sequence

Let X (d) be an irreducible algebraic variety of dimension d over a perfect field k. Let ξ be
a point contained in Maxmult(X (d)), the closed set of points of maximum multiplicity of
X (d).9 For simplicity, in this paper we will assume that ξ is a closed point. This will allow
us to consider the blow up at ξ , since ξ is a smooth center in this case. In case one wants to
consider non closed points, one needs just to localize X at ξ before performing the sequences
that we will construct in this section.

Consider the product of X (d) with an affine line. Then, we have a surjective morphism

X (d) p←− X (d+1)
0 = X (d) × A

1
k, (3.2)

given by the projection onto the first component. Let us write ξ0 = (ξ, 0), which is a point
in X (d+1)

0 .

Consider the blow up of X (d+1)
0 at ξ0, which we will denote by π1. We will write X (d+1)

1

for the transform of X (d+1)
0 under π1. After performing this blow up, we can choose a new

point ξ1 ∈ X (d+1)
1 , and call π2 the blow up of X (d+1)

1 at ξ1.

Next, we will establish a criterion for the choice of each ξi ∈ X (d+1)
i using an arc, so that

we can perform a sequence of permissible blow ups at points in this way.

(X (d+1)
0 , ξ0) (X (d+1)

1 , ξ1)
π1

. . .
π2

(X (d+1)
r , ξr ).

πr

(3.3)

9 Note that we can always assume this situation for any ξ ∈ X , since one can always consider a neighbourhood
of ξ where this is true.
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Let ϕ ∈ L(X (d)) be an arc in X (d) through ξ . That is, we have a local homomorphism of
local rings

ϕ : OX (d),ξ −→ K [[t]]
Mξ −→< t > ,

or, equivalently, a morphism ϕ∗ : Spec(K [[t]]) −→ X (d), mapping the closed point to ξ .
This, together with the inclusion map i : k[t] → K [[t]] gives an arc �0 in X (d+1)

0 through ξ0

�0 : O
X (d+1)
0 ,ξ0

ϕ⊗i−→ K [[t]]
Mξ0 �−→< t >

where �∗
0 is the morphism given by the universal property of the fiber product:

Spec(K [[t]])
i∗

ϕ∗

�∗
0

(X (d), ξ) ×k Spec(K [t]) = (X (d+1)
0 , ξ0) Spec(K [t])

(X (d), ξ) Spec(k)

(3.4)

Note that �0 is in fact the graph of ϕ.
Consider the blow up π1 of X (d+1)

0 at ξ0. The initial Nash multiplicity of X at ξ is defined
as

m = m0 = multξ0(X (d+1)
0 ) = multξ (X (d)),

where the last identity follows from the faithful flatness of (3.2).
After blowing up X (d+1)

0 at ξ0 (as in 3.3), the valuative criterion of properness ensures that

we can lift�∗
0 to a unique arc in X (d+1)

1 , whichwewill denote by�∗
1 . Now�∗

1 maps the closed

point of Spec(K [[t]]) to some closed point ξ1 ∈ X (d+1)
1 . Furthermore, ξ1 ∈ E1 = π−1

1 (ξ0)

and ξ1 ∈ Im(�∗
1). This point ξ1 will be the center of the blow up π2. We iterate this process:

for i = 1, . . . , r , let �i be the lifting of the arc �i−1 ∈ L(X (d+1)
i−1 ) through ξi−1 by the blow

up πi of X (d+1)
i−1 with center ξi−1. Then �i is an arc in L(X (d+1)

i ) through a point ξi in the

exceptional divisor Ei = π−1
i (ξi−1). We will say that the sequence of transformations at

points chosen in this way is the sequence directed by ϕ (or that the blow ups themselves are
directed by ϕ), meaning that ξ0 = (ϕ(0), 0) = (ξ, 0) and ξi = Im(�∗

i )∩ Ei for i = 1, . . . , r :

(X (d+1)
0 , ξ0) (X (d+1)

1 , ξ1)
π1

. . .
π2

(X (d+1)
r , ξr )

πr

(Spec(K [[t]]), 0)

�∗
0

(Spec(K [[t]]), 0)id

�∗
1

. . .
id

(Spec(K [[t]]), 0).id

�∗
r

(3.5)
For this sequence, the multiplicity of X (d+1)

i at ξi , will be the i-th Nash multiplicity, mi . The
sequence m0, m1, . . . , mr is non-increasing (see [16, Theorem 4.1] or [9]: the blow up at
regular equimultiple centers does not increase the multiplicity) and eventually decreasing
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whenever the generic point of the initial arc ϕ is not contained in Maxmult(X). Indeed, if ϕ

is contained in the stratum of X of multiplicity m′ but not totally contained in any stratum
of multiplicity greater than m′, then the sequence stabilizes at the value m′.10 Thus, we can
find some r so that for the diagram above the sequence of Nash multiplicities is such that
m0 = · · · = mr−1 > mr . Our interest is in finding this r , namely the minimum number of
blow ups at points directed by the arc ϕ as above which is necessary to perform in order to
lower the Nash multiplicity of X at ξ . Since this can be done for any arc ϕ ∈ L(X) through
ξ , let us define:

Definition 3.4 Let ϕ be an arc in X through ξ . We denote by ρX,ϕ the minimum number of
blow ups directed by ϕ which are needed to lower the Nash multiplicity of X at ξ . That is,
ρX,ϕ is such that m = m0 = . . . = mρX,ϕ−1 > mρX,ϕ

. We will call ρX,ϕ the persistance of
ϕ in X . We denote by ρX (ξ) the infimum of the number of blow ups directed by some arc in
X through ξ needed to lower the Nash multiplicity at ξ :

ρX : Max mult(X) −→ N

ξ �−→ ρX (ξ) = inf
ϕ∈Lξ (X)

{
ρX,ϕ

}
.

To keep the notation as simple as possible, ρX,ϕ does not contain a reference to the point ξ ,
even though it is clear that it is local. However, the point is determined by ϕ, and hence it is
implicit, although not explicit in the notation. Similarly, we may refer to ρX (ξ) as ρX once
the point is fixed.

Let us define normalized versions of ρX,ϕ and ρX in order to avoid the influence of the
order of the arc in the number of blow ups needed to lower the Nash multiplicity.

Definition 3.5 For a given arc ϕ in X , we will write

ρ̄X,ϕ = ρX,ϕ

ord(ϕ)
,

and similarly, we will denote

ρ̄X (ξ) = inf
ϕ∈Lξ (X)

{
ρ̄X,ϕ

}
.

Let us state our main theorem now, and develop afterwards the tools needed for the proof
of this and some related results. Recall that ordξG(d)

X is the first interesting coordinate of
our resolution function (see Sect. 2.8). Theorem 5.20 at the end of Sect. 5 gives a relation
between this invariant and the Nash multiplicity sequence.

In the following section, we will show that for X , ξ ∈ X and ϕ ∈ Lξ (X), we can attach
a Rees algebra to the sequence of blow ups directed by ϕ. From this algebra, we will define
a new quantity, rX,ϕ (see Definition 4.7) which is a refinement of ρX,ϕ . In particular, ρX,ϕ

is obtained by taking the integral part of rX,ϕ (see Proposition 4.11). With this notation, the
following result holds:

Theorem 3.6 (Main Theorem) Let X be a d-dimensional variety defined over a field of
characteristic zero k. Let ξ be a point in Maxmult(X). Then,

ordξG(d)
X = min

ϕ∈Lξ (X)

{
rX,ϕ

ord(ϕ)

}
.

This result will be reformulated in Theorem 4.10 and the proof will be addressed in Sect.
5.

10 Therefore, for our purpose, we need to choose arcs in a way such that they are not contained in the set of
points of highest multiplicity of X (that is, ϕ∗(< 0 >) � Max mult(X)).
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4 Rees algebras attached to Nash multiplicity sequences

In this section, the situation we consider for all constructions and results is always the same,
specified in Sect. 4.1.

4.1 Setting: notation and hypothesis

Let X be a d-dimensional variety over k. Locally in an étale neighbourhood Uη of each point

η ∈ X , we can find an immersion of η, Uη ↪→ V (n), and a Rees algebra G(n)
X over OV (n),ξ

such that
Sing(G(n)

X ) = Maxmult(X), (4.1)

and the equality is preserved by G(n)
X -local sequences over V (n) as long as the maximum

multiplicity does not decrease (see [30]). In other words, the multiplicity is represented by
G(n)

X (see Definition 2.23). Let us recall that G(n)
X can be chosen to be differentially closed

(see 2.16). For simplicity of the notation, we will also write X for this neighbourhood Uη

from now on.
Let us choose a point ξ ∈ Maxmult(X). If we go back to (3.2), after the product X (d)×A

1
k ,

we also have an immersion, and thus a commutative diagram

V (n) V (n+1)
0 = V (n) × A

1
k

p

X (d) X (d+1)
0 = X (d) × A

1
k .

p|
X(d+1)
0

(4.2)

In particular, p is a local sequence on V (n) and preserves (4.1), and thus the small-
est O

V (n+1)
0 ,ξ0

-Rees algebra contaning G(n)
X (the extended algebra) represents the function

mult(X (d+1)
0 ). We will refer to this algebra as the O

V (n+1)
0 ,ξ0

-Rees algebra G(n+1)
X0

.

