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1 Introduction

We are mainly interested in the stability of a class of nonlinear stochastic partial differential
equations of monotone type. The question of the asymptotic stability of the second moment
of Xt (which is the solution of Eq. (2.1) below) has received considerable attention in the
literature. Willems [7,18] have established sufficient conditions which guarantee asymptotic
stability when the spaces are finite dimensional. Willems [19] and Wonham [20] and have
considered a related problem, the stabilization problem, again in finite dimension. Recently
Ichikawa [14] have extended these results to infinite dimensions. In fact, a coercivity condi-
tion, extending the one considered by Caraballo and Real [8] and Chow [11], is introduced
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262 T. Caraballo et al.

and will play the role of a stability criterion. To be precise, under the coercivity condition
from Caraballo and Real [8], almost sure exponential stability of solutions is obtained, while
in Chow [11] pathwise asymptotic stability is proved. However, as we will explain later,
coercivity criteria from Caraballo and Real [8] are too restrictive to be applied to a number of
interesting and, in our opinion, important examples, especially in the non-autonomous case.
In this work, we shall improve their results to cover the general non-autonomous stochastic
differential equations in Hilbert spaces.

The organization of the paper is as follows. In Sect. 2, we introduce the basic notations and
assumptions. In Sect. 3, we prove some sufficient conditions ensuring almost sure practical
exponential stability in mean square of solutions of a class of nonlinear stochastic partial
differential equation, and study an example to illustrate these results.

2 Preliminaries

Let V be a Banach space and H , K real, separable Hilbert spaces such that

V ↪→ H ≡ H
′
↪→ V ′,

where the injections are continuous and dense.
We denote by ‖ . ‖, | . | and ‖ . ‖∗ the norms in V , H and V

′
respectively, by (., .) the

inner product in H , and by 〈· · · 〉 the duality product between V and V
′
, and β is a constant

such that

|x | ≤ β||x ||, ∀x ∈ V .

LetWt be aWiener process defined on some complete probability space {�,F,P} and taking
its values in the separable Hilbert space K , with increment covariance operator Q, and let
(Ft )t≥0 be the usual family of subt-σ -algebras ofF such that, for each t ≥ 0,Ft is generated
by {Ws, 0 ≤ s ≤ t}.

Consider the following nonlinear stochastic diffusion equation:

Xt = X0 +
∫ t

0
A(s, Xs)ds +

∫ t

0
B(s, Xs)dWs, (2.1)

where A(t, .) : V → V
′
is a family of nonlinear operators defined a.e.t. satisfying there

exists t ∈ R+ such that A(t, 0) = 0, and where B(t, .) : V → L(K , H), the family of all
bounded linear operators from K into H , satisfies

(b.1) There exists t ∈ R+ such that B(t, 0) = 0,
(b.2) There exist continuous non-negative functions k(t), ψ(t) and positive constants θ and

ξ such that

θ :=
∫ +∞

0
k2(t)dt, ξ :=

∫ +∞

0
ψ2(t)dt,

and

||B(t, x)||2 ≤ k(t)||x || + ψ(t), for all x ∈ V, a.e.t.,

where ||.||2 denotes the Hilbert-Shmidt norm of nuclear operators, i.e.,

||B(t, x)||22 = tr(B(t, x)QB(t, x)∗).
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Practical exponential stability in mean square 263

(b.3) The map t ∈ (0, T ) �→ B(t, x) ∈ L(K , H) is Lebesgue-measurable ∀x ∈ V , ∀T > 0.

