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Abstract Our purpose in this paper is to study the geometry of complete linear Weingarten
spacelike hypersurfaces immersed with two distinct principal curvatures in a locally symmet-
ric Lorentz space, which is supposed to obey standard curvature constrains. In this setting, we
apply some appropriated generalized maximum principles to a suitable Cheng-Yau modified
operator in order to guarantee that such a spacelike hypersurface must be isometric to an
isoparametric hypersurface of the ambient space.
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1 Introduction

Let Ln+1
1 be an (n + 1)-dimensional Lorentz space, that is, a semi-Riemannian manifold

of index 1. When the Lorentz space Ln+1
1 is simply connected and has constant sectional
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curvature, it is called a Lorentz space form. The Lorentz-Minkowski space L
n+1, the de

Sitter space Sn+1
1 and the anti-de Sitter space Hn+1

1 are the standard Lorentz space forms of
constant sectional curvature 0, 1 and −1, respectively. We also recall that a hypersurface Mn

immersed in a Lorentz space Ln+1
1 is said to be spacelike if the metric on Mn induced from

that of the ambient space Ln+1
1 is positive definite.

The last few decades have seen a steadily growing interest in the study of the geometry
of spacelike hypersurfaces immersed in a Lorentz space. Apart from physical motivations,
from the mathematical point of view this is mostly due to the fact that such hypersurfaces
exhibit nice Bernstein-type properties, and one can truly say that the first remarkable results
in this branch were the rigidity theorems of Calabi [4] and Cheng and Yau [11], who showed
(the former for n ≤ 4, and the latter for general n) that the only maximal complete, non-
compact, spacelike hypersurfaces of the Lorentz-Minkowski space L

n+1 are the spacelike
hyperplanes.However, in the case that themean curvature is a positive constant, Treibergs [27]
astonishingly showed that there aremany entire solutions of the corresponding constant mean
curvature equation in Ln+1, which he was able to classify by their projective boundary values
at infinity.

Later,Nishikawaobtained extendedCalabi andCheng-Yau results showing that a complete
maximal spacelike hypersurface immersed in a locally symmetric obeying certain curvature
constraints must be totally geodesic. We recall that a Lorentz space is said locally symmetric
when all the covariant derivative components of its curvature tensor vanish identically (see
Theorem B of [23]).

As for the case of the de Sitter space Sn+1
1 , Goddard [17] conjectured that every complete

spacelike hypersurface with constant mean curvature H in S
n+1
1 should be totally umbilical.

Although the conjecture turned out to be false in its original statement, it motivated a great
deal of work of several authors trying to find a positive answer to the conjecture under
appropriate additional hypotheses. For instance, in [2], Akutagawa showed that Goddard’s
conjecture is true when 0 ≤ H2 ≤ 1 in the case n = 2, and when 0 ≤ H2 < 4(n − 1)/n2

in the case n ≥ 3. Afterwards, Montiel [22] solved Goddard’s problem in the compact case
proving that the only closed spacelike hypersurfaces in S

n+1
1 with constant mean curvature

are the totally umbilical round spheres. Furthermore, he exhibited examples of complete
spacelike hypersurfaces in S

n+1
1 with constant H satisfying H2 ≥ 4(n−1)

n2
and being non

totally umbilical, the so-called hyperbolic cylinders, which are isometric to the Riemannian
productH1(1−coth2 r)×S

n−1(1− tanh2 r) of a hyperbolic line and an (n−1)-dimensional
Euclidean sphere.

When the ambient space is the anti-de Sitter space H
n+1
1 , Cao and Wei [6] showed that,

if n ≥ 3, then every n-dimensional complete maximal spacelike hypersurface in H
n+1
1 with

exactly two principal curvatures everywhere is isometric to some hyperbolic cylinder under
an additional condition on these curvatures. Later, Perdomo [25] studied the 2-dimensional
case and constructed new examples of complete maximal surfaces in H

3
1. More recently,

Chaves et al. [9] studied complete maximal spacelike hypersurfaces in H
n+1
1 with either

constant scalar curvature or constant non-zero Gauss-Kronecker curvature. In this context,
they characterized the hyperbolic cylinders of Hn+1

1 as the only such hypersurfaces with
(n − 1) principal curvatures with the same sign everywhere.

Proceeding in this branch, an interesting question is to characterize complete linear Wein-
garten spacelike hypersurfaces (that is, complete spacelike hypersurfaces whose mean and
scalar curvatures are linearly related) immersed in a certain Lorentz space. Many authors
have approached problems in this subject. For instance, when the ambient space is a Lorentz
space form, we refer to the readers the works [8,10,16,18,19,21].
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Here, our aim is to study the geometry of complete linear Weingarten spacelike hyper-
surfaces with two distinct principal curvatures in a wide class of Lorentz spaces, the locally
symmetric Lorentz spaces. In this setting, under appropriated constrains on the values of the
mean curvature and on the norm of the traceless part of the second fundamental form, we
extend the techniques developed in the recent papers [14,15,18] in order to characterize such
spacelike hypersurfaces as being isometric to isoparametric hypersurfaces of the ambient
space (see our several characterization results along Sects. 4 and 5). Our approach is based
on the use of a Simons type formula jointly with the application of some generalized max-
imum principles to a suitable Cheng-Yau modified operator (for more details, see Sects. 2
and 3).