Fix an arc ϕ ∈ L(X) through ξ not contained in Maxmult(X). The sequence of blow ups
at points directed by ϕ defined in (3.5) induces a sequence11 of blow ups for V (n+1)

0 :

(V (n+1)
0 , ξ0) (V (n+1)

1 , ξ1)
π1

. . .
π2

(V (n+1)
r , ξr )

πr

(X (d+1)
0 , ξ0) (X (d+1)

1 , ξ1)

π1 |
X(d+1)
1

. . .

π2 |
X(d+1)
2

(X (d+1)
r , ξr )

πr |
X(d+1)

r

(Spec(K [[t]]), 0)

�∗
0

(Spec(K [[t]]), 0)id

�∗
1

. . .
id

(Spec(K [[t]]), 0).id

�∗
r

(4.3)
Consider now the ring OV (n),ξ ⊗k K [[t]], and the localization at ξ0 = (ξ, 0):12

δ : OV (n),ξ −→ (OV (n),ξ ⊗k K [[t]])ξ0 , (4.4)

11 For simplicity of the notation, we will often identify the points ξi in X (d+1)
i with their images in V (n+1)

i .
12 We use the same notation for the image of ξ by p∗ and by δ̄.
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and let us denote Ṽ (n+1)
0 = Spec(OV (n),ξ ⊗k K [[t]])ξ0 and X̃ (d+1)

0 = Spec(OX (d),ξ ⊗k

K [[t]])ξ0 . Let us choose a regular system of parameters y1, . . . yn ∈ OV (n),ξ , so that
{y1, . . . yn, t} is a regular system of parameters in (OV (n),ξ ⊗k K [[t]])ξ0 .

Note that if βX : X → Spec(S) = V (d) is a finite morphism as in (2.15) then after the
natural base extension, X̃ (d+1)

0 → Ṽ (d+1)
0 is also a finite morphism. We will need this fact

in the proof of Proposition 4.4 below.
Now �0 can be described by the images of t and the classes yi of the yi in O

X (d+1)
0 ,ξ0

, for

i = 1, . . . , n:

�0 : O
X (d+1)
0 ,ξ0

−→ K [[t]]
yi �−→ ϕyi = ϕ(yi ) i = 1, . . . , n

t �−→ t.

Since both ϕ and δ are continuous, there is a k-morphism �̃0 : (OV (n),ξ ⊗k K [[t]])ξ0 −→
K [[t]] which is completely determined by the images of the yi and t . The following com-
mutative diagram provides an overview of the situation:

O
V (n+1)
0 ,ξ0

OV (n),ξ

p∗
δ

(OV (n),ξ ⊗k K [[t]])ξ0

O
X (d+1)
0 ,ξ0

�0

OX (d),ξ

ϕ

(OX (d),ξ ⊗k K [[t]])ξ0

�̃0

yi , t yi yi

ϕyi

ϕyi = ϕ(yi ), t K [[t]]
(4.5)

Note that �̃0 is an arc in X̃ (d+1)
0 defining a curve C0 which is smooth, since it is given in

Ṽ (n+1)
0 by the equations13 yi −ϕyi = 0 for i = 1, . . . , n where ϕyi ∈ K [[t]] for i = 1, . . . n.

This curve is the closure of the image of �̃∗
0 : Spec(K [[t]]) → Ṽ (n+1)

0 , induced by �̃0. We
get an analogous diagram to that in (4.3):

(Ṽ (n+1)
0 , ξ0) (Ṽ (n+1)

1 , ξ1)
π̃1

. . .
π̃2

(Ṽ (n+1)
r , ξr )

π̃r

(X̃ (d+1)
0 , ξ0) (X̃ (d+1)

1 , ξ1)

π̃1|
X̃(d+1)
1

. . .

π̃2|
X̃(d+1)
2

(X̃ (d+1)
r , ξr )

π̃r |
X̃(d+1)

r

(C0, ξ0) (C1, ξ1)
π̃1|C1

. . .
π̃2|C2

(Cr , ξr )
π̃r |Cr

(4.6)

13 C0 is a smooth curve in a local ring, and hence a complete intersection.
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where we can see that the preimage Ẽi of ξi−1 by π̃i always intersects Ci at a single point.
This point is ξi , the center of the blow up π̃i+1.

4.2 Contact algebras

With the notation in Sect. 4.1, let us look now at the closed set C0 ⊂ Ṽ (n+1)
0 defined by

the arc ϕ. We can find an (OV (n),ξ ⊗k K [[t]])ξ0 -Rees algebra G(n+1)
ϕ representing C0 in the

sense of Definition 2.23. That is, G(n+1)
ϕ will satisfy Sing(G(n+1)

ϕ ) = C0, and for any local

sequence as in (2.7), Sing(G(n+1)
ϕ,i ) = Ci , where Ci is the strict transform of Ci−1 by φi if it

is a blow up at a smooth center, or the pullback of Ci−1 if φi is a smooth morphism. It can
be shown that

G(n+1)
ϕ = O

Ṽ (n+1)
0 ,ξ0

[h1W, . . . , hn W ], (4.7)

where hi = (yi − ϕyi ) for i = 1, . . . , n. Consider now the closed set

Z0 = C0 ∩
{
η ∈ X̃ (d+1)

0 : multη(X̃ (d+1)
0 ) = m

}
⊂ Ṽ (n+1)

0 . (4.8)

For any local sequence

Ṽ (n+1)
0

π1←− Ṽ (n+1)
1

π2←− · · · πr←− Ṽ (n+1)
r (4.9)

we define Zi , for i = 1, . . . , r , as the closed set

Zi = Ci ∩
{
η ∈ X̃ (d+1)

i : multη(X̃ (d+1)
i ) = m

}
, (4.10)

where Ci is the transform of Ci−1 by πi (that is, the pullback if πi−1 is a smooth morphism,
and the strict transform if it is a blow up at a smooth center contained in Zi−1) and X̃ (d+1)

i

is the transform of X̃ (d+1)
i−1 .

Definition 4.1 Let us suppose now that one can find an (OV (n),ξ ⊗k K [[t]])ξ0 -Rees algebra
H whose singular locus is Z0, and such that this is preserved by local sequences as in (4.9)
(and in particular for sequences of blow ups of X̃ (d+1)

0 directed by ϕ). We will say that such
an algebra, if it exists, is an algebra of contact of ϕ with Max mult(X).

Remark 4.2 Lowering the Nash multiplicity of X at ξ , m, is therefore equivalent to resolving
thisH, and consequently ρX,ϕ as in Definition 3.4 is the number of induced transformations
of this Rees algebra H which are necessary to resolve it (see Definition 2.9).

Remark 4.3 Note that, by the way in which it has been defined, the algebra of contact of ϕ

with Max mult(X), if it exists, is unique up to weak equivalence.

Denote
G(n+1)

X0,ϕ
:= G(n+1)

X̃0
	 G(n+1)

ϕ , (4.11)

where G(n+1)
X̃0

is the extension of G(n)
X to (OV (n),ξ ⊗k K [[t]])ξ0 (see (4.2) and (4.4)) and G(n+1)

ϕ

is as in (4.7).14

Proposition 4.4 Let X be a variety, let ξ be a point in Max mult(X), and let ϕ be an arc in
X through ξ with the hypothesis and notation from Sect. 4.1. Then the Rees algebra G(n+1)

X0,ϕ

14 Note that Gϕ and G(n+1)
X̃0

are differentially closed by definition.
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from (4.11) is an algebra of contact of ϕ with Max mult(X). Moreover, the restriction G(1)
X0,ϕ

of the same Rees algebra to the curve C0 defined by ϕ is also an algebra of contact of ϕ with
Max mult(X). In particular, resolving G(n+1)

X0,ϕ
is equivalent to resolving G(1)

X0,ϕ
.

Proof By definition of G(n+1)
X0,ϕ

,

FṼ0

(
G(n+1)

X0,ϕ

)
= FṼ0

(
G(n+1)

X̃0

)
∩ FṼ0

(
G(n+1)

ϕ

)

(see Definition 2.20). Then, G(n+1)
X0,ϕ

is an algebra of contact of ϕ with Max mult(X) as long

as G(n+1)
X̃0

represents Max mult(X̃0) and G(n+1)
ϕ represents C0 in the sense of Definition 2.23.