Definition 2.1 Let {�,F, (Ft )t≥0,P} be the stochastic filter associated to the K -valued
Wiener process Wt with covariance operator Q. Suppose that X0 ∈ L2(�,F0,P; H), i.e,
X0 is an H -valued F0-measurable random variable such that E|X0|2 < ∞. A stochastic
process Xt is said to be a strong solution on� to the SDE (2.1) for t ∈ [0, T ] if the following
conditions are satisfied (see [12]):

(a) Xt is a V -valued Ft -measurable random variable;
(b) Xt ∈ I p(0, T ; V ) ∩ L2(�;C(0, T ; H)), p < 1, T > 0, where I p(0, T ; V ) denotes

the space of all V -valued processes (Xt )t∈[0,T ] (we will write Xt for short) measurable
(from [0, T ] × � into V ), satisfying that Xt is Ft -measurable (hence Xt is Ft -adapted)
for almost all t ∈ [0, T ], and

E

∫ T

0
||Xt ||pdt < ∞.

Here C(0, T ; H) denotes the space of all continuous functions from [0, T ] into H .

(c) E

∫ T

0
||A(t, Xt )||2∗dt < ∞.

(d) Equation (2.1) is satisfied for every t ∈ [0, T ] with probability one.

If T is replaced by ∞, Xt is called a global strong solution of (2.1).

As we are mainly interested in the stability analysis, we always assume that for each X0 ∈
L2(�,F0,P; H), there exists a global strong solution to (2.1). This happens, for instance, if
the following assumptions hold true (see, for example, Pardoux [17]).

(a.1) Coercivity: there exist α > 0, p > 1 and λ, γ ∈ R
∗ such that

2 < A(t, x), x > +||B(t, x)||22 ≤ −α||x ||p + λ|x |2 + γ for all x ∈ V, a.e.t.

(a.2) Boundedness: there exists β > 0, c > 0 such that

||A(t, x)||∗ ≤ c||x ||p−1 + β for all x ∈ V, a.e.t.

(a.3) Monotonicity:

||B(t, x) − B(t, y)||2 ≤ λ|x − y|2 − (
2 < A(t, x) − A(t, y), x − y >

)
for all x, y ∈ V, a.e.t.

(a.4) Hemicontinuity: The map θ ∈ R �→< A(t, x + θy), z >∈ R is continuous for every
x, y, z ∈ V , a.e. t .

(a.5) Measurability: for every x ∈ V , the map t ∈ (0, T ) �→ A(t, x) ∈ V
′
is Lebesgue

measurable, a.e. t ., ∀T > 0.

Now we establish a version of the Itô formula (see Pardoux [17]) which will be needed
later in this paper. Let C (1,2)([0,∞) × H,R+) denote the space of all R+-valued functions
� defined on [0,∞) × H with the following properties:

(1) �(t, x) is differentiable in t ∈ [0,∞) and twice Frechet differentiable in x with�t (t, .),
�x (t, .) and �xx (t, .) locally bounded on H ,

(2) �(t, .), �t (t, .) and �x (t, .) are continuous on H ,
(3) for all trace class operators R, tr (�xx (t, .)R) is continuous from H into R,

123



264 T. Caraballo et al.

(4) if v ∈ V then �x (t, v) ∈ V , and u →< �x (t, u), v∗ > is continuous for each v∗ ∈ V
′
,

(5) ‖�x (t, v)‖ ≤ C0(t)(1 + ‖v‖),C0(t) > 0, for all v ∈ V .

Theorem 2.1 (Itô’s formula). Let � ∈ C (1,2)([0,∞) × H,R+). If the stochastic process
X (t) is a weak solution to (2.1), then it holds that

�(t, X (t)) = �(0, X (0)) +
∫ t

0
L�(s, X (s))ds,

+
∫ t

0
(�x (s, X (s)), B(s, X (s))dW (s)),

where

L�(s, X (s)) = �t (s, X (s)),

+ < A(s, X (s)),�x (s, X (s)) >,

+1

2
tr(�xx (s, X (s))B(s, X (s))QB(s, X (s))∗).

Remark 2.2 Notice that any strong solution in the sense of Definition 2.1 is a weak solution
in the weak or variational sense in Theorem 2.1 (see e.g. [8,9,17]).

