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Abstract
The literature in agent-based social simulation suggests that a model is validated
when it is shown to ‘successfully’, ‘adequately’ or ‘satisfactorily’ represent the target
phenomenon. The notion of ‘successful’, ‘adequate’ or ‘satisfactory’ representation,
however, is both underspecified and difficult to generalise, in part, because prac-
titioners use a multiplicity of criteria to judge representation, some of which are
not entirely dependent on the testing of a computational model during validation
processes. This article argues that practitioners should address social epistemology
to achieve a deeper understanding of how warrants for belief in the adequacy of
representation are produced. Two fundamental social processes for validation: inter-
pretation and commensuration, are discussed to justify this claim. The analysis is
advanced with a twofold aim. First, it shows that the conceptualisation of valida-
tion could greatly benefit from incorporating elements of social epistemology, for
the criteria used to judge adequacy of representation are influenced by the social,
cognitive and physical organisation of social simulation. Second, it evidences that
standardisation tools such as protocols and frameworks fall short in accounting for
key elements of social epistemology that affect different instances of validation
processes.

Keywords Validation · Representation · Agent-based modelling ·
Social epistemology · Interpretation · Commensuration

1 Introduction

In agent-based social simulation, the process of validation is understood as an eval-
uation of the representation relationship between the computational model and the
target phenomenon (Cioffi-Revilla, 2014; David, 2013; Edmonds, 2000; Gilbert &

� David Anzola
david.anzola@urosario.edu.co

1 Innovation Center, School of Management, Universidad del Rosario, Bogotá, Colombia
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Troitzsch, 2005; North & Macal, 2007; Rand & Rust, 2011; Squazzoni, 2012).
Interestingly, this relationship is usually defined in success terms, i.e. a validated
model is one that ‘successfully’, ‘adequately’ or ‘satisfactorily’ represent the tar-
get phenomenon. The problem with success definitions is that they are usually
underspecified. In the case of validation, it is not entirely clear what it means to ‘suc-
cessfully’, ‘adequately’ or ‘satisfactorily’ represent the target phenomenon. Criteria
are not made explicit nor included in the definition, ultimately, leading practition-
ers to adopt a procedural approach to the testing of representational adequacy in
which methodological and operational aspects of the evaluation process are overem-
phasised. Often, a model is considered validated if well-known tests, e.g. sensitivity
analysis or empirical output validation, are performed to a, usually statistical, degree
of success.

The idea that representation is not simply a methodological issue has been pre-
viously acknowledged in the agent-based social simulation literature. It has been
claimed, for example, that the disciplinary background might have an effect on the
way a researcher approaches validation practices (Rossiter et al., 2010), that simu-
lations are shaped by the modeller’s response to contextual constraints (Graebner,
2018) and that the community is needed to define what constitutes adequate rep-
resentation (Ahrweiler & Gilbert, 2005). This acknowledgement, however, has not
encouraged practitioners to robustly characterise the nature and effect of the different
criteria they use to validate their models.

This relatively underdeveloped theoretical account of validation in agent-based
social simulation heavily contrasts with the one in general simulation studies and
the philosophy of simulation, where issues of evaluation have been extensively dis-
cussed (e.g. Balci, 2003; Beisbart & Saam, 2019; Jebeile & Barberousse, 2016;
Morrison, 2015; Oberkampf & Roy, 2010; Sargent, 2013; Winsberg, 2010). While
the already existing literature can be used to theoretically inform practices of valida-
tion in agent-based social simulation, its usefulness is partially limited, for it centres
mostly on equation-based modelling in formalised disciplinary areas. There are, ini-
tially, some key methodological differences: in agent-based models, the focus is on
exploring dynamics produced by computational entities with autonomous decision-
making interacting with each other and with the environment, rather than on finding
numerical solutions for systems of equations. Thus, typical sources of uncertainty in
equation-based models, e.g. numerical approximation error (Roy, 2019), might not
be present or have a different effect. In turn, variations in the way agent-based models
are used to produce knowledge warrant an alternative epistemological approxima-
tion (Primiero, 2019; Winsberg, 2019), and, therefore, a somewhat distinct evaluation
process. There are, as well, additional theoretical limitations imposed by the distinc-
tive nature of social theory and data. For instance, formal approaches to evaluation in
social simulation are rare, even in comparison with agent-based simulation in other
domains (Bakar & Selamat, 2018), and typical validation techniques that rely on
precise quantification, e.g. benchmarking, are unsuitable (Saam, 2019).