2 A Simons type formula in Lorentz spaces

Let Mn be a spacelike hypersurface immersed in a Lorentz space Ln+1
1 , which means that

the metric on Mn induced from Ln+1
1 is positive defined. In this context, let us choose a local

field of semi-Riemannian orthonormal frame {eA}n+1
A=1 in Ln+1

1 , with dual coframe {ωA}n+1
A=1,

such that, at each point of Mn , e1, . . . , en are tangent to Mn and en+1 is normal to Mn . We
will use the following convention for indices:

1 ≤ A, B,C, . . . ≤ n + 1, 1 ≤ i, j, k, . . . ≤ n.

We denote by {ωAB} the connection forms of Ln+1
1 . Thus, the structure equations of Ln+1

1
are given by:

dωA = −
∑

B

εBωAB ∧ ωB , ωAB + ωBA = 0, εi = 1, εn+1 = −1,

dωAB = −
∑

C

εCωAC ∧ ωCB − 1

2

∑

C,D

εCεDRABCDωC ∧ ωD .

Here, RABCD , RCD and R denote respectively the Riemannian curvature tensor, the Ricci
tensor and the scalar curvature of the Lorentz space Ln+1

1 . In this setting, we have

RCD =
∑

B

εB RBCDB R =
∑

A

εARAA.

Moreover, the components RABCD;E of the covariant derivative of the Riemannian cur-
vature tensor Ln+1

1 are defined by

∑

E

εE RABCD;EωE = dRABCD −
∑

E

εE (REBCDωE A

+RAECDωEB + RABEDωEC + RABCEωED).

Now, we restrict all the tensors to the spacelike hypersurface Mn in Ln+1
1 . First of all,

ωn+1 = 0 on Mn , so
∑

i ω(n+1)i ∧ωi = dωn+1 = 0. Consequently, by Cartan’s Lemma [7],
there are on Mn smooth functions hi j such that

ω(n+1)i =
∑

j

hi jω j and hi j = h ji . (2.1)
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From (2.1), we have that the second fundamental form of Mn is given by B =∑
i, j hi jωiω j en+1, and its square length from second fundamental form is S = ∑

i, j h
2
i j .

Furthermore, the mean curvature H of Mn is defined by H = 1
n

∑
i hii .

The connection forms {ωi j } of Mn are characterized by structure equations of Mn :

dωi = −
∑

j

ωi j ∧ ω j , ωi j + ω j i = 0,

dωi j = −
∑

k

ωik ∧ ωk j − 1

2

∑

k,l

Ri jklωk ∧ ωl ,

where Ri jkl are the components of curvature tensor of Mn .
From structure equations, we obtain Gauss equation

Ri jkl = Ri jkl − (hikh jl − hilh jk). (2.2)

The components Ri j of the Ricci tensor and the scalar curvature R of Mn are given,
respectively, by

Ri j =
∑

k

Rki jk − nHhi j +
∑

k

hikhk j

and

n(n − 1)R =
∑

i, j

Ri j j i − n2H2 + S. (2.3)

The first covariant derivatives hi jk of hi j satisfy

∑

k

hi jkωk = dhi j −
∑

k

hikωk j −
∑

k

h jkωki . (2.4)

Then, by exterior differentiation of (2.1), we obtain the Codazzi equation

hi jk − hik j = R(n+1)i jk . (2.5)

The second covariant derivative hi jkl of hi j are given by

∑

l

hi jklωl = dhi jk −
∑

l

hl jkωli −
∑

l

hilkωl j −
∑

l

hi jlωlk .

By exterior differentiation of (2.4), we can get the following Ricci formula

hi jkl − hi jlk = −
∑

m

him Rmjkl −
∑

m

h jm Rmikl . (2.6)

Restricting the covariant derivative RABCD;E of RABCD on Mn , then R(n+1)i jk;l is given
by

R(n+1)i jk;l = R(n+1)i jkl + R(n+1)i(n+1)kh jl

+R(n+1)i j (n+1)hkl +
∑

m

Rmi jkhml , (2.7)
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where R(n+1)i jkl denotes the covariant derivative of R(n+1)i jk as a tensor on Mn so that

∑

l

R(n+1)i jklωl = dR(n+1)i jk −
∑

l

R(n+1)l jkωli

−
∑

l

R(n+1)ilkωl j −
∑

l

R(n+1)i jlωlk .

The Laplacian �hi j of hi j is defined by �hi j = ∑
k hi jkk . From (2.5)–(2.7), after a

straightforward computation we obtain

�hi j = (nH)i j − nH
∑

l

hilhl j + Shi j +
∑

k

(
R(n+1)i jk;k + R(n+1)kik; j

)

−
∑

k

(
hkk R(n+1)i j (n+1) + hi j R(n+1)k(n+1)k

)

−
∑

k,l

(
2hkl Rli jk + h jl Rlkik + hil Rlk jk

)
. (2.8)

Since �S = 2
(∑

i, j,k h
2
i jk + ∑

i, j hi j�hi j
)
, from (2.8) we get the following Simons

type formula

1

2
�S = S2 +

∑

i, j,k

h2i jk +
∑

i, j

hi j (nH)i j +
∑

i, j,k

hi j
(
R(n+1)i jk;k + R(n+1)kik; j

)

−
⎛

⎝nH
∑

i, j

hi j R(n+1)i j (n+1) + S
∑

k

R(n+1)k(n+1)k

⎞

⎠

−2
∑

i, j,k,l

(
hklhi j Rli jk + hilhi j Rlk jk

) − nH
∑

i, j,l

hilhl j hi j . (2.9)

Now, we consider � = ∑
i, j ψi jωi ⊗ ω j a symmetric tensor on Mn defined by

ψi j = nHδi j − hi j .