The latter was already shown at the begining of this section. For the first assertion, we may
assume that locally we are in the situation of Example 2.38, and with the notation there, we
have now that S ⊗k K [[t]] ⊂ B ⊗k K [[t]] = S[θ1, . . . , θn−d ] ⊗k K [[t]] is a finite extension
of rings satisfying the properties in [30, 4.5], and therefore the argument in [30, Proposition
5.7] is also valid for them: ξ ∈ Max mult(X̃0) if and only if ordξ fi ≥ ni for i = 1, . . . , n−d ,
so the fi are also the minimal polynomials of the θi over S ⊗ K [[t]].

On the other hand, by [7, Proposition 6.6]

FC0

(
G(n+1)

X̃0

∣∣∣
C0

)
= FṼ0

(
G(n+1)

X̃0

)
∩ FṼ0

(
G(n+1)

ϕ

)
,

since G(n+1)
X̃0

is differentially closed, and C0 is smooth. Hence, it is clear that the Rees algebra

G(n+1)
X̃0

∣∣∣
C0

defines the same tree of closed sets as G(n+1)
X0,ϕ

. In addition, the restriction of G(n+1)
X0,ϕ

to C0 defines the very same tree, since

FṼ0

(
G(1)

X0,ϕ

)
:= FṼ0

(
G(n+1)

X̃0

∣∣∣
C0

	 G(n+1)
ϕ

∣∣∣
C0

)
= FṼ0

(
G(n+1)

X̃0

∣∣∣
C0

)
∩ FṼ0

(
G(n+1)

ϕ

∣∣∣
C0

)

= FC0

(
G(n+1)

X̃0

∣∣∣
C0

)
,

and the proposition is proved. ��
The following definition will give us a tool to compute the algebra G(1)

X0,ϕ
that appears in

the last Proposition. This will become quite useful in Sect. 5:

Definition 4.5 With the notation in Sect. 4.1, let G be a Rees algebra over V (n) given as

G = OV (n),ξ [g1W c1 , . . . , gs W cs ]
locally at ξ . Then, for any arc ϕ ∈ Lξ (V (n)), we define

ϕ(G) = K [[t]][ϕ(g1)W c1 , . . . , ϕ(gs)W cs ].
Remark 4.6 With the notation in Sect. 4.1, we may define the image by �̃0 of the Rees
algebra G(n+1)

X0,ϕ
from (4.11). This algebra �̃0(G(n+1)

X0,ϕ
) happens to be the restriction of the

algebra G(n+1)
X0,ϕ

to the curve C0 defined by ϕ, and the proof of Proposition 4.4 shows that if

G(n+1)
X0

= O
V (n+1)
0

[g1W c1 , . . . , gs W cs ], then

�̃0(G(n+1)
X0,ϕ

) = K [[t]][ϕ(g1)W c1 , . . . , ϕ(gs)W cs ],
since �̃0(hi ) = 0 for i = 1, . . . , n.
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Our goal now is to define an invariant for X , ξ and ϕ using the algebra of contact of ϕ

with Max mult(X). However, Proposition 4.4 shows that it would also make sense to define
it from the restriction G(1)

X0,ϕ
to C0. In addition, from the way in which G(n+1)

X0,ϕ
is constructed,

we know that it has elements of order 1 in weight 1, and hence has order 1 itself15 at all
points of its singular locus. On contrary, the order of G(1)

X0,ϕ
will be much more interesting,

as we will see in Proposition 4.11.

Definition 4.7 Let X be a variety, and let ϕ be an arc in X through ξ ∈ Max mult(X). We
define the order of contact of ϕ with Max mult(X) as the order16 at ξ of the restriction G(1)

X0,ϕ

to C0 of the algebra of contact of ϕ with Max mult(X), and we write it by

rX,ϕ = ordξ (G(1)
X0,ϕ

) ∈ Q.

We denote by rX the infimum of the orders of contact of Max mult(X) with all arcs in X
through ξ :

rX = inf
ϕ∈Lξ (X)

{
ordξ (G(1)

X0,ϕ
)
}

∈ R.

Remark 4.8 We have defined an invariant rX,ϕ for the pair (X, ϕ) and another invariant rX

for X : by Hironaka’s trick (see [13, Section 7]), it can be shown that rX,ϕ depends only on
X , ξ and ϕ, not on the choice of the algebra of contact (which is not unique). For the same
reason rX depends only on X and on the point ξ we are looking at.

Definition 4.9 Normalizing rX,ϕ and rX by the order of the respective arcs (see Definition
3.3) we define new invariants. We denote

r̄X,ϕ = ordξ (G(1)
X0,ϕ

)

ord(ϕ)
∈ Q,

and

r̄X = inf
ϕ∈Lξ (X)

{
ordξ (G(1)

X0,ϕ
)

ord(ϕ)

}

∈ R.

We give now a more complete version of Theorem 3.6, which we will prove in Sect. 5:

Theorem 4.10 Let X be an algebraic variety of dimension d and ξ a point in Max mult(X).
Then

r̄X = ordξG(d)
X ∈ Q.

Moreover, the infimum r̄X is indeed a minimum.

Equivalently, for every arc ϕ ∈ L(X) through ξ ,

r̄X,ϕ ≥ ordξG(d)
X ,

and in addition, one can find an arc ϕ0 ∈ L(X) through ξ such that

r̄X,ϕ0 = ordξG(d)
X .

We already mentioned at the end of Sect. 3.2 that rX,ϕ is a refinement of ρX,ϕ . The
following proposition shows that in fact ρX,ϕ may be obtained from rX,ϕ .

15 Note that G(n+1)
ϕ has order one (see (4.7)).

16 As we have done already, we will write ξ for the image of ξ under most of the morphisms we use, as long
as the identification between both points is clear.
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Proposition 4.11 Let X be a variety, let ξ be a point in Max mult(X) and let ϕ be an arc in
X through ξ . Then

ρX,ϕ = [
rX,ϕ

]
. (4.12)

That is, the persistance of ϕ in X (Definition 3.4) equals the integral part of the order of
contact of ϕ with Max mult(X).

Proof Since G(1)
X0,ϕ

is a Rees algebra over a smooth curve, it is defined over a regular local
ring OC0,ξ of dimension one. If the maximal ideal Mξ of ξ in OC0,ξ is Mξ =< T > for

some regular parameter T , then G(1)
X0,ϕ

is necesarily generated by a finite set of elements

of the form T αW lα , where α, lα are positive integers. Observe also that G(1)
X0,ϕ

is integrally

equivalent to a Rees algebra generated by J W l for some principal ideal J ⊂ OC0,ϕ and some
positive integer l, at least in a neighbourhood of ξ (see [7, Lemma 1.7]). Therefore, we can
suppose that G(1)

X0,ϕ
= OC0,ξ [T αW l ]. In this case, the order of G(1)

X0,ϕ
at ξ will be given by

ordξ (G(1)
X0,ϕ

) = α

l
.

By the transformation law (2.2), the first transform of G(1)
X0,ϕ

by blowing up at the closed point
is

G(1)
X0,ϕ,1 = OC0,ξ [T α−l W l ].

The order of the k-th transform will therefore be
α − k · l

l
,

and the number ρX,ϕ of blow ups needed to resolve G(1)
X0,ϕ

must satisfy:

0 ≤ α − ρX,ϕ · l < l.

But this implies

0 ≤ α

l
− ρX,ϕ < 1,

which means that ρX,ϕ is the integral part of α
l = ordξ (G(1)

X0,ϕ
), which is precisely the order

of contact of ϕ with Max mult(X). ��
Corollary 4.12 For any variety X,

ρX = [rX ],
[r̄X ] ≤ ρ̄X ≤ r̄X .

The proof follows solely from the definitions of rX , r̄X , ρX and ρ̄X together with Propo-
sition 4.11, by means of algebraic manipulations of their integral parts.

In what follows, we will give the proof of Theorem 4.10 by focusing first on the hyper-
surface case and generalizing then to arbitrary codimension.

5 Proof of the main result

For the proof of Theorem 4.10, we assume first that X is a hypersurface in Theorems 5.10
and 5.12. Later on, we will see that we can deduce the proof of the general case from the
hypersurface one in Theorems 5.17 and 5.19.
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5.1 Rees algebras and orders for a hypersurface

For any variety X which is locally a hypersurface, we can always find a nice expression for
X in an étale neighbourhood of each point. Using this expression, we will prove Theorem
4.10 for the hypersurface case by dividing it into two theorems: Theorem 5.10 states that
ordξG(d)

X from Sect. 2.8 is a lower bound of r̄X,ϕ for any arc ϕ ∈ Lξ (X), and Theorem 5.12
shows that in fact we can find an arc giving the equality, so that r̄X is actually a minimum.
For the proof of these two, we will define diagonal arcs, which will help us analyzing the
orders of contact and the order ordξG(d)

X (see 2.7.1 1-5, and Theorems 2.41, 2.50), and giving
some conclusions and lemmas about them.

