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Abstract Let R be an excellentNoetherian ring of prime characteristic. Consider an arbitrary
nested pair of ideals (or more generally, a nested pair of submodules of a fixed finite module).
We do not assume that their quotient has finite length. In this paper, we develop various
sufficient numerical criteria for when the tight closures of these ideals (or submodules)
match. For some of the criteria we only prove sufficiency, while some are shown to be
equivalent to the tight closures matching. We compare the various numerical measures (in
some cases demonstrating that the different measures give truly different numerical results)
and explore special cases where equivalence with matching tight closure can be shown. All
of our measures derive ultimately from Hilbert–Kunz multiplicity.
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1 Introduction

The classical notions of the Hilbert–Samuel function and multiplicity of a finite colength
ideal have far-reaching implications in commutative algebra. They arose in (and have many
strong links to) intersection theory, and the multiplicity may be used to characterize when a
pair J ⊆ I of (finite colength) ideals have the same integral closure.
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The notion of Hilbert–Samuel multiplicity has been extended in various ways to arbitrary
ideals. One method of extension, using the m-torsion functor �m, is the j-multiplicity of
Achilles andManaersi [2,3], in the context of intersection theory, later shown by Flenner and
Manaresi [12] to characterize when an arbitrary pair J ⊆ I have the same integral closure.
The more recent ε-multiplicity of Ulrich and Validashti [31], in an easier definition that
nevertheless uses the same functor, also characterizes integral dependence of ideals under
mild conditions.

In characteristic p algebra, Hilbert–Samuel multiplicity and function have natural ana-
logues, namely the Hilbert–Kunz function and Hilbert–Kunz multiplicity of a finite colength
ideal. Both multiplicities may be extended somewhat to modules and to relative situations.
The two share many properties with each other. It is notable that Hilbert–Kunz multiplicity
characterizes when a pair J ⊆ I of finite colength ideals have the same tight closure, and that
the Hilbert–Kunz function was used [5] to show that tight closure does not commute with
localization, giving a negative answer to a very important question. It appears that Hilbert–
Kunz multiplicity sometimes fails to be rational [4]. It should be noted that the Hilbert–Kunz
function is also linked to intersection theory (e.g., [19]).

The question then arises:What can one do in the case of an arbitrary pair of nested ideals?
In this article, we explore a variety of techniques to provide criteria for when a nested pair of
arbitrary ideals shares the same tight closure, all of which extend Hilbert–Kunz multiplicity
and most of which involve ideal torsion functors,

One possible approach would be: for each ideal, define a limit (or at least a finite lim-
sup) based on the definition of j-multiplicity (or ε-multiplicity) but using bracket powers
in place of ordinary powers of ideals. Such an approach would require that the numbers
λR(H0

m(R/I [q]))/qd (where q varies over powers of p) be bounded above by a constant. Such
a result has proved elusive even when R is essentially of finite type over a field and R/I has
small dimension (cf. [1, Corollary 5.2] for a solution to the already difficult dimension 1 case).
Thus, in this paper we limit ourselves here to relative measures for a nested pair of ideals or
submodules, where vanishing will be the benchmark for expecting tight closures to coincide.

For a Noetherian local ring (R,m), the Hilbert–Kunz multiplicity of an m-primary ideal
I is defined via:

eHK(I ) := lim
q→∞

λ(R/I [q])
qd

,

where d = dim R. Monsky [22] showed that this is always well-defined, finite, and ≥ 1 for
any m-primary ideal.

As noted above, Hilbert–Kunz multiplicity characterizes when a nested pair ofm-primary
ideals has the same tight closure. In fact, more is true (due to Hochster and Huneke):

Theorem 1.1 [13, Theorem 8.17] Let (R,m) be a Noetherian local ring of dimension d, and
let L ⊆ M ⊆ N be finitely generated R-modules such that λ(M/L) < ∞.

(a) If M ⊆ L∗
N , then λ(M [q]

N /L [q]
N ) ≤ Cqd−1 for all q, for some constant C independent of

q. Hence,

lim sup
q→∞

λ(M [q]
N /L [q]

N )

qd
= 0.
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Some extensions of Hilbert–Kunz multiplicity 71

(b) Suppose that R has a completely stable weak test element c, and that R̂ is equidimen-
sional and reduced.1 If

lim inf
q→∞

λ(M [q]
N /L [q]

N )

qd
= 0,

then M ⊆ L∗
N .

If one sets N := R and J ⊆ I are m-primary ideals, then this theorem gives the result on
Hilbert–Kunz multiplicities as a special case.

In Sect. 2, we introduce the limit uN (L , M) for an arbitrary triple L ⊆ M ⊆ N of
finite R-modules where (R,m) is local (as well as the associated limsup u+

N (L , M) and
liminf u−

N (L , M)), based partly on the ideas of Theorem 1.1. In Theorem 2.4, we show that
vanishing of the liminf version gives a one-way implication for M ⊆ L∗

N .
In Sect. 3, we exhibit several situations where a strong converse holds, including finite

projective dimension, finite F-representation type, and finite generation of a module over a
certain non-commutative ring. For an additional such example, see the preprint [11].

In Sect. 4, we give several variants of the notion from Sect. 2, and we show in Theorem 4.4
that in cases where tight closure commutes with localization for L ⊆ N , a certain numerical
vanishing condition is equivalent to M ⊆ L∗

N . We then show in Proposition 4.5 that two of
these notions of relative Hilbert–Kunz multiplicity are, in general, quite distinct.

In Sect. 5, we provide a numerical criterion, based on a tight closure variant of the
Nakayama lemma previously proved by the first named author, which determines exactly
when a pair of nested submodules have the same tight closure. However, the measurement
involved in this criterion transforms the lower module (or ideal) in such a profound way that
it is hard to see how it could be used to analyze individual submodules, unlike the previous
measurements and criteria.