Following Cheng-Yau [12], we introduce an operator � associated to � acting on any
smooth function f by

� f =
∑

i, j

ψi j fi j =
∑

i, j

(
nHδi j − hi j

)
fi j . (2.10)

Taking f = nH in (2.10) and taking a (local) orthonormal frame {e1, . . . , en} on Mn such
that hi j = λiδi j , from equation (2.3) we obtain the following

�(nH) = 1

2
�(nH)2 −

∑

i

(nH)2i −
∑

i

λi (nH)i i

= 1

2
�S − n2|∇H |2 −

∑

i

λi (nH)i i + 1

2
�

⎛

⎝
∑

i, j

Ri j j i − n(n − 1)R

⎞

⎠ . (2.11)
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3 Locally symmetric Lorentz spaces

Following the ideas of Nishikawa [23] andChoi et al. [13,26], along this workwewill assume
that there exist constants c1 and c2 such that the sectional curvature K of the ambient space
Ln+1
1 satisfies the following two constraints

K (u, v) = −c1
n

, (3.1)

for any spacelike vectors u and timelike v, and

K (u, v) ≥ c2, (3.2)

for any spacelike vectors u and v.
We observe that the Lorentz space forms Ln+1

1 (c) of constant sectional curvature c satisfy

curvature conditions (3.1) and (3.2) for −c1
n

= c2 = c. On the other hand, Choi et al. [13]

exhibited examples of Lorentz spaces which are not Lorentz space forms satisfying (3.1) and
(3.2).

Asmentionedbefore, aLorentz space Ln+1
1 is said locally symmetricwhen all the covariant

derivative components RABCD;E of its curvature tensor vanish identically. In this setting,
denoting by RAB the components of the Ricci tensor of Ln+1

1 satisfying curvature condition
(3.1), the scalar curvature R of Ln+1

1 is given by

R =
∑

A

εARAA =
∑

i, j

Ri j j i − 2
∑

i

R(n+1)i i(n+1) =
∑

i, j

Ri j j i + 2c1.

Consequently, since the scalar curvature R of a locally symmetric Lorentz space is constant,
we have that

∑
i, j Ri j j i is a constant naturally attached to a locally symmetric Lorentz space

satisfying curvature condition (3.1).
In what follows, we will quote some key lemmas in order to prove the results of the next

section. The first one corresponds to Lemma 3.2 of [15].

Lemma 1 Let Ln+1
1 bea locally symmetricLorentz spacewhich satisfies curvature condition

(3.1) and let Mn be a linear Weingarten spacelike hypersurface immersed in Ln+1
1 , such that

R = aH + b for some a, b ∈ R. Suppose that b �= 1
n(n−1)

∑
i, j Ri j j i and that the following

inequality is satisfied

(n − 1)2a2 + 4
∑

i, j

Ri j j i − 4n(n − 1) b ≥ 0. (3.3)

Then,
∑

i, j,k

h2i jk ≥ n2|∇H |2. (3.4)

Moreover, if the inequality (3.3) is strict and the equality occurs in (3.4), then H is constant
on Mn.

Now, we will consider a Cheng-Yau modified operator given by

L = � + n − 1

2
a�. (3.5)

The next result gives ellipticity criteria for the operator L is elliptic. For its proof, see
Lemma 3.3 of [14].
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Lemma 2 Let Ln+1
1 be a locally symmetric Lorentz space and let Mn be a linearWeingarten

spacelike hypersurface immersed in Ln+1
1 , such that R = aH + b for some a, b ∈ R with

b < 1
n(n−1)

∑
i, j Ri j j i . Then, H has strict sign and L is elliptic.

To close this section, we will reason as in the proof of Proposition 2.3 of [8] to get the
following

Lemma 3 Let Ln+1
1 be a locally symmetric Lorentz space which satisfies curvature condi-

tion (3.2) and let Mn be complete linear Weingarten spacelike hypersurface immersed in
Ln+1
1 , such that R = aH + b for some a, b ∈ R satisfying inequality (3.3) and with a ≥ 0.

If H is bounded on Mn, then there exists a sequence of points {qk}k∈N ⊂ Mn such that

lim
k→+∞ nH(qk) = sup

M
nH, lim

k→+∞ |∇nH(qk)| = 0 and lim sup
k→+∞

L(nH(qk)) ≤ 0.

Proof From (3.5), taking a local orthonormal frame {e1, . . . , en} onMn such that hi j = λiδi j ,
we obtain

L(nH) =
∑

i

(
nH + n − 1

2
a − λi

)
(nH)i i . (3.6)

On the other hand, we observe that if H vanishes identically on Mn , then the result is
valid. So, let us suppose that H is not identically zero. This way, we can choose the oriented
of Mn so that supM H > 0.

Thus, for all i = 1, . . . , n from (2.3) and (3.3) we have

λ
2
i ≤

∑

i

λ
2
i = S = n2H2 + n(n − 1)aH + n(n − 1)b −

∑

i, j

Ri j j i

=
(
nH + n − 1

2
a

)2

− 1

4

⎛

⎝(n − 1)2a2 + 4
∑

i, j

Ri j j i − 4n(n − 1)b

⎞

⎠

≤
(
nH + n − 1

2
a

)2

.