5.1.1 Notation and hypothesis

Let X = X (d) be a d-dimensional variety over k of maximum multiplicity b, and let ξ ∈
Maxmult(X). Let us suppose that X at ξ is locally a hypersurface, given byOX,ξ

∼= S[x]/( f )

for a regular local k-algebra S and a variable x , as in Example 2.35. As we did in (2.13), we
can suppose that f has an expression of the form

f (x) = xb + Bb−2xb−2 + · · · + Bi xi + . . . + B0 (5.1)

in some étale neighbourhood of ξ ∈ X , with B0, . . . Bb−2 ∈ S, and where we write n = d +1
for the dimension of the ambient space V (n) = Spec(S[x]). Consider G(d)

X , the elimination
algebra of OV (n),ξ [ f W b] in OV (d),ξ (d) induced by the projection β : V (n) −→ V (d) =
Spec(S) (see Theorem 2.41), as the diagram shows:

G(n+1)
X0

G(n)
X G(n+1)

X̃0

O
V (n+1)
0 ,ξ0

OV (n),ξ

p∗
δ

(OV (n),ξ ⊗k K [[t]])ξ0

O
V (d+1)
0 ,ξ

(d+1)
0

OV (d),ξ (d)

β∗

(O
V (d),ξ

(d)
0

⊗k K [[t]])
ξ

(d+1)
0

G(d+1)
X0

G(d)
X G(d+1)

X̃0

(5.2)
where G(d+1)

X0
is an elimination of G(n+1)

X0
. We have the following expression:

G(n)
X = Diff(OV (n),ξ [ f W b]) = OV (n),ξ [xW ] 	 G(d)

X (5.3)

(see Lemma 2.44 for G(d)
X ). Let ϕ be an arc in X through ξ , not contained in Maxmult(X).

Suppose that ϕ is such that ϕx = u0tα0 and ϕzi = ui tαi for a regular system of parame-
ters {z1, . . . , zd} ∈ S, as in (4.5), where u0, . . . , ud are units in K [[t]] and α0, . . . αd are
positive integers. This gives the following expressions for the algebra of contact of ϕ with
Maxmult(X) (see Proposition 4.4):

G(n+1)
X0,ϕ

= Diff(O
Ṽ (n+1)
0 ,ξ0

[ f W b]) 	 O
Ṽ (n+1)
0 ,ξ0

[(x − u0tα0 )W, (zi − ui t
αi )W ; i = 1, . . . , d]

= O
Ṽ (n+1)
0 ,ξ0

[xW ] 	 G(d)
X 	 O

Ṽ (n+1)
0 ,ξ0

[(x − u0tα0 )W, (zi − ui t
αi )W ; i = 1, . . . , d].

(5.4)
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This expression will allow us to know the order of contact of ϕ with Maxmult(X) (see
Definition 4.7), which is our real interest.

Let us recall that Properties 2.7.1 1-4 guarantee thatG(d)
X representsβ(Maxmult(X)). Note

now that the corresponding projection of ϕ by β gives also an arc ϕ(d) in V (d) according to
the following diagram

OV (n),ξ

ϕ
K [[t]]

OV (d),ξ (d)

β∗
ϕ(d)

(5.5)

Consider then the elimination algebra G(d+1)
X0

above. We can construct an algebra of contact

of ϕ(d) with β(Maxmult(X)) by an analogous construction to that in (4.11), using the fact
that G(d)

X represents β(Maxmult(X)). Then we obtain the OṼ (d+1),ξ (d+1) -Rees algebra

G(d+1)
X0,ϕ(d) = G(d)

X 	 G(d+1)
ϕ(d) . (5.6)

Also G(1)
X0,ϕ(d) will be the restriction of G(d+1)

X0,ϕ(d) to the image of C0 in Ṽ (d+1)
0 (which we

will denote by C (d)
0 ). Note that G(1)

X0,ϕ(d) = �̃
(d)
0 (G(d+1)

X0,ϕ(d) ), where �̃
(d)
0 : (OV (d),ξ (d) ⊗k

K [[t]])
ξ

(d)
0

→ K [[t]] is given by ϕ(d) : OV (d),ξ (d) → K [[t]] as in (4.5). With this nota-

tion we can write,

G(n+1)
X0,ϕ

=O
Ṽ (n+1)
0 ,ξ0

[xW, tα0 W ] 	 G(d)
X 	 G(d+1)

ϕ(d) = O
Ṽ (n+1)
0 ,ξ0

[xW ] 	 K [[t]][tα0 W ] 	 G(d+1)
X0,ϕ(d)

by (5.4) and (5.6), and hence

G(1)
X0,ϕ

= K [[t]][tα0W ] 	 G(1)
X0,ϕ(d) ,

and
rX,ϕ = ordξ (G(1)

X0,ϕ
) = min{α0, ordξ (G(1)

X0,ϕ(d) )}. (5.7)

5.1.2 Auxiliary results

The following Lemma shows that, in fact, α0 is not important for rX,ϕ .

Lemma 5.1 Let X be as in Sect. 5.1.1. Let ξ ∈ Max mult(X). Then for any arc ϕ ∈ L(X)

through ξ as in Sect. 5.1.1:

ordξ (G(1)
X0,ϕ

) = ordξ (G(1)
X0,ϕ(d) ).

Proof Assume that X is given by f as in (5.1). Let us suppose that ϕ is given by
(ϕx , ϕz1 , . . . , ϕzd ) = (u0tα0 , u1tα1 , . . . , ud tαd ), with u0, . . . , ud units in K [[t]] and
α0, . . . , αd positive integers, and recall that, since ϕ ∈ L(X),

ϕ( f ) = ϕ

(

xb +
b−2∑

i=0

Bi xi

)

= 0. (5.8)

By (5.7), it suffices to prove that

α0 ≥ ordξ (G(1)
X0,ϕ(d) ). (5.9)
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On the other hand, from Lemma 2.44 and diagram (5.2) we know that

G(d+1)
X̃0

= Diff(O
Ṽ (d+1)
0 ,ξ

(d+1)
0

[Bi W b−i : i = 0, . . . b − 2]).
Denote

H = O
Ṽ (d+1)
0 ,ξ

(d+1)
0

[Bi W b−i : i = 0, . . . b − 2] ⊂ G(d+1)
X̃0

.

The inclusion holds after restricting both algebras to C (d)
0 , and hence

ordξ (ϕ
(d)(H)) ≥ ordξ (ϕ

(d)(G(d+1)
X̃0

)) = ordξ (G(1)
X0,ϕ(d) ).

We will show now that
α0 ≥ ordξ (ϕ

(d)(H)), (5.10)

which implies (5.9). On the contrary, let us suppose that

α0 < ordξ (ϕ
(d)(H)) = min

i=0,...,b−2

{
ordtϕ

(d)(Bi ))

b − i

}

.

That is,

α0 <

(
ordt (ϕ

(d)(Bi ))

b − i

)

, f or i = 0, . . . b − 2,

or equivalently

(b − i)α0 < ordt (ϕ
(d)(Bi ))), f or i = 0, . . . b − 2. (5.11)

Now observe that this implies

ϕ( f − xb) = ordt

(
b−2∑

i=0

ϕ(d)(Bi )

)

ui
0t iα0) ≥ min

i=0,...,b−2
{ordt (ϕ

(d)(Bi ))) + i · α0} > b · α0.

But this contradicts (5.8), so necessarily (5.10) holds, concluding the proof of the Lemma. ��
We know now that we can just focus on the projection of X over S, for the computation of

the order of contact. We need to know now how the induced projection of arcs (5.5) behaves.

Definition 5.2 We say that an arc ϕ ∈ L(V (d)) through ξ (d) ∈ V (d) is a diagonal arc if there
exists a regular system of parameters {z1, . . . , zd} ∈ OV (d),ξ (d) , units u1, . . . , ud ∈ K [[t]]
and α ∈ N such that ϕ(zi ) = ui tα for i = 1, . . . , d .