Finally in Sect. 6, we introduce a notion that looks more closely related to j-multiplicity
than any of our other definitions. In Theorem 6.2, we show that it gives another criterion that
determines exactly when two nested ideals J ⊆ I with λ(I/J ) < ∞ have the same tight
closure. Theorem 6.3 is a global version of this for rings which are F-regular on the punctured
spectrum.

To conclude this introductory section, we recall some standard definitions and fix some
notational conventions:

All rings are Noetherian and have prime characteristic p > 0. For a nonnegative integer
e, denote q := pe. All R-modules are considered as left modules unless noted otherwise.
For an R-module M , let eM be the (R-R)-bimodule which equals M as an abelian group,
and whose bimodule structure is given by r · z · s := r p

e
sz for z ∈ eM and r, s ∈ R. For an

R-module M , Fe(M) denotes the right R-module structure on M ⊗R
eR, but considered as

a left R-module. Hence, e(Fe(M)) ∼= M ⊗R
eR as left R-modules.

Let L ⊆ M be R-modules. For z ∈ M , zqM denotes the image z ⊗ e1 of z under the

map M → Fe(M) = M ⊗R
eR. Similarly, L [q]

M is the image of the map Fe(L) → Fe(M)

which is induced by the inclusion L ↪→ M . The tight closure of L in M , denoted L∗
M , is the

submodule of M consisting of all elements z ∈ M such that there exists an element c ∈ R◦
(i.e., not in any minimal prime of R), possibly dependent on z, such that for all q � 0, we
have czqM ∈ L [q]

M . If M = R, we omit the subscript. A ring R is weakly F-regular if all ideals
are tightly closed (as R-submodules of R.) R is F-regular if Rp is weakly F-regular for all

1 We remark here that by the methods used in proving our Theorem 2.4, the assumption that R̂ is reduced is
unnecessary.
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p ∈ Spec R. An element c ∈ R◦ is a (q0-)weak test element if there is some power q0 of p
such that for all finitely generated R-modules M , all submodules L ⊆ M , and all x ∈ M ,
x ∈ L∗

M if and only if cxq = L [q]
M for all e ≥ e0, where q = pe and q0 = pe0 . If we can

take q0 = 1, we say c is a test element. For a more thorough review of these concepts, we
recommend the seminal paper [13] and the monograph [16].

Remark 1.2 Throughout this paper, many results are stated in general for nested triples of
modules L ⊆ M ⊆ N . However, the reader should note that in all such cases, the results are
new even when N = R and L , M are ideals (which is probably the case of greatest interest).

Remark 1.3 This article has been available as a preprint, in essentially the current form, for
several years. In that time, several authors have made use of some of the ideas in this article
to positive effect, most notably in Brenner’s construction of a non-rational Hilbert–Kunz
multiplicity. See [4,7,8,32].

Another recent development is a preprint of Polstra [24]. Polstra’s techniques should
establish that the limits in Sects. 4 and 5 exist in some generality.

2 Relative multiplicity

Throughout, let R be a Noetherian ring of prime characteristic p > 0.
When (R,m) is local and M an R-module, we let

�m(M) := {z ∈ M | mnz = 0 for some n ∈ N}.
Recall that �m is a left-exact functor, and that a finitely generated R-module M has finite

length if and only if M = �m(M). We start with the following definition:

Definition 2.1 Let L ⊆ M ⊆ N be R-modules, where (R,m) is local of dimension d . Then
the relative multiplicity of L against M (in N ) is

u+
N (L , M) := lim sup

q→∞
λ(�m(M [q]

N /L [q]
N ))

qd
.

(resp.

u−
N (L , M) := lim inf

q→∞
λ(�m(M [q]

N /L [q]
N ))

qd
.

If these are equal (i.e., the limit is well-defined), then the common number is written
uN (L , M).

When N is understood (e.g., when N = R), we omit it from the notation.
Hence, if λ(M/L) < ∞ and N/L is finite, then Theorem 1.1 shows that under the

conditions of that theorem, M ⊆ L∗
N if and only if u+

N (L , M) = 0 if and only if u−
N (L , M) =

0. (The assumption in Theorem 1.1 that L ⊆ M ⊆ N are finitely generated is unnecessary.)
At this point, the reader may wonder the following: if J ⊆ I are ideals with the same

tight closure, and the ring is reasonable enough, can it happen that their quotient has infinite
length? In fact it can, as the following example shows, in which we “add a variable”:

Example 2.2 Let (A, n) be any Noetherian local ring that is not weakly F-regular, and let
b � a be a pair of nested distinct ideals that have the same tight closure. Let z ∈ a\b. Let X
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Some extensions of Hilbert–Kunz multiplicity 73

be an indeterminate over A, let Q := A[X ], and let R := QnQ+XQ . Let m := nR + XR be
the unique maximal ideal of R. Let J := bR and I := aR. Then J ∗ = I ∗. We have:

I

J
⊇ J + Rz

J
∼= Rz

J ∩ Rz
∼= R

J :R z
.

Note that for all integers n ≥ 0, we have Xnz /∈ J . Hence X /∈ √
(J :R z), which shows that

(J :R z) is a non-m-primary ideal. By the containments displayed above, then, we have

λR(I/J ) ≥ λR(R/(J :R z)) = ∞.

In the following theorem, we extend one of the implications of Theorem 1.1 to the infinite
length case. First, recall the following definition from [15], here generalized to the module
case (see [9, p. 4850] for further explanation):

Definition 2.3 Let L be a submodule of N and z ∈ N . Then q ∈ Spec R is a stable prime
associated to L ⊆ N and z if z /∈ (Lq)

∗
Nq

, but for all primes p � q, z ∈ (Lp)
∗
Np

. The set of

all such primes is denoted T N
L (z), and we set

T N
L :=

⋃

z∈N
T N
L (z).