Consequently, we get

− λiλ j ≤
(
nH + n − 1

2
a

)2

and |λi | ≤
∣∣∣∣nH + n − 1

2
a

∣∣∣∣. (3.7)

From Gauss equation (2.2), taking into account (3.2) and (3.7), for i �= j we obtain

Ri j ji = R̄i j j i + λiλ j ≥ c2 −
(
nH + n − 1

2
a

)2

. (3.8)

Since we are supposing that H is bounded on Mn , it follows from (3.8) that the sectional
curvature of Mn is bounded below. Thus, we can apply the generalized maximum principle
of Omori [24] to the function nH in order to obtain a sequence of points {qk}k∈N ⊂ Mn

satisfying limk→+∞ nH(qk) = supM nH , limk→+∞ |∇nH(qk)| = 0 and

lim
k→+∞ sup

∑

i

(nH)i i (qk) ≤ 0. (3.9)

Since supM H > 0, passing subsequence if necessary, we can consider that such a sequence
{qk}k∈N satisfies H(qk) ≥ 0.
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Hence, since a ≥ 0, from (3.7) we obtain

0 ≤ nH(qk) + n − 1

2
a − |λi (qk)| ≤ nH(qk) + n − 1

2
a − λi (qk)

≤ nH(qk) + n − 1

2
a + |λi (qk)| ≤ 2nH(qk) + (n − 1)a.

This previous estimate shows that the function nH(qk)+ n − 1

2
a−λi (qk) is nonnegative

and bounded on Mn , for all k ∈ N. Therefore, taking into account inequality (3.9), we obtain

lim
k→+∞ sup L(nH(qk)) ≤

∑

i

lim
k→+∞ sup

[(
nH + n − 1

2
a − λi

)
(qk)(nH)i i (qk)

]
≤ 0. �


4 Spacelike hypersurfaces with two distinct principal curvatures

In this section, proceeding with the context of the previous one, we will establish our charac-
terization results concerning complete linearWeingarten hypersurfaces immersed in a locally
symmetric Lorentz space. For this, given φi j = hi j − Hδi j , we will consider the following
symmetric tensor

	 =
∑

i, j

φi jωi ⊗ ω j .

So, let |	|2 = ∑
i, j φ

2
i j be the square of the length of 	. It is not difficult to see that 	 is

traceless and that holds the following relation

|	|2 = S − nH2. (4.1)

Consequently, assuming that R = aH + b for some a, b ∈ R, from (2.3) and (4.1) we get

|	|2 = n(n − 1)

⎛

⎝H2 + aH + b − 1

n(n − 1)

∑

i, j

Ri j j i

⎞

⎠ . (4.2)

In order to prove our characterization results, it will be essential the following lower
boundedness for the operator L acting on the mean curvature function of a linear Weingarten
spacelike hypersurface.

Proposition 1 Let Ln+1
1 be a Lorentz locally symmetric space which satisfies curvature

conditions (3.1) and (3.2). Let Mn be a linear Weingarten spacelike hypersurface immersed
in Ln+1

1 having two distinct principal curvatures with multiplicity p and n − p, where 1 ≤
p ≤ n

2
, and such that R = aH + b for some a, b ∈ R. Suppose that b �= 1

n(n−1)

∑
i, j Ri j j i

and that inequality (3.3) is satisfied. Then,

L(nH) ≥ |	|2PH,p,c(|	|), (4.3)

where

PH,p,c(x) = x2 − n(n − 2p)√
pn(n − p)

|H |x − n(H2 − c), (4.4)

with c = c1
n

+ 2c2.
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Proof Let us choose a local orthonormal frame {e1, . . . , en} on Mn such that hi j = λiδi j
and φi j = μiδi j . Since Mn has distinct principle curvatures with multiplicity p and n − p,
then there exist μ and ν such that

⎧
⎪⎪⎨

⎪⎪⎩

μ1 = · · · = μp = μ,

μp+1 = · · · = μn = ν,

λ1 = · · · = λp = μ + H,

λp+1 = · · · = λn = ν + H.

Thus, we obtain

0 =
n∑

i=1

μi = pμ + (n − p)ν, |	|2 =
n∑

i=1

μ2
i = pμ2 + (n − p)ν2,

and

tr(	3) =
n∑

i=1

μ3
i = pμ3 + (n − p)ν3.

From expressions above,

μ = −n − p

p
ν and ν = ±

√
p

n(n − p)
|	|,

and, hence,

tr(	3) =
n∑

i=1

μ3
i =

(
(n − p) − (n − p)3

p2

)
ν3

= n(n − p)(2p − n)
ν3

p2
= ± (2p − n)√

pn(n − p)
|	|3.

Consequently,
∣∣∣∣

n∑

i=1

μ3
i

∣∣∣∣ = (n − 2p)√
pn(n − p)

|	|3. (4.5)

Taking into account that hi j = λiδi j and since R = aH + b, from (2.9), (2.11) and (3.5)
we obtain

L(nH) = S2 − nH
∑

i

λ
3
i +

∑

i, j,k

h2i jk − n2|∇H |2

−2
∑

i,k

(
λiλk Rkiik + λ

2
i Rikik

) +
∑

i,k

λi
(
R(n+1)i ik;k + R(n+1)kik;i

)

−
(
nH

∑

i

λi R(n+1)i i(n+1) + S
∑

k

R(n+1)k(n+1)k

)
. (4.6)

Since Ln+1
1 locally symmetric, we have

∑

i,k

λi
(
R(n+1)i ik;k + R(n+1)kik;i

) = 0.
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On the other hand, sincewe are assuming that it holds relation (3.3), we can applyLemma1
to guarantee that

∑

i, j,k

h2i jk − n2|∇H |2 ≥ 0.