Remark 5.3 The following definition is equivalent to the previous one: We say that an arc
ϕ ∈ L(V (d)) through ξ (d) ∈ V (d) is a diagonal arc if there exists a regular system of
parameters {z1, . . . , zd} ∈ OV (d),ξ (d) inducing a diagram

0 Ker(�0) O
V (d+1)
0 ,ξ

(d+1)
0

�0

0 Ker(ϕ) OV (d),ξ (d)

ϕ

p∗

δ

K [[t]]

0 Ker(�̃0) (OV (n),ξ ⊗k K [[t]])ξ0
�̃0

(5.12)
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where the ideal Ker(�̃0) ⊂ (OV (n),ξ ⊗k K [[t]])ξ0 is generated by elements of the form
(u j zi − ui z j ), where ul ∈ K [[t]] are units for l = 1, . . . , d .17

Remark 5.4 Let ϕ and ϕ′ be two arcs in L(V (d)) through ξ ∈ V (d) whose respective graphs
are �0 and �′

0. If ϕ is diagonal and Ker(�0) = Ker(�′
0), then ϕ′ is also diagonal. Moreover,

since ϕ is given by ϕ(zi ) = ui tα for some regular system of parameters {z1, . . . , zd}, where
u1, . . . , ud are units in K [[t]] and α is come positive integer, then ϕ′ is given as ϕ′(zi ) =
ui g′(t) for some g′(t) ∈ K [[t]].
Lemma 5.5 Let X be as in Sect. 5.1.1 and let ϕ(d) be an arc in V (d) through ξ (d) ∈ V (d).
Then

ordξ (G(1)
X0,ϕ(d) ) ≥ ordξ (G(d)

X ) · ord(ϕ(d)). (5.13)

Proof Suppose, contrary to our claim, that ordξ (G(1)
X0,ϕ(d) ) < ordξ (G(d)

X ) · α, where α =
ord(ϕ(d)). Let ϕ(d) be given by ϕ(d)(zi ) = ui tαi for some regular system of parameters
{z1, . . . , zd} in OV (d),ξ (d) , units u1, . . . , ud ∈ K [[t]] and positive integers α1, . . . , αd . Then

for some qW l ∈ G(d)
X ,

ordt (ϕ
(d)(q))

l
< ordξ (G(d)

X ) · α. (5.14)

But ordt (ϕ
(d)(q)) ≥ α · ordξ (q), and hence

ordt (ϕ
(d)(q))

l
≥ α · ordξ (q)

l
≥ α · ordξ (G(d)

X ),

leading to a contradiction, and proving the Lemma. ��
Note that in the Lemma ϕ(d) is any arc in Lξ (V (d)), not necessarily the projection of any

arc ϕ ∈ Lξ (X).

Definition 5.6 Let G(d) be a Rees algebra over V (d). We say that an arc ϕ(d) ∈ Lξ (V (d)) is
generic for G(d) if

ordξ

(
(G(d) 	 G(d+1)

ϕ(d) )

∣∣∣
C(d)
0

)
= ord(ϕ(d)) · ordξ (G(d)).

If ϕ(d) is also diagonal, we say that it is diagonal-generic.

Remark 5.7 In the situation of Lemma 5.5, an arc for which (5.13) is an equality is a generic

arc for G(d)
X : G(d)

X 	 G(d+1)
ϕ(d)

∣∣∣
C(d)
0

= G(d+1)
X0,ϕ(d)

∣∣∣
C(d)
0

= G(1)
X0,ϕ(d) shows it. Note that such an arc can

always be found, by just considering a diagonal arc ϕ(d) in V (d) through ξ (d) ∈ V (d) given,
in some regular system of parameters {z1, . . . , zd}, by (u1tα, . . . , ud tα), for some positive
integer α and units u1, . . . , ud ∈ k such that there exists some element qW l ∈ G(d)

X with
ordξ (q)

l = ordξ (G(d)
X ), and for which18 (inξ (q))(u1, . . . , ud) �= 0. For this arc,

ordt (ϕ
(d)(q)) = α · ordξ (q),

17 Note that Ker(�̃0) = Ker(�0)(OV (n),ξ
⊗k K [[t]])ξ0 .

18 If q ∈ R for a regular local ring R with maximal ideal M, then we denote by inξ (q) the initial part of q

at the closed point ξ , meaning the equivalence class of q in the quotient Mn/Mn+1, where n is such that
q ∈ Mn but q /∈ Mn+1. Therefore inξ (q) ∈ GrRM ∼= k′[z1, . . . , zd ] is a homogeneous polynomial of
degree n.
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and hence

ordξ (G(1)
X0,ϕ(d) ) ≤ ordt (ϕ

(d)(q))

l
= α · ordξ (q)

l
= α · ordξ (G(d)

X ),

but Lemma 5.5 forces the last inequality to be an equality.

Even though in this section we are always under the assumption of X being locally
a hypersurface, the following Lemma will be stated and proved for a variety of arbitrary
codimension, since no extra work is needed and this generality will be necessary in the next
section.

Lemma 5.8 Let X be a variety of dimension d over k. With the notation from Sect. 5.1.1, let
ϕ̄(d) be a diagonal arc in V (d) through ξ (d) ∈ V (d) which is diagonal-generic for G(d)

X . Then
it is possible to find an arc ϕ ∈ L(X) through ξ whose projection ϕ(d) onto V (d) via βX is a
diagonal arc which is also diagonal-generic for G(d)

X .

Proof Consider a local presentation as in Example 2.38 for X at ξ attached to themultiplicity.
Let us recall that not every arc in { f1 = · · · = fn−d = 0} is an arc in X , since

( f1, . . . , fn−d) ⊂ I (X) �⇒ X ⊂ { f1 = · · · = fn−d = 0} .

Assume that ϕ̄(d)(zi ) = ui tα , i = 1, . . . , d for some units u1, . . . , ud ∈ K [[t]]. We need to
choose an arc ϕ such that ϕ ∈ L(V ( f )) for all f ∈ I (X), or equivalently an arc such that
Ker(ϕ) ⊃ I (X). Consider the following diagram

OX,ξ
∼= OV (d),ξ (d) [x1, . . . , xn−d ]/I (X) OV (d),ξ (d) [x1, . . . , xn−d ]

OV (d),ξ (d)

β∗
X

β∗

where β∗
X (induced by βX from (2.15)) is a finite morphism. LetP = Ker(ϕ(d)) ⊂ OV (d),ξ (d) .

There is a prime ideal Q ⊂ OX,ξ such that Q ∩ OV (d),ξ (d) = P . Note that Q is lifted to a
unique ideal Q′ ⊂ OV (d),ξ (d) [x1, . . . , xn−d ], with the property that I (X) ⊂ Q′. We have the
following diagram

Q ⊂ OX,ξ OX,ξ /Q

P ⊂ OV (d),ξ (d)

β∗
X

OV (d),ξ (d) /P

where the left vertical arrow is a finite morphism, forcing the right vertical one to be also
finite. Then, the two rings in the right side of the diagram have the same dimension, and thus
Q defines a closed set of dimension 1 in X , C . There is an arc ϕ (different from the morphism
0) in C through ξ , and we know that, locally in a neighbourhood of ξ , Q = Ker(ϕ) and
that Ker(ϕ) ∩ OV (d),ξ (d) = Ker(ϕ(d)) = Ker(ϕ̄(d)), so the projection of ϕ onto V (d), ϕ(d), is

diagonal by Remark 5.4. To see that it is generic for G(d)
X , note that there exists some element

qW l ∈ G(d)
X with ordξ (q)

l = ordξ (G(d)
X ) for which (inξ (q))(u1, . . . , ud) �= 0. By passing to
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the completion of (OV (n),ξ ⊗k K [[t]])ξ0 at its maximal ideal (see Remark 5.3) and using

Remark 5.4, it can be checked that this implies that ϕ(d) is also generic for G(d)
X . ��

Remark 5.9 The arc obtained in Lemma 5.8 is given (as in (4.5)) by

ϕ = (g1(t), . . . , gn−d(t), u1g′(t), . . . , ud g′(t)) (5.15)

for some g1(t), . . . , gn−d(t), g′(t) ∈ K [[t]] and u1, . . . , ud ∈ K [[t]], because Ker(ϕ) ∩
OV (d),ξ (d) = Ker(ϕ̄(d)) = Ker(ϕ(d)) and ϕ(d) is diagonal (see Remark 5.4).

5.1.3 Results for hypersurfaces

Now we return to the hypersurface case, and we have enough tools to prove the following
theorem:

Theorem 5.10 Let X be a variety of dimension d which is locally a hypersurface at ξ ∈
Maxmult(X). For any ϕ ∈ L(X) through ξ , with the notation from Sect. 5.1.1,

r X,ϕ ≥ ordξ (G(d)
X ). (5.16)

Proof We can assume that X is given locally by f is as in (5.1). Let us write α = ord(ϕ) =
min {α0, . . . , αd}. From Lemma 5.5, for any diagonal arc ϕ̃, given as (ũ0tα, . . . , ũd tα)

α · ordξ (G(d)
X ) ≤ ordξ (G(1)

X0,ϕ̃(d) ).

It suffices to show that it is possible to choose units ũi ∈ K [[t]] for i = 0, . . . , d so that

ordξ (G(1)
X0,ϕ̃(d) ) ≤ ordξ (G(1)

X0,ϕ(d) ). (5.17)

This, together with Lemma 5.1, would imply that

α · ordξ (G(d)
X ) ≤ ordξ (G(1)

X0,ϕ(d) ) = ordξ (G(1)
X0,ϕ

),

and complete the proof of the Theorem.
In order to prove (5.17), let us consider a finite set of generators of G(d)

X ,
{
gi W li

}
i=1,...,r .

Since this set is finite and k is infinite, it is possible to choose units ũ1, . . . , ũd ∈ k in a way
such that

inξ (gi )(ũ1, . . . , ũd) �= 0, f or i = 1, . . . , r.