Theorem 2.4 Let R be a Noetherian ring, and let L ⊆ M ⊆ N be R-modules such that
N/L is finitely generated. Suppose that R contains a completely stable weak test element c,
and that R̂p is equidimensional for all p ∈ T N

L . If M � L∗
N , then for any x ∈ M\L∗

N , we
have u−

Np
(Lp, Mp) > 0 for all p ∈ T N

L (x). (Hence if u−
Np

(Lp, Mp) = 0 for all p ∈ T N
L , then

M ⊆ L∗
N .)

Proof Let x be as in the theorem. We may assume that all modules are finite and that
M = L + Rx . By [15, Prop 3.3(g)], we have T N

L (x) �= ∅. Take any p ∈ T N
L (x). Let

Q := {q = pe | p is minimal over (L [q]
N :R cxqN )}. By [15, Prop 3.1], N\{e | pe ∈ Q} is

finite. Moreover, Rp/((L
[q]
N )p :Rp cxqNp

) has finite length over Rp for all q ∈ Q.

Now we can localize at p and complete the ring. Replacing R by R̂p, the new ring R is
complete and equidimensional. For simplicity, we denote the maximal ideal of R by m.

We have an exact sequence

0 → R

L [q]
N :R cxqN

·c−→ R

L [q]
N :R xqN

because L [q]
N :R cxqN = (L [q]

N :R xqN ) :R c for all q ∈ Q (hence for all q � 0). Applying

the left-exact functor �m(−) to it, and using the fact that λ(R/(L [q]
N :R cxqN )) < ∞, we get

another exact sequence

0 → R

L [q]
N :R cxqN

·c−→ �m

(
R

L [q]
N :R xqN

)
.

Hence, λ(R/(L [q]
N :R cxqN )) ≤ λ(�m(R/(L [q]

N :R xqN ))) for all q � 0. Therefore, to show

the claim of the theorem, we need only show that λR(R/(L [q]
N :R cxqN )) is bounded below

by a constant multiple of qd .
Since tight closure can be checked modulo minimal primes, there is some minimal prime

q of R such that the image of x is not in (L + qN/qN )∗N/qN as (R/q)-modules. Since
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dim(R/q) = dim R = d (by the assumption of equidimensionality), and since the length
of the desired quotient can only decrease when the colon is computed modulo q, we may
replace R by R/q and assume that R is a complete local domain. After doing this, we note
that by the Cohen structure theorem, R is module-finite and torsion-free over a complete
regular local ring (A, n), and by replacing c by a multiple we may assume that c ∈ A◦.

Next, we see that

R

L [q]
N :R cxqN

∼= L [q]
N + RcxqN

L [q]
N

⊇ L [q]
N + AcxqN

L [q]
N

∼= A

L [q]
N :A cxqN

.

In the above, the Frobenius computations are being done over R. The first isomorphism
is as R-modules, hence also as A-modules, and the second isomorphism is as A-modules.
However, the A-module length of an R-module is the same as its R-module length, so it
makes sense (and is true) to say that λ(A/(L [q]

N :A cxqN )) ≤ λ(R/(L [q]
N :R cxqN )) for all

q � 0.
Since x /∈ L∗

N , then by the last paragraph of the proof of [13, Theorem 8.17], there is
some power q1 of p such that

L [q]
N :A xqN ⊆ n[q/q1]

for all q � 0. Thus,

L [q]
N :A cxqN = (L [q]

N :A xqN ) :A c ⊆ n[q/q1] :A c,

which implies that λ(A/(n[q/q1] :A c)) ≤ λ(A/(L [q]
N :A cxqN )).

Next, we have the following short exact sequence of A-modules:

0 → A

n[q/q1] :A c
·c−→ A

n[q/q1] → Ā

n[q/q1] Ā
→ 0,

where Ā := A/cA. Combining the length equality we get from this sequence with the
inequalities we have thus far, we have for all q ∈ Q:

λ

(
R

L [q]
N :R cxqN

)
≥ λ

(
A

L [q]
N :A cxqN

)
≥ λ

(
A

n[q/q1] :A c

)

= λ

(
A

n[q/q1]

)
− λ

(
Ā

n[q/q1] Ā

)
.

Dividing the difference in the last line by qd and taking the limit as q approaches infinity,
we get 1/qd1 which, as required, is positive. ��
Remark By [15, Proposition 3.3(a)] (in light of [9, footnote 6]), if tight closure commutes
with localization for the inclusion L ⊆ N , then T N

L = AssR(N/L∗
N ), which is a finite set.

So in this situation, only finitely many primes need to be checked in order to use the test in
Theorem 2.4.

3 Relative multiplicity: special cases

In this section, we give conditions under which a converse to Theorem 2.4 holds, so that we
have a criterion that determines exactly when two submodules share the same tight closure.
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Some extensions of Hilbert–Kunz multiplicity 75

For a first example, we note that if R is weakly F-regular at all non-maximal primes,
then L ⊆ M ⊆ L∗

N implies that Mm/Lm has finite length for all maximal ideals m, so that
Theorem 1.1 then yields the converse to Theorem 2.4 in this case.

3.1 Relative multiplicity and finite projective dimension

Let J be an ideal of finite projective dimension with no embedded primes (e.g., a parame-
ter ideal in a Cohen–Macaulay local ring), and I an ideal such that J ⊆ I ⊆ J ∗. Then
uRp (Jp, Ip) = 0 for all prime ideals p.

To see this, let G. be a finite projective resolution of R/J . Then for any q = pe, we have
that Fe(G.) is a projective resolution of R/J [q], by [23]. Then since projective resolutions
commute with localization and by the conditions for exactness of a complex [6], J and J [q]
have the same associated primes (namely, the minimal primes of J ). Thus we have

Ass(I [q]/J [q]) ⊆ Ass(R/J [q]) = Ass(R/J ) = Min(R/J ).