Thus, from (4.6) we have

L(nH) ≥ S2 − nH
∑

i

λ
3
i − 2

∑

i,k

(
λiλk Rkiik + λ

2
i Rikik

)

−
(
nH

∑

i

λi R(n+1)i i(n+1) + S
∑

k

R(n+1)k(n+1)k

)
. (4.7)

Now, we note that
∑

i

μ3
i =

∑

i

(λi − H)3 =
∑

i

λ
3
i − 3H |	|2 − nH3. (4.8)

Hence, from (4.1), (4.5) and (4.8) we have

S2 − nH
∑

i

λ
3
i = (|	|2 + nH2)2 − nH

∑

i

μ3
i − 3nH2|	|2 − n2H4

= |	|4 − nH2|	|2 − nH
∑

i

μ3
i

≥ |	|4 − nH2|	|2 − n|H |
∣∣∣∣
∑

i

μ3
i

∣∣∣∣

≥ |	|2
(

|	|2 − n(n − 2p)√
pn(n − p)

|H ||	| − nH2
)

. (4.9)

On the other hand, using curvature conditions (3.1) and (3.2), after straightforward com-
putations we get

−
(

∑

i

nHλi R̄(n+1)i i(n+1) + S
∑

k

R̄(n+1)k(n+1)k

)
= c1(S − nH2) (4.10)

and

− 2
∑

i,k

(
λiλk R̄kiik + λ

2
i R̄ikik

) ≥ c2
∑

i,k

(λi − λk)
2 (4.11)

= 2nc2(S − nH2).

Therefore, inserting (4.9)–(4.11) in (4.7), we conclude that

L(nH) ≥ |	|2
(

|	|2 − n(n − 2p)√
pn(n − p)

|H ||	| − nH2
)

+ c1|	|2 + 2nc2|	|2

= |	|2
(

|	|2 − n(n − 2p)√
pn(n − p)

|H ||	| − nH2
)

+ n|	|2
(c1
n

+ 2c2
)

= |	|2
(

|	|2 − n(n − 2p)√
pn(n − p)

|H ||	| − n(H2 − c)

)
,

where c = c1
n

+ 2c2. �
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Before to present our main results, we also need to make a brief analysis of the behavior
of the polynomial PH,p,c defined in (4.4), in terms of the sign of its parameter c.

(a) Case c > 0.

In this case, if n2H2−4p(n− p)c < 0, then H2 <
4p(n − p)c

n2
and, hence, PH,p,c(x) >

0 for all x ∈ R.

If H2 = 4p(n − p)c

n2
, then we can write |H | = 2

√
p(n − p)c

n
and the polynomial

PH,p,c has just a real root, namely

x∗ =
√
n

2
√
p(n − p)

(n − 2p)|H | = (n − 2p)
√
c√

n
.

Thus, in this case,

PH,p,c(x) =
(
x − (n − 2p)

√
c√

n

)2

≥ 0,

for all x ∈ R.

If H2 >
4p(n − p)c

n2
, then PH,p,c has two distinct real roots, which are given by

x∗± =
√
n

2
√
p(n − p)

(
(n − 2p)|H | ±

√
n2H2 − 4p(n − p)c

)
. (4.12)

Observe that x∗+ is always positive, while x∗− is positive if, and only if,

4p(n − p)c

n2
≤ H2 < c.

(b) Case c ≤ 0.
In this case, PH,p,c has two distinct real roots which coincide with (4.12). Observe that
x∗+ is always positive, while x∗− is always negative. Consequently, PH,p,c(x) ≥ 0 if, and
only if, x ≥ x∗+, where

x∗+ =
√
n

2
√
p(n − p)

(
(n − 2p)|H | +

√
n2H2 − 4p(n − p)c

)
.

At this point, we are in a position to present our first characterization results concerning
linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space,
having two distinct principal curvatures.

Theorem 1 Let Ln+1
1 be a locally symmetric Lorentz space which satisfies curvature con-

ditions (3.1) and (3.2). Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Ln+1

1 , such that R = aH + b with b < 1
n(n−1)

∑
i, j Ri j j i and having two

distinct principal curvatures with multiplicity p and n − p, where 1 ≤ p <
n

2
. Suppose that

H2 ≤ 4p(n − p)c

n2
, where c = c1

n
+2c2 > 0. If H attains a maximum on Mn, then Mn is an

isoparametric hypersurface of Ln+1
1 , with |H | = 2

√
p(n − p)c

n
and |	| = (n − 2p)

√
c√

n
.

Proof We observe that, from our restriction on the parameter b, Lemma 2 guarantees that H
is nonzero and that the operator L is elliptic.
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On the other hand, from Proposition 1, we have

L(nH) ≥ |	|2PH,p,c(|	|),
where

PH,p,c(|	|) = |	|2 − n(n − 2p)√
pn(n − p)

|H ||	| − n(H2 − c).

Since we are assuming c > 0 and H2 ≤ 4p(n − p)c

n2
, we have that PH,p,c(|	|) ≥ 0.

Thus, since we are supposing that H attains its maximum on Mn , Hopf’s strong maximum
principle guarantees that H is constant on Mn . Then, from (4.7) we get

0 = L(nH) ≥
∑

i, j,k

h2i jk − n2|∇H |2 + |	|2PH,p,c(|	|) ≥ 0. (4.13)

Consequently, from Lemma 1
∑

i, j,k

h2i jk = n2|∇H |2 = 0.

Hence, Mn is an isoparametric hypersurface of Ln+1
1 .

Moreover, from (4.13) also we obtain that |	|2PH,p,c(|	|) = 0. Since we are supposing
that Mn has two distinct principal curvatures, we conclude that PH,p,c(|	|) = 0 and, hence,

we must that |H | = 2
√
p(n − p)c

n
and |	| = (n − 2p)

√
c√

n
. �


Proceeding, we get the following nonexistence result

Proposition 2 There are not exist complete linear Weingarten spacelike hypersurfaces
immersed in a locally symmetric Lorentz space L2m+1

1 , satisfying curvature conditions (3.1)
and (3.2), such that R = aH + b with (2m − 1)2a2 + 4

∑
i, j Ri j j i − 8m(2m − 1)b ≥ 0,

a ≥ 0, b �= 1
n(n−1)

∑
i, j Ri j j i , H2 ≤ c, where c = c1

n
+ 2c2 > 0, and having two distinct

principal curvatures with the same multiplicity.