We state now the definitions of the almost surely convergence of solutions to a small closed
ball Br ⊂ H centered at zero with radius r (see [1–6], [10]), and we will consider initial
values in the space X0 ∈ L2(�,F0,P; H).

Definition 2.2 The ball Br is said to be almost surely globally practically uniformly expo-
nentially stable if:

for any initial value X0 ∈ L2(�,F0,P; H), such that its corresponding strong solution
X (t) := X (t, X0) to (2.1) satisfies 0 < |X (t)| − r , for all t ≥ 0, it holds that

lim sup
t→∞

1

t
ln(|X (t, X0)| − r) < 0, a.s. (2.2)

System (2.1) is said to be almost surely globally practically uniformly exponentially stable if
there exists r > 0 such that Br is almost surely globally practically uniformly exponentially
stable.

Definition 2.3 The ball Br is said to be almost surely globally practically uniformly expo-
nentially stable in mean square if:

For any initial value X0 ∈ L2(�,F0,P; H), such that its corresponding strong solution
X (t) := X (t, X0) to (2.1) satisfies 0 < E

(|X (t, X0)|2
) − r , for all t ≥ 0, it holds that

lim sup
t→∞

1

t
ln
(
E(|X (t, X0)|2) − r

)
< 0, a.s. (2.3)

System (2.1) is said to be almost surely globally practically uniformly exponentially
stable in mean square if there exists r > 0 such that Br is almost surely globally practically
uniformly exponentially stable in the mean square.

Definition 2.4 The system (2.1) is said to be almost surely globally practically uniformly
exponentially convergent to zero in mean square if there exists a function r(·) such that:

For any initial value X0 ∈ L2(�,F0,P; H), such that its corresponding strong solution
X (t) := X (t, X0) to (2.1) satisfies 0 < E

(|X (t, X0)|2
) − r(t), for all t ≥ 0, it holds that
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Practical exponential stability in mean square 265

lim sup
t→∞

1

t
ln
(
E(|X (t, X0)|2) − r(t)

)
< 0, a.s. (2.4)

with limt→+∞ r(t) = 0.

Definition 2.5 The ball Br is said to be uniformly stable in probability if the strong solution
X (t) := X (t, X0) to (2.1) satisfies:

For each ε ∈]0, 1[ and k > r , there exists δ = δ(ε, k) > r such that

P
(|X (t, X0)| < k,∀t ≥ 0

) ≥ 1 − ε for all |X0| < δ. (2.5)

Remark 2.3 Noting that if r → 0 we have the classical definition of the stability in proba-
bility. We write in the Definition 2.5 that δ = δ(ε, k) > r because if we take δ = δ(ε, k) < r
and letting r → 0 we get |X0| < 0 which contradicts with the classical definition of the
stability in probability when 0 is an equilibrium point.

3 Practical exponential stability in mean square

Now we shall impose the following coercivity condition (CC):
There exist constants α > 0, μ > 0, λ ∈ R, and a nonnegative continuous function γ (t),

t ∈ R+, such that

2 < A(t, v), v > +||B(t, v)||22 ≤ −α||v||p + λ|v|2 + γ (t)e−μt , v ∈ V, (3.1)

where p > 1 and, for arbitrary δ > 0, γ (t) satisfies γ (t) = o(eδt ), as t → ∞, i.e.,

lim
t→∞

γ (t)

eδt
= 0 and

∫ +∞

0
γ (t)e−δt dt ≤ K with K > 0.

Remark 3.1 Observe that, owing to the continuity and subexponential growth of the term
γ (t)e−μt , there exists a positive constant γ̃ such that γ (t)e−μt ≤ γ̃ for all t ∈ R+.

As a consequence, (3.1) implies (a.1) (by replacing γ by γ̃ ), i.e., this assumption is
compatible with the existence of the strong solutions to (2.1).