Let λi = ordξ (gi ) for i = 1, . . . , r . As inξ (gi ) is a homogeneous polynomial,

inξ (ϕ̃
(d)(gi )) = tα·λi · inξ (gi )(ũ1, . . . , ũd)

and

ordt (ϕ̃
(d)(gi )) = α · λi .

On the other hand, observe that

ϕ(d)(gi ) ∈ 〈tα·λi 〉,
so

ordt (ϕ
(d)(gi )) ≥ α · λi = ordt (ϕ̃

(d)(gi )). (5.18)
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Since (5.18) holds for all i ∈ {1, . . . , r}, and for some k ∈ {1, . . . , r},
ordt (ϕ

(d)(gk))

lk
= ordξ (G(1)

X0,ϕ(d) ),

it follows that

ordξ (G(1)
X0,ϕ(d) ) = ordt (ϕ

(d)(gk)))

lk
≥ ordt (ϕ̃

(d)(gk))

lk
≥ ordξ (G(1)

X0,ϕ̃(d) )

concluding the proof of (5.17), and the proof of the Theorem. ��
For the proof of the existence of an arc giving an equality in (5.16), we will use the

following Lemma:

Lemma 5.11 Let X be as in Sect. 5.1.1, and let ϕ be an arc in X through ξ ∈ Max mult(X)

with the notation used there where ϕ(x) = g1(t) and ϕ(zi ) = ui g′(t), ui a unit in K [[t]], for
i = 1, . . . , d. Assume that ϕ is such that the projection ϕ(d) on V (d) is a diagonal-generic
arc for G(d)

X .19 If ord(ϕ) = ordt (g1(t)), then

r X,ϕ = ordξ (G(d)
X ) = 1.

Proof Let us suppose that g′(t) = t L for some positive integer L , that is, ϕzi = ui t L for
i = 1, . . . , d . By Lemma 5.1,

ordξ

(
G(1)

X0,ϕ

)
= ordξ (G(1)

X0,ϕ(d) ),

and since ϕ(d) is generic for G(d)
X , Remark 5.7 yields

ordξ

(
G(1)

X0,ϕ

)
= L · ordξ (G(d)

X ). (5.19)

It suffices to prove that
ordt (g1(t)) ≥ L · ordξ (G(d)

X ), (5.20)

since it implies

1 ≤ ordξ (G(d)
X ) ≤ r X,ϕ = L · ordξ (G(d)

X )

ordt (g1(t))
≤ 1, (5.21)

where we have used Theorem 5.10 for the second inequality and (5.19) together with the
definition of r X,ϕ for the equality. Hence ordξ (G(d)

X ) = r X,ϕ = 1, concluding the proof of
the Lemma. In order to prove (5.20), let us suppose that our claim is false, that is:

ordt (g1(t)) < L · ordξ (G(d)
X ). (5.22)

Then, in particular,

ordt (g1(t)) < L · ordξ (Bi )

b − i
≤ ordt (ϕ

(d)(Bi ))

b − i
for i = 0, . . . , b − 2 (5.23)

where the first inequality follows from the same argument used in the proof of Lemma 5.1.
Therefore

ordt (ϕ
(d)(Bi )) > ordt (g1(t))(b − i)

19 We know that such an arc exists by Remark 5.9.
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and

ordt (ϕ( f − xb))=ordt

(
b−2∑

i=0

ϕ(d)(Bi )g1(t)
i

)

≥ min
i=0,...,b−2

{ordt (ϕ
(d)(Bi )) + i · ordt (g1(t))}

> min
i=0,...,b−2

{ordt (g1(t))(b − i) + i · ordt (g1(t))} = b · ordt (g1(t)),

where (5.23) is needed for the second inequality. But this contradicts ϕ( f ) = 0 and hence
the fact that ϕ ∈ Lξ (X), so necessarily (5.20) holds, concluding the proof. ��
Theorem 5.12 Let X be a d-dimensional variety over a field k of characteristic zero which
is locally a hypersurface in a neighbourhood of ξ ∈ Max mult(X). Then there exists some
ϕ ∈ L(X) through ξ , with the notation from Sect. 5.1.1 such that

r X,ϕ = ordξ (G(d)
X ). (5.24)

Proof We can assume again that X is locally given by f as in (5.1). Pick a diagonal-generic
arc for G(d)

X (see Remark 5.7 for the existence). By Lemma 5.8 it can be lifted to an arc ϕ in

X through ξ whose projection ϕ(d) onto V (d) is diagonal generic for G(d)
X . Remark 5.9 shows

that ϕ is given (as in (4.5)) by

(g(t), u1g′(t), . . . , ud g′(t)) (5.25)

for some g(t), g′(t) ∈ K [[t]] and u1, . . . , ud ∈ k. We only need to check that for such an arc
(5.24) holds. Let N = ordt (g′(t)). Note that, since ϕ(d) is generic for G(d)

X , ordξ (G(1)
X0,ϕ(d) ) =

N · ordξ (G(d)
X ). By Lemma 5.1,

ordξ (G(1)
X0,ϕ

) = N · ordξ (G(d)
X ). (5.26)

Consider now two possible situations, depending on whether ord(ϕ) = ordt (g(t)) or not. If
ord(ϕ) = ordt (g(t)), then Lemma 5.11 implies

1 = ordξ (G(d)
X ) = r X,ϕ.

Otherwise ord(ϕ) = N , and by definition of r̄X,ϕ and (5.26), r X,ϕ = N ·ordξ (G(d)
X )

N , completing
the proof. ��
Remark 5.13 Under the assumptions of Theorem 5.12, let ϕ be the arc (5.25) given by the
proof. For this arc

ord(ϕ) = N . (5.27)

To see this we observe that, since we have proved that r X,ϕ = ordξ (G(d)
X ), it follows easily

from (5.26) that:

ordξ (G(d)
X ) = r X,ϕ = ordξ (G(1)

X0,ϕ
)

ord(ϕ)
= N · ordξ (G(d)

X )

ord(ϕ)
⇒ N

ord(ϕ)
= 1.

5.2 Rees algebras and orders for the general case

As we have just done for the proof of Theorem 4.10 for hypersurfaces, we will use that we
can find, in an étale neighbourhood of each point ξ of X , a local presentation (as in Example
2.38) given by a collection of hypersurfaces and integers. For each of these hypersurfaces
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we will assume a nice expression in the line of Sect. 5.1.1. As a consequence, for any arc
ϕ in X through ξ we will be able to give an expression of the algebra of contact of ϕ with
Max mult(X) in terms of some algebras of contact of arcs with hypersurfaces. This will lead
to an easy formula for rX,ϕ . With these tools, we will prove in Theorem 5.17 that ordξG(d)

X
is again a lower bound for r̄X,ϕ for any arc ϕ, and that r̄X is also a minimum in this case in
Theorem 5.19. They will come naturally from Theorems 5.10 and 5.12, respectively.

5.2.1 Notation and hypothesis for the general case

Let X be a variety of dimension d , and let ξ be a point inMax mult(X). We already explained
in Example 2.38 that, in an étale neighbourhood of ξ , we can find a local presentation for
X attached to the multiplicity, meaning an immersion in V (n), elements fi ∈ OV (n),ξ =
OV (d),ξ (d) [x1, . . . , xn−d ] and positive integers bi for i = 1, . . . , n − d as in (2.17), such that

G(n)
X = Diff(OV (n),ξ [ f1W b1 , . . . , fn−d W bn−d ]) (5.28)

represents the function mult(X). Consider the differential closure of the O
V (n+1)
0 ,ξ

(n+1)
0

-Rees

algebra generated by the fi , G(n+1)
X0

. We already mentioned that fi is the minimal polynomial
of θi over OV (d),ξ (d) , where OX,ξ = OV (d),ξ (d) [θ1, . . . , θn−d ], and we can assume (by 2.37)
that each fi is of the form:

fi = xbi
i + B{i},bi −2xbi −2

i + · · · + B{i},0 ∈ OV (d),ξ (d) [xi ] ⊂ OV (d),ξ (d) [x1, . . . , xn−d ],
where {z1, . . . , zd , t} is a regular system of parameters in O

V (d+1)
0 ,ξ0

and {x1, . . . , xn−d , z1,

. . . , zd , t} a regular system of parameters in (O
V (e)

i,0 ,ξ
⊗k K [[t]])ξ0 , B{i},bi − j ∈ OV (d),ξ (d) and

ordξ (B{i},bi − j ) ≥ j for j = 2, . . . , bi , i = 1, . . . , n − d .
By Example 2.38, we know that

G(n)
X = Diff(OV (n),ξ [ f1W b1 , . . . , fn−d W bn−d ])

= Diff(OV (n),ξ [ f1W b1 ]) 	 . . . 	 Diff(OV (n),ξ [ fn−d W bn−d ]),
where each Diff(OV (n),ξ [ fi W bi ]) is the smallest differentially closed OV (n),ξ -Rees alge-
bra with the property of containing the algebra Diff(OV (d),ξ (d) [xi ][ fi W i ]), since fi ∈
OV (d),ξ (d) [xi ]. Therefore we can write

G(n)
X = Diff(OV (d),ξ (d) [x1][ f1W b1 ]) 	 . . . 	 Diff

(
OV (d),ξ (d) [xn−d ][ fn−d W bn−d ]

)
. (5.29)

Observe that, for each fi , Hi = { fi = 0} is a hypersurface in V (e)
i = Spec(OV (d),ξ (d) [xi ]),

where e = d + 1. Using the hypersurface case, the Rees algebra

G(e)
Hi

= Diff(OV (d),ξ (d) [xi ][ fi W bi ]) = OV (d),ξ (d) [xi ][xi W ] 	 G(d)
Hi

(5.30)

represents mult(Hi ) (see Remark 2.45).