Hence for any prime p /∈ Min(R/J ), we have H0
p (I [q]/J [q]) = 0 for all q , so that

uRp (Jp, Ip) = 0. On the other hand, for any p ∈ Min(R/J ), we have that Jp and Ip are
primary to the maximal ideal of Rp, so that for these primes,

uRp (Jp, Ip) = eHK(Jp) − eHK(Ip) = 0,

with the last equality holding because Jp ⊆ Ip ⊆ (J ∗)p ⊆ (Jp)∗.
The same argument shows something slightly more general. Namely,

Proposition 3.1 Let (R,m) be a Noetherian local ring, and let L ⊆ M ⊆ N be R-modules
such that N/L is a finite module of finite projective dimension with no embedded primes.
Then uNp (Lp, Mp) is well-defined and finite for all p ∈ Spec R. Moreover, M ⊆ L∗

N if and
only if uNp (Lp, Mp) = 0 for all p ∈ Spec R.

Proof As usual, we may assume all the modules are finitely generated. Then:

0 ≤ uNp (Lp, Mp) =

⎧
⎪⎨

⎪⎩

0, p /∈ Min(N/L)

lim
q→∞

λRp (M [q]
p /L [q]

p )

qht p
, p ∈ Min(N/L),

and hence if M ⊆ L∗
N , Theorem 1.1 applied to Rp shows that uNp (Lp, Mp) = 0 for

all p. ��
3.2 Relative multiplicity and finite F-representation type

The concept of finite F-representation type is due to Smith and van der Bergh [30].

Definition 3.2 Let R be an F-finite Noetherian local ring. It has finite F-representation type
(abbreviated FFRT ) if there is a finite set of finitely generated R-modules M1, . . . , Ms and

integers ci,e for all 1 ≤ i ≤ s and all positive integers e such that e R ∼=
⊕s

i=1
M

⊕ci,e
i as

R-modules, for all e.

Smith and van der Bergh observed that the following classes of local F-finite rings have
finite F-representation type:

• regular rings
• rings of finite Cohen–Macaulay type

123



76 N. Epstein, Y. Yao

• any direct summand of a ring of finite F-representation type

On the other hand, they showed that the cubical cone k[[X, Y, Z ]]/(X3 + Y 3 + Z3) does not
have FFRT.2

The second named author took the study of such rings further. From this point on, we
fix the modules M1, . . . , Ms in the definition, and we assume that they are indecomposable,
nonzero, and of distinct isomorphism classes. For simplicity, we assume in the following
that R is complete, so that it satisfies the Krull–Schmidt condition and the numbers ci,e are
uniquely determined. Let a := [k : k p]. Then
Theorem 3.3 [33] Under the above circumstances,

(1) The limit

�i := lim
e→∞

ci,e
(apd)e

is well-defined and finite for 1 ≤ i ≤ s.
(Without loss of generality, we assume from this point on that �i > 0 for 1 ≤ i ≤ r and
�i = 0 for r < i ≤ s. The modules M1, . . . , Mr are called the F-contributors.)

(2) r ≥ 1. (That is, there is at least one F-contributor.)
(3) Let U :=

⊕r

i=1
Mi . For any finitely generated modules L ⊆ N, we have

L∗
N ⊆ ker(N → HomR(U, (N/L) ⊗R U )),

where the map is defined by n �→ (u �→ n̄ ⊗ u). If N = R, this just means that
L∗ ⊆ annR(U/LU ).

(4) If R has a completely stable test element and R̂ is reduced3 and equidimensional,
then the displayed containment above becomes an equality (so that when N = R,
L∗ = annR(U/LU )).

Here we compute uN (L , M) when R is complete and has FFRT:
For any finitely generated R-module Z , and any e, we have e(Fe(Z)) ∼= Z ⊗R

eR. Using
this and the fact that e(−) is an exact functor, if R is complete we have

e(M [q]
N /L [q]

N ) = e ker(Fe(N/L) → Fe(N/M))

∼= ker(e(Fe(N/L)) → e(Fe(N/M)))

∼= ker((N/L) ⊗ e R → (N/M) ⊗ e R)

=
s⊕

i=1

ker((N/L) ⊗R Mi → (N/M) ⊗R Mi )
⊕ci,e .

Since �m is left-exact and commutes with e(−), we have

e�m(M [q]
N /L [q]

N ) ∼=
s⊕

i=1

�m(ker((N/L) ⊗R Mi → (N/M) ⊗R Mi ))
⊕ci,e .

Set Ki := �m(ker((N/L)⊗R Mi → (N/M)⊗R Mi )) for 1 ≤ i ≤ s. Since λ(e Z) = ae λ(Z)

for any finite length R-module Z , we have

2 Note that rings with FFRT need not be F-regular (or even F-rational). Shibuta [29] proved that if R is any 1-
dimensional complete local domain of prime characteristic whose residue field is either finite or algebraically
closed, then R has finite F-representation type.
3 Here too, the reducedness assumption appears to be unnecessary, in light of methods used in the proof of
Theorem 2.4.
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Some extensions of Hilbert–Kunz multiplicity 77

uN (L , M) = lim
q→∞

λ(�m(M [q]
N /L [q]

N ))

pde
= lim

q→∞
λ(e�m(M [q]

N /L [q]
N )

(apd)e

=
s∑

i=1

λ(Ki ) lim
e→∞

ci,e
(apd)e

=
r∑

i=1

λ(Ki )�i .

(The sum only goes to r , since the limits equal 0 for r < i ≤ s.)
Now we can state a converse to Theorem 2.4 for rings with FFRT.

Theorem 3.4 Let R be an F-finite ring with FFRT, and let L ⊆ M ⊆ N be R-modules such
that N/L is finitely generated. If M ⊆ L∗

N , then uNp (Lp, Mp) = 0 for all p ∈ Spec R.