Proof Suppose by contradiction that there exists such a complete linearWeingarten spacelike
hypersurface M2m . From Lemma 3 applied to the function 2mH , we obtain a sequence of
points {qk}k∈N ⊂ M2m such that

lim
k→+∞(2mH(qk)) = sup

M
2mH , and lim sup

k→+∞
L(2mH)(qk) ≤ 0. (4.14)

Thus, since we are assuming that a ≥ 0, from equations (4.2), (4.3) and (4.14) we obtain

0 ≥ lim sup
k→+∞

L(2mH)(qk) ≥ sup
M

|	|2Psup H,m,c

(
sup
M

|	|
)

.

Hence, since M2m is supposed to have two distinct principal curvatures, we conclude that

Psup H,m,c

(
sup
M

|	|
)

≤ 0.

Consequently, taking into account our restriction on H , from (4.4) we get

0 ≤ sup
M

|	|2 ≤ 2m(sup
M

H2 − c) ≤ 0.

123



On the complete spacelike hypersurfaces... 391

Therefore, we must have |	|2 = 0 on M2m and, hence, we reach at a contradiction. �

Returning to the characterization of linear Weingarten spacelike hypersurfaces, we get

Theorem 2 Let Ln+1
1 be a locally symmetric Lorentz space which satisfies curvature con-

ditions (3.1) and (3.2). Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Ln+1

1 , such that R = aH + b with b < 1
n(n−1)

∑
i, j Ri j j i , and having two

distinct principal curvatures with multiplicity p and n − p, where 1 ≤ p <
n

2
. Suppose that

4p(n − p)c

n2
≤ H2 < c, where c = c1

n + 2c2 > 0, and

|	| ≤
√
n

2
√
p(n − p)

(
(n − 2p)|H | −

√
n2H2 − 4p(n − p)c

)
. (4.15)

If H attains a maximum on Mn, then Mn is an isoparametric hypersurface of Ln+1
1 , with

equality occurring in (4.15).

Proof From our restrictions on H and |	|, we obtain that PH,p,c(|	|) ≥ 0 with
PH,p,c(|	|) = 0 if, and only if, equality occurs in (4.15). Now, proceeding as in the proof
of Theorem 1, we conclude that Mn is an isoparametric hypersurface of Ln+1

1 , with equality
in (4.15). �


In a similar way of the proof of Theorem 2, we obtain

Corollary 1 Let Ln+1
1 be a locally symmetric Lorentz space which satisfies curvature con-

ditions (3.1) and (3.2). Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Ln+1

1 , such that R = aH + b with b < 1
n(n−1)

∑
i, j Ri j j i , and having two

distinct principal curvatures with multiplicity p and n − p. Suppose that either 1 ≤ p ≤ n

2

and H2 >
4p(n − p)c

n2
, or 1 ≤ p <

n

2
and H2 ≥ 4p(n − p)c

n2
, where c = c1

n
+ 2c2 > 0,

and that

|	| ≥
√
n

2
√
p(n − p)

(
(n − 2p)|H | +

√
n2H2 − 4p(n − p)c

)
. (4.16)

If H attains a maximum on Mn, then Mn is an isoparametric hypersurface of Ln+1
1 , with

equality occurring in (4.16).

Proceeding, we also get the following result

Theorem 3 Let Ln+1
1 be a locally symmetric Lorentz space which satisfies curvature con-

ditions (3.1) and (3.2). Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Ln+1

1 , such that R = aH + b for some a, b ∈ R satisfying inequality (3.3) with
a ≥ 0, b �= 1

n(n−1)

∑
i, j Ri j j i and having two distinct principal curvatures with multiplicity

p and n − p. Suppose that either 1 ≤ p ≤ n

2
and H2 >

4p(n − p)c

n2
, or 1 ≤ p <

n

2
and

H2 ≥ 4p(n − p)c

n2
, where c = c1

n
+ 2c2 > 0, and that

|	| ≥
√
n

2
√
p(n − p)

(
(n − 2p) sup

M
|H |+

√
n2 sup

M
H2 − 4p(n − p)c

)
. (4.17)
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If H is bounded on Mn, then Mn is an isoparametric hypersurface of Ln+1
1 , with equality

occurring in (4.17).

Proof From Lemma 3 applied to the function H , we obtain a sequence of points {qk}k∈N ⊂
Mn such that

lim
k→+∞ H(qk) = sup

M
H, and lim sup

k→+∞
L(H)(qk) ≤ 0. (4.18)

In viewing of limk→+∞ H(qk) = supM H and a ≥ 0, Eq. (4.2) implies that

lim
k→+∞ |	|(qk) = sup

M
|	|. (4.19)

Thus, taking into account (4.18) and (4.19), from Proposition 1 we have

0 ≥ lim sup
k→+∞

L(nH)(qk) ≥ sup
M

|	|2Psup H,p,c

(
sup
M

|	|
)

. (4.20)

Hence, since Mn is supposed to have two distinct principal curvatures, from (4.20) we
conclude that

Psup H,p,c

(
sup
M

|	|
)

≤ 0. (4.21)

On the other hand, from ours restrictions on H and on |	|, we have that PH,p,c (|	|) ≥ 0,
with PH,p,c (|	|) = 0 if, and only if,

|	| =
√
n

2
√
p(n − p)

(
(n − 2p)|H | +

√
n2H2 − 4p(n − p)c

)
.