Theorem 3.2 Assuming conditions (CC) and (b.3), there exists a constant τ > 0 such
that if Xt is a global strong solution to Eq. (2.1) corresponding to an initial value X0 ∈
L2(�,F0,P; H), satisfying that E|Xt |2 > r(t) := Ke−τ t , for all t ≥ 0, then

E|Xt |2 ≤ E|X0|2e−τ t + r(t), ∀t ≥ 0, (3.2)

if either one of the following hypotheses holds

(i) λ < 0, (∀p > 1);
(ii) λβ2 − α < 0, (p = 2).

Then, system (2.1) is almost surely globally practically uniformly exponentially convergent
to zero in mean square.

Proof Firstly, let us denote ν = (α−λβ2)

β2 for case (ii) and ν = −λ

β2 for case (i), which are

positive by assumption (ii) and (i) respectively, and the rest of the proof is the same for both
cases. Then, if μ−ν ≤ 0, we can choose δ > 0 small enough such that μ− δ > 0 and define
τ := μ − δ. If, on the other hand, μ − ν > 0, then we can choose δ > 0 small enough such
thatμ−ν−δ > 0 and, in this case, we define τ := ν. Now, let us suppose thatE|Xt |2 > r(t),
for all t ≥ 0. Then, Itô’s formula implies
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e(μ−δ)t |Xt |2 − |X0|2 = (μ − δ)

∫ t

0
e(μ−δ)s |Xs |2ds + 2

∫ t

0
e(μ−δ)s〈A(s, Xs), Xs〉ds,

+ 2
∫ t

0
e(μ−δ)s〈Xs, B(s, Xs)dWs〉

+
∫ t

0
e(μ−δ)s tr(B(s, Xs)QB(s, Xs)

∗)ds. (3.3)

Now, since
∫ t
0 e

(μ−δ)s〈Xs, B(s, Xs)dWs〉, t ∈ R+, is a continuous martingale, it follows that

E

(∫ t

0
e(μ−δ)s〈Xs, B(s, Xs)dWs〉

)
= 0, t ∈ R+.

Therefore, condition (3.1) and the continuous injection V ↪→ H yield

e(μ−δ)t
E|Xt |2 ≤ E|X0|2 + (μ − δ − ν)

∫ t

0
e(μ−δ)s

E|Xs |2ds +
∫ t

0
γ (s)e−δsds. (3.4)

If μ − ν ≤ 0, it follows immediately

e(μ−δ)t
E|Xt |2 ≤ E|X0|2 +

∫ t

0
γ (s)e−δsds ≤ E|X0|2 + K ,

thus

E|Xt |2 ≤ E|X0|2e−(μ−δ)t + Ke−(μ−δ)t ≤ E|X0|2e−τ t + r(t).

On the other hand, ifμ−ν > 0, aswe have chosen δ > 0 small enough such thatμ−ν−δ > 0,
then, from (3.4) and Gronwall’s lemma one can obtain

e(μ−δ)t
E|Xt |2 ≤

(
E|X0|2 +

∫ t

0
γ (s)e−δsds

)
e(μ−δ−ν)t ≤

(
E|X0|2 + K

)
e(μ−δ−ν)t ,

finally

E|Xt |2 ≤ E|X0|2e−νt + Ke−νt ≤ E|X0|2e−τ t + r(t),

as required. ��
Remark 3.3 Notice that we can have a second version of Theorem 3.2 under the same
hypotheses as it is straightforward to prove that

E|Xt |2 ≤ E|X0|2e−τ t + K , ∀t ≥ 0.

Then, system (2.1) is almost surely globally practically uniformly exponentially in mean
square.