Proof Since tight closure persists in localizations [14, Theorem 6.24], and since the FFRT
property localizes, we may assume that (R,m) is local and just show that uN (L , M) = 0.

LetMi , s, r , �i , andU be as in Theorem 3.3, and let Ki be as in the discussion above. Since
M ⊆ L∗

N , part (3) of that theorem implies thatM ⊆ ker(N → N/L → HomR(U, (N/L)⊗R

U )). Translating, this means that the natural map

(N/L) ⊗R U → (N/M) ⊗R U

is an isomorphism, whence the natural maps (N/L) ⊗R Mi → (N/M) ⊗R Mi are isomor-
phisms, and hence Ki = �m(ker((N/L) ⊗R Mi → (N/M) ⊗R Mi )) = �m(0) = 0, for
1 ≤ i ≤ r . Thus we have

uN (L , M) =
r∑

i=1

λ(Ki )�i = 0.

��
3.3 Relative multiplicity and finite generation of R[x; f ]-modules

One of the standard constructions in noncommutative ring theory is the skew polynomial
ring (cf. [20, Example 1.7], or almost any other introductory text on noncommutative rings).
Given a ring R, an indeterminate x , and a ring endomorphism f : R → R, the skew
polynomial ring S := R[x; f ] is an N-graded R-algebra, which looks like

⊕
n≥0 Rx

n as a
graded R-module, with multiplication given by (r xn)(sxm) := r f n(s)xm+n for r, s ∈ R.
When R is a commutative Noetherian ring of prime characteristic p, this ring and its modules
were first studied by Yuji Yoshino [34], and were studied much further, to great effect, by
Lyubeznik [21] (who called some of the S-modules ‘F-modules’), and by Rodney Sharp
and his collaborators (e.g., [18,26–28]). In particular, Sharp studied various right and left
R[x; f ]-module structures on top local cohomology modules of finite R-modules, obtaining
striking results on parameter test elements.

Let M :=
⊕

e≥0
(M [pe]

N /L [pe]
N )Xe, and H := �m(M) =

⊕
e≥0

�m(M [pe]
N /L [pe]

N )Xe,

where L ⊆ M ⊆ N are fixed R-modules such that M/L is finite.
Then M is a graded left R[x; f ]-module, with R[x; f ]-action given by x · mXe :=

mpXe+1. Moreover, it is finitely generated in degree 0 by the R-generators of M/L , and
H is a graded left R[x; f ]-submodule of M. Since R[x; f ] is almost never left- (or right-)
Noetherian [34], we cannot assume that an arbitrary left submodule of a finite left R[x; f ]-
module is finitely generated. However:

Theorem 3.5 Suppose (R,m) is local andH is finitely generated as a left R[x; f ]-module.
If M ⊆ L∗

N , then uN (L , M) = 0.

Proof We may immediately assume that L = 0.
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The hypotheses imply that there is some power q0 of p such that for all q ≥ q0, we have
�m(M [q]

N ) = H [q/q0]
Fe0 (N )

, where H := �m(M [q0]
N ). Then we have

λ(�m(M [q]
N )) = λ(H [q/q0]

Fe0 (N )
) ≤ C(q/q0)

d−1 = (C/qd−1
0 )qd−1,

where C is a constant which is independent of q . The last inequality is by Theorem 1.1, since
H ⊆ M [q0]

N ⊆ 0∗
Fe0 (N )

. So uN (0, M) = 0. ��
Example 3.6 In [11], we provide a specific example of a ring R, ideals I and J with J ⊆ I =
J ∗, λ(I/J ) = ∞, and a prime ideal p of R such that p � m, m a maximal ideal, and p,m ∈
Ass(I [q]/J [q]) for all q = pe. In that example, we have uRm (Jm, Im) = uRp (Jp, Ip) = 0,
so the expected converse is verified there as well. Moreover, the example does not fit into
any of the other situations outlined in this Section.

4 Variants of relative multiplicity

The proof of Theorem 3.5 suggests a slight variant on Definition 2.1. Namely:

Definition 4.1 For modules L ⊆ M ⊆ N over a local ring (R,m) of dimension d , we set

v+
N (L , M) := lim sup

q→∞
λ([�m(M/L)][q]

N/L)

qd

and

v−
N (L , M) := lim inf

q→∞
λ([�m(M/L)][q]

N/L)

qd
.

If these are equal (i.e., the limit is well-defined),4 then the common number is written
vN (L , M).

We note that u−
N (L , M) (resp. u+

N (L , M)) is an upper bound for v−
N (L , M) (resp.

v+
N (L , M)). Also, this new concept has the advantage of being bounded above:

Lemma 4.2 If M/L is finitely generated over a local ring (R,m), then v+
N (L , M) < ∞.

Proof Let H be the submodule of M such that H/L = �m(M/L). Then since H/L has
finite length and H [q]

N /L [q]
N is the image of the map Fe(H/L) → Fe(N/L), we have

lim sup
q→∞

λ(�m(M/L)
[q]
N/L)

qd
≤ lim

q→∞
λ(Fe(H/L))

qd

But since H/L has finite length, this last limit is well-defined and finite by Seibert [25,
Proposition 2]. ��

In preparation for the next theorem, we define two more slight variants of relative multi-
plicity:

4 Recent work of Polstra [24] indicates that this limit exists in some generality, as well as the other limits
defined in this section and the next.
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Definition 4.3 For modules L ⊆ M ⊆ N over a local ring (R,m) of dimension d , we set

w+
N (L , M) := sup{u+

N (T, M) | L ⊆ T ⊆ M and λ(M/T ) < ∞}
and

w−
N (L , M) := sup{u−

N (T, M) | L ⊆ T ⊆ M and λ(M/T ) < ∞}.
Finally, we set

x−
N (L , M) := v−

N (L∗
N ∩ M, M).