Consequently, from (4.21) we get that

sup
M

|	| =
√
n

2
√
p(n − p)

(
(n − 2p) sup

M
|H | +

√
n2 sup

M
H2 − 4p(n − p)c

)

and, taking into account once more our restriction on |	|, we have that |	| is constant on
Mn . Thus, since Mn is a linear Weingarten hypersurface, from (4.2) we have that H is also
constant on Mn . At this point, the proof proceed as in that one of Theorem 1. �


Finally, when the parameter c in nonpositive, we can reason as before to get the following
results

Corollary 2 Let Ln+1
1 be a locally symmetric Lorentz space which satisfies curvature con-

ditions (3.1) and (3.2). Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Ln+1

1 , such that R = aH + b with b < 1
n(n−1)

∑
i, j Ri j j i and having two

distinct principal curvatures with multiplicity p and n − p, where 1 ≤ p ≤ n

2
. Suppose that

|	| ≥
√
n

2
√
p(n − p)

(
(n − 2p)|H | +

√
n2H2 − 4p(n − p)c

)
, (4.22)

where c = c1
n

+ 2c2 ≤ 0. If H attains a maximum on Mn, then Mn is an isoparametric

hypersurface, with equality occurring in (4.22).
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Corollary 3 Let Ln+1
1 be a locally symmetric Lorentz space which satisfies curvature con-

ditions (3.1) and (3.2). Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Ln+1

1 , such that R = aH + b for some a, b ∈ R satisfying inequality (3.3) with
a ≥ 0, b �= 1

n(n−1)

∑
i, j Ri j j i and having two distinct principal curvatures with multiplicity

p and n − p, where 1 ≤ p ≤ n

2
. Suppose that

|	| ≥
√
n

2
√
p(n − p)

(
(n − 2p) sup

M
|H | +

√
n2 sup

M
H2 − 4p(n − p)c

)
, (4.23)

where c = c1
n

+2c2 ≤ 0. If H is bounded on Mn, then Mn is an isoparametric hypersurface,

with equality occurring in (4.23).

Remark 1 When the ambient space is a Lorentz space form Ln+1
1 (c) of constant sectional

curvature c, according to the examples of Section 4 of [1], we have that the isoparametric
hypersurfaces of Ln+1

1 (c) with two distinct principal curvatures are such that the norm of
their traceless operator 	 verifies the equality in the hypothesis (4.15), (4.16) and (4.22).
Hence, we conclude that the assumed restrictions on |	| along our previous results are, in
fact, mild hypothesis.

5 Locally symmetric Einstein spacetimes

From (2.10) we have that

� f = tr(P1 ◦ ∇2 f ),

where, denoting by I the identity in the algebra of smooth vector fields onMn , P1 = nH I−B
and ∇2 f stands for the self-adjoint linear operator metrically equivalent to the hessian of f .
Let us choose a local orthonormal frame {e1, . . . , en} on Mn . By using the standard notation
〈 , 〉 for the (induced) metric of Mn , we get

� f =
∑

i

〈P1(∇ei ∇ f ), ei 〉. (5.1)

From (5.1), we have

div(P1∇ f ) =
∑

i

〈∇ei (P1∇ f ), ei 〉

=
∑

i

〈(∇ei P1)∇ f, ei 〉 +
∑

i

〈P1(∇ei ∇ f ), ei 〉

=
∑

i

〈∇ f, (∇ei P1)ei 〉 + � f

= 〈divP1,∇ f 〉 + � f, (5.2)

where

divP1 = tr(∇P1) =
∑

i

(∇ei P1)ei .

Hence, from Lemma 3.1 of [3] we have

〈divP1,∇ f 〉 = −
∑

i

〈R(N , ei )ei ,∇ f 〉 = −Ric(N ,∇ f ), (5.3)
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where R and Ric are the curvature and Ricci tensors of Ln+1
1 , respectively, and N denotes the

Gauss map of Mn . Consequently, if we assume that Ln+1
1 is an Einstein spacetime, from (5.3)

we get

〈divP1,∇ f 〉 = 0.

Thus, in this case, from (5.2) we conclude that

� f = div(P1(∇ f )).

Therefore, returning to the operator L and taking f = nH , we get

L(nH) = div(P(∇H)), (5.4)

where

P = nP1 + n(n − 1)

2
aI. (5.5)

Motivated by the previous digression, we will treat the case when the ambient space Ln+1
1

is a locally symmetric Einstein spacetime. In order to establish our next results, we will also
need the following result obtained by Caminha [5], which extends a result of Yau [28] on a
version of Stokes theorem for an n-dimensional, complete noncompact Riemannianmanifold
(cf. Proposition 2.1 of [5]; see also the Theorem due to Karp in [20]). In what follows, let
L1(M) denote the space of Lebesgue integrable functions on Mn .

Lemma 4 Let X be a smooth vector field on an n-dimensional complete orientedRiemannian
manifold Mn, such that divX does not change sign on Mn. If |X | ∈ L1(M), then divX = 0
on Mn.

Now, we are in position to present our next results.

Theorem 4 Let Ln+1
1 be a locally symmetric Einstein spacetime which satisfies curvature

conditions (3.1) and (3.2). Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Ln+1

1 , such that R = aH +b with (n−1)2a2 +4
∑

i, j Ri j j i −4n(n−1)b > 0,

b �= 1
n(n−1)

∑
i, j Ri j j i and having two distinct principal curvatures with multiplicity p and

n−p,where1 ≤ p <
n

2
. If |∇H | ∈ L1(M)and H2 ≤ 4p(n − p)c

n2
, where c = c1

n
+2c2 > 0,

then Mn is an isoparametric hypersurface of Ln+1
1 , with |H | = 2

√
p(n − p)c

n
and |	| =

(n − 2p)
√
c√

n
.