Theorem 3.4 In addition to hypotheses in Theorem 3.2, assume that (b.2) also holds and∫ +∞

0
γ (s)e−μsds ≤ η < +∞ and supu∈[s,t) k2(u) ≤ ϕ < +∞ for 0 ≤ s ≤ t , μ > 0,

η > 0 and ϕ is a positive constant independent of t and s. Then, there exist positive constants
M, ε and a subset N0 ⊂ � with P(N0) = 0 such that, for each ω ∈ � \ N0, there exists a
positive random number T (ω) such that

|Xt |2 ≤ Me−εt + η, ∀t ≥ T (ω). (3.5)

Then, the ball B√
η ⊂ H is uniformly stable in probability.
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Proof We only prove case (ii). Case (i) can be proved similarly. We shall split our proof into
several steps, as follows.

Step 1: We will find three constants C = C(δ, X0) > 0, ζ > 0 and τ > 0, independent of
t ∈ R+, such that

∫ t

s
E||B(u, Xu)||22du ≤ Ce−τ s + ζ, 0 ≤ s ≤ t. (3.6)

Applying Itô’s formula to (2.1) as in Theorem 3.2, we get that for any δ > 0 with μ − δ > 0

e(μ−δ)t
E|Xt |2 ≤ E|X0|2 + (μ − δ − ν)

∫ t

0
e(μ−δ)s

E|Xs |2ds +
∫ t

0
γ (s)e−δsds, (3.7)

and

e(μ−δ)t
E|Xt |2 ≤ E|X0|2 + (μ − δ + λ)

∫ t

0
e(μ−δ)s

E|Xs |2ds

+
∫ t

0
γ (s)e−δsds − α

∫ t

0
e(μ−δ)s

E||Xs ||2ds, (3.8)

where ν = (α−λβ2)

β2 .
Now, if μ − ν ≤ 0, it follows from (3.7) that

∫ t

0
e(μ−δ)s

E|Xs |2ds ≤ E|X0|2 + ∫ t
0 γ (s)e−δsds

ν + δ − μ
, (3.9)

which, together with (3.8), immediately implies

∫ t

0
e(μ−δ)s

E||Xs ||2ds ≤ 1

α

[
E|X0|2 +

∫ t

0
γ (s)e−δsds

]
,

+ μ − δ + λ

α

∫ t

0
e(μ−δ)s

E|Xs |2ds,

≤ 1

α

[μ − δ + λ

ν + δ − μ
+ 1

] [
E|X0|2 +

∫ t

0
γ (s)e−δsds

]
,

≤ 1

α

[μ − δ + λ

ν + δ − μ
+ 1

][
E|X0|2 + K

]
. (3.10)

Consequently, for 0 ≤ s ≤ t ,

∫ t

s
E||Xu ||2du ≤

∫ t

s
e(μ−δ)(u−s)

E||Xu ||2du,

≤ e−(μ−δ)s
∫ t

0
e(μ−δ)u

E||Xu ||2du,

thus,

∫ t

s
E||Xu ||2du ≤ 1

α

[μ − δ + λ

ν + δ − μ
+ 1

][
E|X0|2 + K

]
e−(μ−δ)s, (3.11)
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which, together with (b.2) immediately yields that

∫ t

s
E||B(u, Xu)||22du ≤ 2

∫ t

s
k2(u)E||Xu ||2du + 2

∫ t

s
ψ(u)2du

≤ 2 sup
u∈[s,t)

k2(u)

∫ t

s
E||Xu ||2du + 2

∫ +∞

0
ψ(u)2du

≤ 2ϕ
∫ t

s
E||Xu ||2du + 2ξ

therefore, ∫ t

s
E||B(u, Xu)||22du ≤ Ce−(μ−δ)s + ζ, (3.12)

where k1 is a positive constant, C = C(δ, X0) = 2ϕ

α

[μ − δ + λ

ν + δ − μ
+ 1

][
E|X0|2 + K

]
and

ζ = 2ξ .
On the other hand, if μ − ν > 0, it is always possible to choose a suitable δ > 0 such that

ν − δ > 0. Then, by applying Itô’s lemma to the strong solution Xt , it is easy to deduce

e(ν−δ)t
E|Xt |2 ≤ E|X0|2 + (ν − δ + λ)