Theorem 4.4 Let R be aNoetherian ring of prime characteristic p > 0, and let L ⊆ M ⊆ N
be R-modules such that N/L is finitely generated. Consider the following conditions:

(a) M ⊆ L∗
N .

(b) w+
Np

(Lp, Mp) = 0 for all p ∈ Spec R.

(c) w−
Np

(Lp, Mp) = 0 for all p ∈ Spec R.

(d) x−
Np

(Lp, Mp) = 0 for all p such that λ(Mp/((Lp)
∗
Np

∩ Mp)) < ∞.

Then (a) �⇒ (b) �⇒ (c) �⇒ (d). If, moreover, R contains a completely stable weak test
element, R̂p is reduced and equidimensional for all p ∈ Spec R, and tight closure commutes
with localization for the pair L ⊆ N, then (d) �⇒ (a).

Proof To see that (a) �⇒ (b), note that for any module T between L and M , we have
Mp ⊆ (T ∗

N )p ⊆ (Tp)∗Np
, so that when λ(Mp/Tp) < ∞ over Rp, Theorem 1.1 shows that

u+
Np

(Tp, Mp) = 0. Since this holds for all such T , we have w+
Np

(Lp, Mp) = 0. We have (b)
�⇒ (c) �⇒ (d) by the definitions.
We need only show that the additional conditions require that (d) �⇒ (a). We will prove

the contrapositive. That is, suppose thatM � L∗
N . Then let T := L∗

N∩M . Since T � M , there
is some minimal prime p of M/T , which means that 0 < λ(Mp/Tp) < ∞ as Rp-modules.
Moreover, Tp = (L∗

N )p ∩ Mp = (Lp)
∗
Np

∩ Mp. Since Mp � (L∗
N )p = (Lp)

∗
Np

⊇ (Tp)∗Np
, it

follows that Mp � (Tp)∗Np
. Then

x−
Np

(Lp, Mp) = u−
Np

(Tp, Mp) = lim inf
q→∞

λ((Mp)
[q]
Np

/(Tp)
[q]
Np

)

qht p
> 0,

where the last inequality is by Theorem 1.1. ��
We think of this theorem as an avatar of the fact [13, Proposition 6.1] that every tightly

closed ideal is an intersection of finite colength tightly closed ideals.
It is natural to ask whether Definitions 2.1 and 4.1 are equivalent. In fact they are not:

Proposition 4.5 Let R be a Noetherian ring of prime characteristic p > 0. Consider the
following conditions:

(a) R is regular.
(b) uNp (Lp, Mp) = vNp (Lp, Mp) for all submodule inclusions L ⊆ M ⊆ N and all

p ∈ Spec R.
(c) uNp (0, Np) = vNp (0, Np) for all finite R-modules N and all p ∈ Spec R.

Then (a) �⇒ (b) �⇒ (c), and if R is reduced and has finite F-representation type then
(c) �⇒ (a).
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Proof (a) �⇒ (b) because when R is regular, the functors Fe and H0
m commute with each

other. Obviously (b) �⇒ (c).
So suppose (c) holds, and assume R is reduced and has FFRT. We want to show Rm is

regular for all maximal ideals m, so we may replace R by Rm for a maximal ideal m, and let
d = dim R = htm. We adopt the notation and terminology from Theorem 3.3. For a fixed
finite R-module N and prime ideal p, we have

uNp (0, Np) =
r∑

i=1

λRp (H0
pRp (Np ⊗ (Mi )p)) · �i ,

whereas

vNp (0, Np) =
r∑

i=1

λRp (im (H0
pRp (Np) ⊗ (Mi )p −→ Np ⊗ (Mi )p)) · �i .

The fact that these are equal amounts to saying that λRp (H0
pRp

(Np ⊗ (Mi )p)) =
λRp (im (H0

pRp
(Np) ⊗ (Mi )p → Np ⊗ (Mi )p)) for each 1 ≤ i ≤ r . In particular, if

p ∈ Ass(N ⊗ Mi ), then λRp (H0
pRp

(Np ⊗ (Mi )p)) �= 0, whence im (H0
pRp

(Np) ⊗ (Mi )p →
Np ⊗ (Mi )p) �= 0, which implies that H0

pRp
(Np) �= 0, so that p ∈ Ass N .

That is, for all finitely generated R-modules N and all F-contributorsMi , we haveAss(N⊗
Mi ) ⊆ Ass N . But the authors have shown in [10] that any R-module V such that Ass(N ⊗
V ) ⊆ Ass N for all finite N must be flat, provided that R is reduced. Thus, each Mi is flat,
hence (since they are finitely generated) free. Thus, we may arrange it (by re-grouping the
summands) so that R is the only F-contributor! That is, r = 1 and M1 = R.

Hence,

1 ≤ eHK(m) = lim
q→∞

λ(R/m[q])
qd

= lim
e→∞

λ((R/m) ⊗R
eR)

(apd)e

=
r∑

i=1

(
lim
e→∞

ci,e
(apd)e

)
· λ(R/m ⊗R Mi ) = �1 · λ(R/m) = �1.

However, note that �1 is the F-signature of the ring R (cf. Huneke and Leuschke [17]), so that
by [17, Theorem 11 and Proposition 14], �1 ≤ 1. Thus, �1 = 1, and then [17, Corollary 16]
shows that R is regular. ��

Remark In [10], the authors have in fact shown that if R is reduced and V is an R-module,
then V is flat if and only if Ass(Q ⊗ V ) ⊆ Ass Q for all prime ideals Q. Given this,
the proof of Proposition 4.5 yields a stronger result. Namely, if R is a reduced Noetherian
ring of prime characteristic and finite F-representation type, then R is regular if and only if
uQp (0, Qp) = vQp (0, Qp) for all p, Q ∈ Spec R.