Remark 5.14 Using (5.29) we can rewrite G(n)
X in terms of the G(e)

Hi
for i = 1, . . . , n − d:

G(n)
X = G(e)

H1
	 . . . 	 G(e)

Hn−d

= OV (d),ξ (d) [x1][x1W ] 	 G(d)
H1

	 . . . 	 OV (d),ξ (d) [xn−d ][xn−d W ] 	 G(d)
Hn−d

= OV (n),ξ [x1W, . . . , xn−d W ] 	 G(d)
H1

	 . . . 	 G(d)
Hn−d

. (5.31)
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If one goes back to diagram (5.2), using the factorization

OV (n),ξ

ϕ
K [[t]]

O
V (e)

i ,ξ
= OV (d),ξ (d) [xi ]

ϕi

OV (d),ξ (d)

β∗

(5.32)

one can consider also the Rees algebras G(e+1)
Hi,0

and G(e+1)
H̃i,0

induced by G(e)
Hi

overO
V (e+1)

i,0 ,ξ0
=

O
V (d+1)
0 ,ξ

(d+1)
0

[xi ] and (O
V (e)

i,0 ,ξ
⊗k K [[t]])ξ0 respectively.

Consider now an arc ϕ ∈ L(X) through ξ , and theO
Ṽ (n+1)
0 ,ξ0

-Rees algebra G(n+1)
X0,ϕ

of contact

of ϕ with Max mult(X). Let us suppose that ϕ is given by (ϕx1 , . . . , ϕxn−d , ϕz1 , . . . , ϕzd ) as

in (4.5). At the same time, for i = 1, . . . , n − d , the projection of ϕ onto V (e)
i by (5.32) is an

arc ϕi given by (ϕxi , ϕz1 , . . . , ϕzd ) in L(Hi ). Therefore we can define

G(e+1)
Hi,0,ϕi

= Diff((OV (n),ξ ⊗k K [[t]])ξ0 [ fi W bi , hi W, hn−d+1W, . . . , hn W ])
= G(e)

Hi
	 G(e+1)

ϕi
, (5.33)

where hi = xi − ϕxi for i = 1, . . . , n − d and hn−d+ j = z j − ϕz j for j = 1, . . . , d , and

G(n+1)
ϕ = (O

V (e)
i,0 ,ξ

⊗k K [[t]])ξ0 [h1W, . . . , hn W ]
= (O

V (e)
i,0 ,ξ

⊗k K [[t]])ξ0 [h1W, hn−d+1W, . . . , hn W ] 	 . . . 	
(O

V (e)
i,0 ,ξ

⊗k K [[t]])ξ0 [hn−d W, hn−d+1W, . . . , hn W ]
= G(e+1)

ϕ1
	 . . . 	 G(e+1)

ϕn−d
. (5.34)

Nowwe can use the result for hypersurfaces in Theorem 5.10 to assert that, for i = 1, . . . , n−
d ,

ordξ (G(1)
Hi,0,ϕi

)

ord(ϕi )
≥ ordξ (G(d)

Hi
).

Note that
ord(ϕ) = min

i=1,...,n−d
{ord(ϕi )} . (5.35)

The following remark will be important for the generalization of Theorem 5.10.

Remark 5.15 The Rees algebra G(n+1)
X0,ϕ

can be written in terms of the G(e+1)
Hi,0,ϕi

, by (4.11),
(5.31), (5.34) and (5.33):

G(n+1)
X0,ϕ

= G(n+1)
X 	 G(n+1)

ϕ = O
V (n+1)
0 ,ξ

(n+1)
0

[x1W, . . . , xn−d W ] 	 G(d)
H1

	 . . . 	 G(d)
Hn−d

	 G(n+1)
ϕ =

= G(e)
H1

	 . . . 	 G(e)
Hn−d

	 G(e+1)
ϕ1 	 . . . 	 G(e+1)

ϕn−d = G(e)
H1

	 G(e+1)
ϕ1 	 . . . 	 G(e)

Hn−d
	 G(e+1)

ϕn−d =
= G(e+1)

H1,0,ϕ1
	 . . . 	 G(e+1)

Hn−d,0,ϕn−d
. (5.36)
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By expressing the algebras G(n+1)
X0

and G(n+1)
X0,ϕ

in terms of Rees algebras attached to hypersur-
faces as we have done in (5.31) and (5.36), it is easy to establish a relation among the order
of all Rees algebras involved in both cases, as the following Lemma states:

Lemma 5.16 Let X be a d-dimensional variety.

1. Let G(n)
X and G(e)

Hi
be as in (5.28) and (5.30). Let G(d)

X and G(d)
Hi

be respectively the elimi-

nation Rees algebras associated to their projection over V (d). Then

G(d)
X = G(d)

H1
	 . . . 	 G(d)

Hn−d
, (5.37)

and thus
ordξ (G(d)

X ) = min
i=1,...,n−d

{ordξ (G(d)
Hi

)}. (5.38)

2. Let G(n+1)
X0,ϕ

and G(e+1)
Hi,0,ϕi

be as in (5.36) and (5.33). Let G(1)
X0,ϕ

and G(1)
Hi,0,ϕi

be respectively
their restrictions to the curves defined by the arcs ϕ, ϕ1, . . . ϕn−d (as in Proposition 4.4).
Then

G(1)
X0,ϕ

= G(1)
H1,0,ϕ1

	 . . . 	 G(1)
Hn−d,0,ϕn−d

. (5.39)

As a consequence
ordξ (G(1)

X0,ϕ
) = min

i=1,...,n−d
{ordξ (G(1)

Hi,0,ϕi
)}. (5.40)

Proof Part (1) follows from the elimination of G(n)
X associated to the projection V (n) −→

V (d), using the expression in (5.31). For (2), one must note, by looking at the expression in
(5.36), that the restriction of G(n+1)

X0,ϕ
to the curve defined by ϕ equals the smallest algebra

containing the restrictions of the G(e+1)
Hi,0,ϕi

= O
V (n+1)
0 ,ξ0

[xi W ]	G(d)
Hi

	G(e+1)
ϕi to the respective

curves defined by the ϕi , since all the Rees algebras are differentially closed. ��

5.2.2 Results for the general case

Theorem 5.17 Let X be a variety as in Sect. 5.2.1, let ξ ∈ Max mult(X) and let ϕ be an arc
in X through ξ with the notation used there. Then

r X,ϕ ≥ ordξ (G(d)
X ). (5.41)

Proof From (5.40) we obtain

r X,ϕ = ordξ (G(1)
X0,ϕ

)

ord(ϕ)
=

mini=1,...,n−d{ordξ (G(1)
Hi,0,ϕi

)}
ord(ϕ)

.

For every i ∈ {1, . . . , n − d}, Theorem 5.10 gives

ordξ (G(1)
Hi,0,ϕi

)

ord(ϕi )
≥ ordξ (G(d)

Hi
),

and this together with (5.35) and (5.38) implies

ordξ (G(1)
Hi,0,ϕi

)

ord(ϕ)
≥

ordξ (G(1)
Hi,0,ϕi

)

ord(ϕi )
≥ ordξ (G(d)

Hi
) ≥ ordξ (G(d)

X ), ∀i = 1, . . . , n − d.
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As a consequence, we get

r X,ϕ =
mini=1,...,n−d{ordξ (G(1)

Hi,0,ϕi
)}

ord(ϕ)
≥ ordξ (G(d)

X ),

concluding the proof of the Theorem. ��

Remark 5.18 If k is a field of characteristic zero, it is always possible to find a diagonal arc
ϕ̄(d) which is diagonal-generic for G(d)

Hi
for i = 1, . . . , n − d . As we did in Remark 5.7,

one needs only to consider for each i ∈ {1, . . . , n − d}, an element pi W li ∈ G(d)
Hi

such that

ordξ (G(d)
Hi

) = ordξ (pi )

li
and find units u1, . . . , ud ∈ k such that inξ (pi )(u1, . . . , ud) �= 0 for

i = 1, . . . , n − d , which is possible because we are considering once more a finite set of
elements {p1, . . . , pn−d} and an infinite field k. Now, the arc ϕ̄(d) given as (u1tα, . . . , ud tα),
where α is some positive integer, is diagonal-generic for G(d)

Hi
for all i = 1, . . . , n − d . Note

that, in particular, ϕ̄(d) is diagonal-generic for G(d)
X (this follows from Lemma 5.16). Note

also that by Lemma 5.8, ϕ̄(d) can be lifted to an arc ϕ in X and the projection of ϕ onto V (d)

is diagonal-generic for every G(d)
Hi

, i = 1, . . . , n − d .