∫ t

0
e(ν−δ)s

E|Xs |2ds,

+
∫ t

0
γ (s)e−(μ−ν+δ)sds − α

∫ t

0
e(ν−δ)s

E||Xs ||2ds,

≤ E|X0|2 + (ν − δ + λ)

∫ t

0
e(ν−δ)s

E|Xs |2ds,

+
∫ t

0
γ (s)e−δsds − α

∫ t

0
e(ν−δ)s

E||Xs ||2ds. (3.13)

Noticing that, in this case, the parameter τ in theorem 3.2 turns out to be ν, (3.13) yields

α

∫ t

0
e(ν−δ)s

E||Xs ||2ds ≤ E|X0|2 + (ν − δ + λ)

∫ t

0
e−δsds + K ,

and we can argue in a similar manner as we did previously. Hence our claim is proved.

Step 2: We claim that there exists a positive constant M > 0 such that

E

(
sup

0≤t<∞
|Xt |2

)
≤ M.

Indeed, Itô’s formula implies

|Xt |2 − |X0|2 = 2
∫ t

0
< A(s, Xs), Xs > ds +

∫ t

0
tr
(
B(s, Xs)QB(s, Xs)

∗)ds,

+2
∫ t

0
< Xs, B(s, Xs)dWs > . (3.14)
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On the other hand, from Burkholder–Davis–Gundy’s inequality, we get for any T ∈ R+

2E
[

sup
t∈[0,T ]

∣∣∣
∫ t

0
〈Xs, B(s, Xs)dWs〉

∣∣∣
]
,

≤ K1E

⎡
⎣
(∫ T

0
|Xs |2||B(s, Xs)||22ds

) 1
2

⎤
⎦ ,

≤ K1E

⎧⎨
⎩ sup

0≤s≤T
|Xs |

[∫ T

0
||B(s, Xs)||22ds

] 1
2

⎫⎬
⎭ ,

≤ 1

2
E

[
sup

0≤s≤T
|Xs |2

]
+ K2

∫ T

0
||B(s, Xs)||22ds, (3.15)

where K1; K2 are two positive constants. Therefore, in addition to condition (CC), (3.14)
and (3.15) imply

E

(
sup

0≤s≤T
|Xs |2

)
≤ E|X0|2 + ν

∫ T

0
E|Xs |2ds +

∫ T

0
γ (s)e−μsds,

+ 1

2
E

[
sup

0≤s≤T
|Xs |2

]
+ K2

∫ T

0
E||B(s, Xs)||22ds. (3.16)

Thus, our claim can be easily obtained owing to (3.2), (3.6) and condition (CC).

Step 3: Now, we can finish our proof. We only sketch it because it is similar to that in
Caraballo [9] and Haussmann [13].

Firstly, the coercivity condition (CC) and (3.14) imply

|XT |2 ≤ |XN |2 + ν

∫ T

N
|Xs |2ds +

∫ T

N
γ (s)e−μsds,

+ 2

[
sup

t∈[N ,T ]

∣∣∣∣
∫ t

N
< Xs, B(s, Xs)dWs >

∣∣∣∣
]

,

≤ |XN |2 + ν

∫ T

N
|Xs |2ds +

∫ +∞

0
γ (s)e−μsds,

+ 2

[
sup

t∈[N ,T ]

∣∣∣∣
∫ t

N
< Xs, B(s, Xs)dWs >

∣∣∣∣
]

,

≤ |XN |2 + ν

∫ T

N
|Xs |2ds + η,

+ 2

[
sup

t∈[N ,T ]

∣∣∣∣
∫ t

N
< Xs, B(s, Xs)dWs >

∣∣∣∣
]

,

Consequently, we obtain

|XT |2 − η ≤ |XN |2 + ν

∫ T

N
|Xs |2ds + 2

[
sup

t∈[N ,T ]