5 A numerical criterion based on a Nakayama-type lemma

If all we wanted to do was to get a numerical criterion determining exactly when twomodules
have the same tight closure, it already exists, in view of the following result of the first named
author, for which we provide a new, slightly simplified proof here in order to make the paper
more self-contained:
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Some extensions of Hilbert–Kunz multiplicity 81

Proposition 5.1 (Nakayama lemma for tight closure) [9, Corollary 3.2] Let (R,m) be a
Noetherian local ring of prime characteristic p > 0 which possesses a weak test element
(e.g. this holds whenever R is excellent [14, Theorem 6.1a]). Let L ⊆ M ⊆ N be R-modules
such that N/L is finitely generated and L ⊆ M ⊆ (L + mM)∗N . Then M ⊆ L∗

N .

Proof First, let q0 be some power of p such that there exists a q0-weak test element c. We
show by induction on r that M ⊆ (L + mrM)∗N for all r ≥ 1.

The case r = 1 holds by assumption. So assume inductively that r > 1 and M ⊆
(L + mr−1M)∗N . From now on all bracket powers (except on m) are taken as submodules
of N . Since M is finitely generated, it follows that for all q ≥ q0, we have cM [q] ⊆
(L+mr−1M)[q], so that c2M [q] ⊆ L [q]+(m[q])r−1cM [q] ⊆ L [q]+(m[q])r−1(L+mM)[q] ⊆
L [q] + (m[q])r M [q] = (L + mr M)[q]. Since this holds for all q ≥ q0, it follows that M ⊆
(L + mr M)∗N , completing the induction.

Now fix any power q ≥ q0 of p. Since M ⊆ (L + mr M)∗N for all r ≥ 1, we
have that cM [q] ⊆ L [q] + (m[q])r M [q] for all r (for this particular q), so that cM [q] ⊆⋂

r≥1 L
[q] + (m[q])r M [q]. Now going mod L [q] and taking bracket powers in N/L , we

have that c(M/L)[q] ⊆ ⋂
r≥1(m

[q])r (M/L)[q] = 0, by the Krull intersection theorem. Now

‘unfix’ q , so that we have cM [q]
N ⊆ L [q]

N for all q ≥ q0, whence M ⊆ L∗
N . ��

Now define

y−
N (L , M) := lim inf

q→∞
λ(M [q]

N /(L + mM)
[q]
N )

qd
.

and let y+
N (L , M) be the corresponding lim sup.

Proposition 5.2 Let (R,m) be a Noetherian local ring of prime characteristic p > 0 with a
weak test element. Let L ⊆ M ⊆ N be R-modules such that N/L is finitely generated. The
following are equivalent:

(1) M ⊆ L∗
N .

(2) y+
N (L , M) = 0.

(3) y−
N (L , M) = 0.

Proof By Proposition 5.1, M ⊆ L∗
N ⇐⇒ M ⊆ (L + mM)∗N . By Theorem 1.1 and since

λ(M/(L + mM)) ≤ λ(M/mM) = μ(M) < ∞, M ⊆ (L + mM)∗N ⇐⇒ y+
N (L , M) =

0 ⇐⇒ y−
N (L , M) = 0. ��

Here is a global version:

Proposition 5.3 Let R be a Noetherian ring of prime characteristic p > 0 which is reduced,
locally equidimensional, and essentially of finite type over an excellent local ring. Let L ⊆
M ⊆ N be R-modules such that N/L is finitely generated. The following are equivalent:

(a) M ⊆ L∗
N .

(b) M ⊆ (L + mM)∗N for all maximal ideals m.
(c) Mm ⊆ (Lm + mMm)∗Nm

for all maximal ideals m.

(d) y+
Nm

(Lm, Mm) = 0 for all maximal ideals m.

(e) y−
Nm

(Lm, Mm) = 0 for all maximal ideals m.
(f) Mm ⊆ (Lm)∗Nm

for all maximal ideals m.
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Proof (a) �⇒ (b) �⇒ (c): Clear.
(c) ⇐⇒ (d) ⇐⇒ (e): Since R is excellent, each R̂m is still equidimensional and

reduced. Then the equivalence follows from Theorem 1.1 applied to each Rm.
(c) �⇒ (f), by Proposition 5.1, since R has a locally stable weak test element by [14,

Theorem 6.1].
(f) �⇒ (a): Let c ∈ R◦ be a locally stable q0-weak test element. Fix q ≥ q0. Then for

all maximal ideals m, we have
(
cM [q]

N

)

m
= c

1
· (Mm)

[q]
Nm

⊆ (Lm)
[q]
Nm

=
(
L [q]
N

)

m
.

Since containment is a local property, it follows that cM [q]
N ⊆ L [q]

N . Since this holds for all
q ≥ q0, it follows that M ⊆ L∗

N . ��

6 Another numerical characterization of tight closure when λ(I/J) < ∞
Inspired by j-multiplicity, we make the following definitions:

Definition 6.1 For an ideal K of R and an integer e ≥ −1, (using the convention K [p−1] :=
R) we set

le(K ) := λ(�m(K [pe]/K [pe+1]))

and

fe(K ) :=
e−1∑

n=−1

ln(K ).

For a pair of ideals J ⊆ I , set

f −(J, I ) := lim inf
q→∞

fe(J ) − fe(I )

qd
,

and

f +(J, I ) := lim sup
q→∞

fe(J ) − fe(I )

qd
.

If these two quantities are equal, we denote the common number by f (J, I ).

We have the following:

Theorem 6.2 Let (R,m) be a Noetherian local ring of dimension d and prime characteristic
p > 0, and let J , I be ideals such that J ⊆ I and λ(I/J ) < ∞. Consider the following
conditions:

(a) I ∗ = J ∗.
(b) f (J, I ) = 0.
(c) f −(J, I ) ≤ 0.