Theorem 5.19 Let X be a variety as in Sect. 5.2.1 and let ξ ∈ Max mult(X). There exists
an arc ϕ ∈ L(X) through ξ such that

r X,ϕ = ordξ (G(d)
X ). (5.42)

Proof By Remark 5.18, we can choose a diagonal arc which is diagonal-generic for
G(d)

H1
, . . . ,G(d)

Hn−d
and G(d)

X . Let us denote it by ϕ̄(d). We can lift ϕ̄(d) to an arc ϕ ∈ L(X)

through ξ . By Remark 5.9 we know that ϕ is given (as in (4.5)) by

(g1(t), . . . , gn−d(t), u1g′(t), . . . , ud g′(t))

for some g1(t), . . . gn−d(t), g′(t) ∈ K [[t]] and some u1, . . . , ud ∈ k by Lemma 5.8. By
Remark 5.18, ϕ(d) is also generic for G(d)

Hi
, i = 1, . . . , n − d . The proof will be complete by

showing that any arc of this form satisfies (5.42).
Let us denote N = ordt (g′(t)). As in (2.18), β factorizes viaOHi ,ξ for i = 1, . . . , n − d:

OX (d),ξ
∼= OV (d),ξ (d) [x1, . . . , xn−d ]/I (X) OV (d),ξ (d) [x1, . . . , xn−d ]

OHi ,ξ
∼= OV (d),ξ (d) [xi ]/( fi )

OV (d),ξ (d)

β∗
X β∗

(5.43)
and hence the projection ϕi of ϕ onto V (d+1)

i is, in particular, a lifting of ϕ̄(d) to Hi , and the

projection of each ϕi to V (d) is ϕ(d), which is diagonal-generic for G(d)
Hi

. Thus, the result of
Theorem 5.12 holds for each Hi , as well as Remark 5.13, implying

ordξ (G(1)
Hi,0,ϕi

) = ord(ϕi ) · ordξ (G(d)
Hi

) = N · ordξ (G(d)
Hi

)
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for i = 1, . . . , n − d . By (5.35) we also know that ord(ϕ) = N . From this, together with
Lemma 5.16, it follows that

r̄X,ϕ = ordξ (G(1)
X0,ϕ

)

ord(ϕ)
=

mini=1,...,n−d{ordξ (G(1)
Hi,0,ϕi

)}
N

= mini=1,...,n−d{N · ordξ (G(d)
Hi

)}
N

= min
i=1,...,n−d

{ordξ (G(d)
Hi

)} = ordξ (G(d)
X ),

which completes the proof. ��
5.3 Consequences of the main result

When we first presented our results in Sect. 3.2, we gave there a version of Theorem 4.10,
which relates the invariants r̄X and ordξG(d)

X for any X . It is clear now that the statement
there is a consequence of Theorems 5.17 and 5.19. In addition, we claimed to know a relation
between ordξG(d)

X and ρX,ϕ for any arc ϕ in X through ξ . The following theorem shows this
relation, which is just a small step more than a consequence of Proposition 4.11 and Theorem
4.10.

Theorem 5.20 Let X be a variety of dimension d. Let ξ be a point in Maxmult(X). For any
arc ϕ in X through ξ ,

ρX,ϕ ≥ [ordξG(d)
X ] · ord(ϕ),

where G(d)
X is the elimination algebra described in Example 2.48. Moreover,

inf
ϕ∈Lξ (X)

{[ρ̄X,ϕ]} =
[
ordξG(d)

X

]
.

one can find an arc ϕ0 in X through ξ satisfying

ρ̄X,ϕ0 = ordξG(d)
X .

Proof For the first formula we use Proposition 4.11 and Theorem 5.17

ρX,ϕ = [rX,ϕ] =
[

rX,ϕ

ord(ϕ)
· ord(ϕ)

]
≥

[
rX,ϕ

ord(ϕ)

]
· ord(ϕ) ≥ [ordξG(d)

X ] · ord(ϕ).

As a consequence, of this result,

rX,ϕ

ord(ϕ)
≥ [rX,ϕ]

ord(ϕ)
= ρX,ϕ

ord(ϕ)
≥ [ordξG(d)

X ] · ord(ϕ)

ord(ϕ)
= [ordξG(d)

X ].

That is,

r̄X,ϕ ≥ ρ̄X,ϕ ≥ [ordξG(d)
X ],

where we may take integral parts and then the minimums over all arcs in X through ξ ,
obtaining

minϕ∈Lξ (X){[r̄X,ϕ]} ≥ minϕ∈Lξ (X){[ρ̄X,ϕ]} ≥ [ordξG(d)
X ] = minϕ∈Lξ (X){[r̄X,ϕ]},

which implies the second formula of the Theorem.
Finally, for the third formula, let us go back to the proof of Theorem 5.19. It allows

us to find an arc ϕ1 in X through ξ satisfying r̄X,ϕ1 = ordξG(d)
X . This arc will be given
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by (g1(t), . . . , gn−d(t), u1g′(t), . . . , ud g′(t)) for some g1(t), . . . , gn−d(t), g′(t) ∈ K [[t]]
and some u1, . . . , ud ∈ k, and the projection ϕ

(d)
1 given by (u1g′(t), . . . , ud g′(t)) will be

diagonal generic for G(d)
X . Let us choose ϕ0 as the arc in X through ξ given by

(g1(t
b), . . . , gn−d(tb), u1g′(tb), . . . , ud g′(tb)),

for which the projection ϕ
(d)
0 is also diagonal generic for G(d)

X , so it is also valid for Theo-

rem 5.19, having r̄X,ϕ0 = ordξG(d)
X . In particular, this implies that r̄X,ϕ0 = r̄X,ϕ1 . Note also

that ord(ϕ0) = ord(ϕ1) · b.
We have found an arc such that

rX,ϕ0 = ordξG(d)
X · ord(ϕ0),

and for which

rX,ϕ0 = [rX,ϕ0 ] = ρX,ϕ0 ,

since G(d)
X ∈ 1

b · Z>0 and ord(ϕ0) ∈ b · Z>0, concluding the proof. ��
The following Corollary gives a characterization of ordξG(d)

X in terms of the ρ̄X,ϕ .

Corollary 5.21 Let X be a variety of dimension d. Let ξ be a point inMaxmult(X). Consider
the subset C ⊂ Lξ (X) of all arcs ϕ satisfying r̄X,ϕ = ordξG(d)

X . Then:

ordξG(d)
X = maxϕ∈C{ρ̄X,ϕ}.

Proof For any arc ϕ ∈ C,
ρX,ϕ = [rX,ϕ] = [ordξG(d)

X · ord(ϕ)].
It follows that

ρX,ϕ

ord(ϕ)
= [ordξG(d)

X · ord(ϕ)]
ord(ϕ)

≤ ordξG(d)
X .

The result is a consequence of this together with Theorem 5.20. ��
The following relations hold for every arc ϕ ∈ L(X) through ξ :

Corollary 5.22 For X as in Proposition 4.11, and for every arc ϕ ∈ L(X) through ξ :

1. r̄X,ϕ ≥ ρ̄X,ϕ

2. ρ̄X,ϕ ≥ [ordξG(d)
X ]

3. Since r̄X,ϕ ≥ ordξG(d)
X and r̄X,ϕ ≥ ρ̄X,ϕ ≥ [ordξG(d)

X ], two possible situations can

happen for ρ̄X,ϕ and ordξG(d)
X , namely:

• r̄X,ϕ ≥ ordξG(d)
X ≥ ρ̄X,ϕ ≥ [ordξG(d)

X ]
• r̄X,ϕ ≥ ρ̄X,ϕ > ordξG(d)

X ≥ [ordξG(d)
X ]

Proof 1. Follows from the definitions of r̄X,ϕ and ρ̄X,ϕ toghether with Proposition 4.11.
2. By Definition 3.5, Proposition 4.11, Theorem 5.17:

ρ̄X,ϕ = ρX,ϕ

ordϕ
= [rX,ϕ]

ordϕ
≥ [ordξG(d)

X · ordϕ]
ordϕ

≥ [ordξG(d)
X ].

3. This is just an observation which follows from (2) and (3). ��
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