∣∣∣∣
∫ t

N
< Xs, B(s, Xs)dWs >

∣∣∣∣
]

, (3.17)

for T ≥ N , where N is a natural number.
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In particular, taking N ∈ N large enough, we can easily obtain

P

{
sup

t∈[N ,N+1]
|Xt |2 − η ≥ ε2N

}
≤ P

{[
sup

t∈[N ,N+1]

∣∣∣
∫ t

N
< Xs, B(s, Xs)dWs >

∣∣∣
]

≥ ε2N

6

}
,

(3.18)

+ P

{
|XN |2 ≥ ε2N

3

}
,+P

{
ν

∫ N+1

N
|Xs |2ds ≥ ε2N

3

}
,

where ε2N = Ce− τ(N+1)
4 .

Now, we can estimate the terms on the right-hand side of (3.18) using Kolmogorov’s
inequality and (3.2) for the last two terms, and Burkholder–Davis–Gundy’s lemma, Hölder
inequality and an argument similar to that used in Steps 1 and 2 for the first one. Consequently,
there exists a positive constant K3 > 0 such that

P

{
sup

t∈[N ,N+1]
|Xt |2 − η ≥ ε2N

}
≤ K3e

− τN
4 .

Finally, a Borel-Cantelli’s lemma-type there exist a subset N0 ⊂ � with P(N0) = 0 such
that, for each ω ∈ � \ N0, there exists a positive random number T (ω) such that

|Xt |2 ≤ η + Ce− τ(N+1)
4 , ∀t ≥ T (ω).

Noting that Ce− τ(N+1)
4 ≤ Ce− τ t

4 . Then we have

|Xt |2 ≤ η + Ce− τ t
4 , ∀t ≥ T (ω).

as desired. ��
Next, we give an example to illustrate our results.

Example 3.5 We consider the following semi-linear stochastic partial differential equation,
which models the heat production by an exothermic reaction taking place inside a rod of
length π whose ends are maintained at 0◦ and whose sides are insulated (see Haussmann
[13] for a similar situation in the linear case):{

dYt (x) =
[

∂2Yt (x)
∂x2

+ r0Yt (x)
]
dt + α(t, Yt (x))dW (t), t > 0, x ∈ (0, π),

Y0(x) = y0(x), Yt (0) = Yt (π) = 0, t ≥ 0.
(3.19)

Here Wt is a real standard Wiener process (so, K = R and Q = 1), r0 ∈ R, and
α(·, ·) : R × R → R is a continuous function such that α(t, 0) = 0, for some t ∈ R, and
|α(t, u)| ≤ e−t |u| + te−at with a > 0. We can set this problem in our formulation by taking
H = L2[0, π], V = W 1,2

0 ([0, π ]) (a Sobolev space with elements satisfying the boundary
conditions above), K = R, A(t, u) = (d2/dx2)u(x) + r0u(x), and B(t, u) = α(t, u).

Clearly, operator B satisfies (b.2) and (b.3). On the other hand, it is easy to deduce for
arbitrary u ∈ V that

2 < A(t, u), u >> +||B(t, u)||22 ≤ −2||u||2 + 2r0|u|2 + 2e−2t |u|2 + 2t2e−2at ,

≤ −2||u||2 + (2r0 + 2)|u|2 + 2t2e−2at .

The norm in V is given by

||u||2 =
∫ π

0
(u′(x))2dx .
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Therefore, it follows that hypothesis (b) in Theorems 3.2 and 3.4 is fulfilled provided (2 +
2r0)β2 <<< 2 (observe that we can setβ = π√

2
in this case).We can takeα = 2, γ (t) = 2t2,

μ = 2a, λ = 2r0 + 2 and r(t) = 4

δ3
e−νt where ν = 2

β2 − (2 + 2r0).

Consequently, we easily deduce that the strong solution of the equation is almost surely
practically exponentially stable in mean square.
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