Then (a) �⇒ (b) �⇒ (c). If moreover R has a completely stable weak test element and R̂
is equidimensional and reduced, or if dim R = 0, then (c) �⇒ (a) as well.
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Some extensions of Hilbert–Kunz multiplicity 83

Proof We dispense first with the case where dim R = 0. In this case, for any proper ideal K
we have K [q] = 0 for q � 0, and hence fn(K ) = λ(R) > 0 for n � 0, whereas fn(R) = 0
for all n. Also, I ∗ = J ∗ if and only if both ideals are proper or both are the unit ideal. If both
ideals are proper, then fn(I ) = λ(R) = fn(J ) for n � 0, whence (b) holds. If both ideals
are improper, then I = J = R, so that (b) holds. So we see that (a) �⇒ (b). Conversely,
suppose that (c) holds. If I = R then fn(I ) = 0, whence fn(J ) = 0 for infinitely many
values of n, which forces J = R. On the other hand, if I is proper, then J is proper since
J ⊆ I . In either case, (a) holds, so (c) �⇒ (a).

From now on, we assume that d = dim R > 0. First note that we have the following short
exact sequences for all q = pe, e ≥ −1:

0 → I [pq]/J [pq] → I [q]/J [pq] → I [q]/I [pq] → 0 (1)

and
0 → J [q]/J [pq] → I [q]/J [pq] → I [q]/J [q] → 0. (2)

Applying �m to sequence (1), and using the fact that I [pq]/J [pq] has finite length, we get
the short exact sequence:

0 → I [pq]/J [pq] → �m(I [q]/J [pq]) → �m(I [q]/I [pq]) → 0. (3)

Hence,
λ(�m(I [q]/J [pq])) = λ(I [pq]/J [pq]) + le(I ). (4)

Now, applying �m to the sequence (2) and using the fact that I [q]/J [q] has finite length, we
get the following exact sequence:

0 → �m(J [q]/J [pq]) → �m(I [q]/J [pq]) → I [q]/J [q], (5)

which leads to the inequalities:

le(J ) ≤ λ(�m(I [q]/J [pq])) ≤ le(J ) + λ(I [q]/J [q]). (6)

Combining Eq. 4 with Inequalities 6, we get:

le(J ) ≤ λ(I [pq]/J [pq]) + le(I ) ≤ le(J ) + λ(I [q]/J [q]),

which are equivalent to the following:

λ(I [pq]/J [pq]) − λ(I [q]/J [q]) ≤ le(J ) − le(I ) ≤ λ(I [pq]/J [pq]). (7)

Taking the sum of Inequalities 7 from e = −1 to n − 1, we get:

λ(I [pn ]/J [pn ]) ≤ fn(J ) − fn(I ) ≤
n∑

j=0

λ(I [p j ]/J [p j ]). (8)

Following these preliminaries, we proceed to the implications in the proof. It is obvious
that (b) implies (c). So suppose that (a) is true. Then by Theorem 1.1, there is a constant C
such that λ(I [q]/J [q]) ≤ Cqd−1 for all q = pe, e ≥ −1. Thus,

n∑

j=0

λ(I [p j ]/J [p j ]) ≤ C ·
n∑

j=0

p j (d−1) = C(p(n+1)(d−1) − 1)

pd−1 − 1
< C ′ pn(d−1),
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where C ′ := Cpd−1/(pd−1 − 1). Combining with Inequalities 8 and dividing by pnd , we
get

0 ≤ λ(I [pn ]/J [pn ])
pnd

≤ fn(J ) − fn(I )

pnd
<

C ′ pnd−n

pnd
= C ′

pn
.

Since both the leftmost and rightmost terms clearly have a limit of 0 as n → ∞, statement
(b) follows.

Conversely, suppose R satisfies the additional specified conditions and that (c) holds.
Using (c) and Inequalities 8, we have:

0 ≤ lim inf
n→∞

λ(I [pn ]/J [pn ])
pnd

≤ lim inf
n→∞

fn(J ) − fn(I )

pnd
≤ 0

Thus, lim inf
n→∞

λ(I [pn ]/J [pn ])
pnd

= 0, so by Theorem 1.1, I ∗ = J ∗. ��

We also get a global version:

Theorem 6.3 Let R be a Noetherian ring of prime characteristic p > 0 which is F-regular
on the punctured spectrum, and let J ⊆ I be ideals. Consider the following conditions:

(a) (Im)∗ = (Jm)∗ for all maximal ideals m.
(b) f (Jp, Ip) = 0 for all p ∈ Spec R.
(c) f −(Jp, Ip) ≤ 0 for all p ∈ Spec R.

Then (a) �⇒ (b) �⇒ (c). If moreover R has a completely stable weak test element and
R̂p is equidimensional and reduced for all p ∈ Spec R, or if dim R = 0, then (c) �⇒ (a)
as well.

Proof First we show that (a) �⇒ (b): First, suppose p is non-maximal, and choose a
maximal ideal m such that p ⊆ m. Then Jp ⊆ Ip = (Im)p ⊆ ((Jm)∗)p ⊆ ((Jm)p)

∗ = Jp.
That is, Jp = Ip for all non-maximal ideals p, so it follows that I/J has finite length and
that (b) holds for non-maximal p. However, for any maximal ideal m, since Im/Jm has finite
length, the implication follows for maximal ideals by Theorem 6.2.

Next, we show that (c) �⇒ (a) under the stated conditions. We first show that Ip = Jp
for all non-maximal ideals p. By Noetherian induction, we may assume that Iq = Jq for all
prime ideals q � p. Thus, λ(Ip/Jp) < ∞, so that Theorem 6.2 applied to the ideals Jp ⊆ Ip
shows that (Jp)∗ = (Ip)∗. But Rp is F-regular, so Jp = Ip.

We have now that λ(I/J ) < ∞, so that for any maximal idealm, Theorem 6.2 shows that
(Jm)∗ = (Im)∗. ��
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