Proof Since R = aH+b and H is bounded, from (2.3) it follows that the second fundamental
form B of Mn is bounded. Consequently, the operator P defined in (5.5) is also bounded
and, since we are assuming that |∇H | ∈ L1(M), we obtain that

|P(∇H)| ≤ |P||∇H | ∈ L1(M).

Thus, Lemma 4 guarantees that div(P(∇H)) = 0 on Mn and, hence, from (5.4) we get
L(nH) = 0 on Mn .

Since H2 ≤ 4p(n − p)c

n2
, we have that PH,p,c(|	|) ≥ 0 and from (4.13) we obtain

∑

i, j,k

h2i jk = n2|∇H |2.

123



On the complete spacelike hypersurfaces... 395

Consequently, taking into account that (n − 1)2a2 + 4
∑

i, j Ri j j i − 4n(n − 1)b > 0, from
Lemma1wehave H is constant onMn and, hence,Mn must be an isoparametric hypersurface

of Ln+1
1 , with |H | = 2

√
p(n − p)c

n
and |	| = (n − 2p)

√
c√

n
. �


We can reason as in the proof of the previous theorem in order to get the following results

Corollary 4 Let Ln+1
1 be a locally symmetric Einstein spacetime which satisfies curvature

conditions (3.1) and (3.2). Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Ln+1

1 , such that R = aH +b with (n−1)2a2 +4
∑

i, j Ri j j i −4n(n−1)b > 0,

b �= 1
n(n−1)

∑
i, j Ri j j i and having two distinct principal curvatures with multiplicity p and

n − p, where 1 ≤ p < n
2 . Suppose that

4p(n − p)c

n2
≤ H2 < c, where c = c1

n
+ 2c2 > 0,

and

|	| ≤
√
n

2
√
p(n − p)

(
(n − 2p)|H | −

√
n2H2 − 4p(n − p)c

)
. (5.6)

If |∇H | ∈ L1(M), then Mn is an isoparametric hypersurface of Ln+1
1 , with equality occurring

in (5.6).

Corollary 5 Let Ln+1
1 be a locally symmetric Einstein spacetime which satisfies curvature

conditions (3.1) and (3.2). Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Ln+1

1 , such that R = aH +b with (n−1)2a2 +4
∑

i, j Ri j j i −4n(n−1)b > 0,

b �= 1
n(n−1)

∑
i, j Ri j j i and having two distinct principal curvatures with multiplicity p and

n − p. Suppose that either 1 ≤ p ≤ n

2
and H2 >

4p(n − p)c

n2
, or 1 ≤ p <

n

2
and

H2 ≥ 4p(n − p)c

n2
, where c = c1

n
+ 2c2 > 0, and that

|	| ≥
√
n

2
√
p(n − p)

(
(n − 2p)|H | +

√
n2H2 − 4p(n − p)c

)
. (5.7)

If |∇H | ∈ L1(M), then Mn is an isoparametric hypersurface of Ln+1
1 , with equality occurring

in (5.7).

As in Sect. 4, we also contemplate the case c ≤ 0 in the context of Einstein spacetimes.

Corollary 6 Let Ln+1
1 be a locally symmetric Einstein spacetime which satisfies curvature

conditions (3.1) and (3.2). Let Mn be a complete linear Weingarten spacelike hypersurface
immersed in Ln+1

1 , such that R = aH +b with (n−1)2a2 +4
∑

i, j Ri j j i −4n(n−1)b > 0,

b �= 1
n(n−1)

∑
i, j Ri j j i and having two distinct principal curvatures with multiplicity p and

n − p, where 1 ≤ p ≤ n

2
. If |∇H | ∈ L1(M) and

|	| ≥
√
n

2
√
p(n − p)

(
(n − 2p)|H | +

√
n2H2 − 4p(n − p)c

)
, (5.8)

where c = c1
n

+ 2c2 ≤ 0, then Mn is an isoparametric hypersurface of Ln+1
1 , with equality

occurring in (5.8).

To closed our paper, we establish the following nonexistence result.

123



396 H. F. de Lima et al.

Proposition 3 There are not exist closed linear Weingarten spacelike hypersurfaces
immersed in a locally symmetric Einstein spacetime Ln+1

1 , satisfying curvature conditions
(3.1) and (3.2), such that R = aH + b with (n − 1)2a2 + 4

∑
i, j Ri j j i − 4n(n − 1)b ≥ 0,

b �= 1
n(n−1)

∑
i, j Ri j j i , having two distinct principal curvatures withmultiplicity p and n− p,

and H2 <
4p(n − p)c

n2
, where c = c1

n
+ 2c2 > 0.

Proof Suppose by contradiction that there exists such a closed linear Weingarten spacelike
hypersurface Mn immersed a locally symmetric Einstein spacetime Ln+1

1 , satisfying curva-
ture conditions (3.1) and (3.2). Thus, assuming that (n−1)2a2+4

∑
i, j Ri j j i−4n(n−1)b ≥ 0,

from Proposition 1 and (5.4) we obtain

0 =
∫

M
L(nH)dM ≥

∫

M
|	|2PH,p,c(|	|)dM. (5.9)

On the other hand, since H2 <
4p(n−p)c

n2
, we have that PH,p,c(|	|) > 0 on Mn . Thus,

from (5.9) we obtain that |	|2 = 0 on Mn , that is, Mn is a totally umbilical hypersurface
of Ln+1

1 . Therefore, taking into account that Mn is supposed to have two distinct principal
curvatures, we reach at a contradiction. �
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