The following discussion addresses an aspect of the validation of agent-based
social simulations where the prior literature on equation-based modelling in formal
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disciplines might prove insufficient: social epistemology. Any account of valida-
tion in computer simulation should explicitly consider social epistemology, for some
criteria to judge adequacy of representation in computational modelling rely on the
normalisation of beliefs and principles not related to the application of any given
validation technique or the theoretical-methodological framework behind a compu-
tational implementation of the phenomenon of interest. In the case of agent-based
social simulation, it will be argued, the analysis of social epistemology has the
potential, first, to provide unique insights into how practitioners’ beliefs about repre-
sentational adequacy are impacted by distinctive disciplinary dynamics in the social
sciences, particularly in regard to processes of theory-building and testing, and, sec-
ond, to evidence that standardisation tools have only limited scope in capturing the
multiple criteria used to validate agent-based models of social phenomena.

The text is structured as follows: the next section briefly addresses the key tenets
of social epistemology and presents some general examples of its influence on the
everyday practice of agent-based social simulation. The following two sections use
the processes of interpretation and commensuration, respectively, as proxies to elu-
cidate the impact of social epistemology on the validation of agent-based models.
The fifth section briefly discusses potential benefits and challenges of incorpo-
rating elements of social epistemology in the conceptualisation of validation and
representation. Some general conclusions are presented last.

2 Social Epistemology in Agent-Based Social Simulation

Social epistemology emerged in the late twentieth century to challenge the assump-
tion, standard in epistemology, that knowledge justification is a process entirely
dependent on an individual’s cognitive faculties. The social nature of justification
becomes evident in local instances of interaction in which knowledge is reported/
acquired (Lackey, 2011) or contested (Christensen, 2007), as well as in the institu-
tional and normative context in which knowledge justification processes take place.
Regarding knowledge acquisition, for example, new entrants to social simulation
need not develop practical and theoretical knowledge anew, for they can easily resort
to formal and informal learning dynamics to acquire it. During the learning process,
new entrants will likely respond more positively to knowledge acquired from individ-
uals or sources they consider authoritative (Kitcher, 2011) or with which they share
a sense of group belonging (Boghossian, 2011).

Similarly, practitioners might be pressured to adjust research goals to cover for
institutional or normative issues such as funding demands (Ankeny & Leonelli, 2011)
or engage in types or topics of research where the perceived potential reward is higher
(Strevens, 2003). The growing popularity of computational modelling of public pol-
icy could be seen as a result, on one hand, of an increasing interest (from different
stakeholders, including funding sources) in research with real-world impact and, on
the other hand, of practitioners exploring novel topics they believe could become
relevant in the future.
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Due to the interdisciplinarity of agent-based social simulation, there are also some
interesting institutional social epistemology dynamics taking place. Knowledge pro-
duction and diffusion are not uniform across contexts, among other things, due to
variations in communication of and interaction with evidence (Bird, 2014). In agent-
based social simulation, there are some differences in the type of validation methods
employed (Moss, 2008) and in the style and structure of reporting (Angus &
Hassani-Mahmooei, 2015) that can be traced back to alternative traditional discipli-
nary customs and conventions.

By explicitly acknowledging social epistemology, practitioners of agent-based
social simulation will be able to better conceptualise how their everyday practices are
affected by a distinctive social, cognitive and physical organisation. When it comes
specifically to representation, the inquiry into social epistemology adds another
dimension to the discussion about pluralism and contextualism in modelling that
has so far taken place in the literature on social simulation. To date, differences in
the approach to the testing of representation in computer simulation are more often
explained through individual cognitive features, such as modelling goals, interests or
knowledge. Social epistemology offers means to link these diverse modelling choices
to more general knowledge production and transfer dynamics.

2.1 The Social Underpinnings of Validation

Social epistemology influences in several ways the corroboration of hypotheses by
experimental results, the area in which verification and validation operate. Nonethe-
less, in contemporary philosophy of science, this influence is usually framed within
the context of the constructivism-realism debate. It might be expected from agent-
based social simulation to incorporate diverse constructivist principles, given the
popularity of constructivism in mainstream social science. That, however, is not the
case. Realism is widespread in social simulation. Even qualitative-oriented approa-
ches to social simulation, e.g. participatory or companion modelling, stand closer to
the principles of realism. Variations in modelling styles and practices that could even-
tually affect warrants for belief in the adequacy of a simulation are often addressed
in technical terms. Questions about realism in the representation of the target phe-
nomenon, for instance, are dealt with mostly as an issue of empirical calibration.
For many practitioners, the more data the model is able to accommodate, both for
calibration of validation, the more realistic it is.

The neglect of social epistemology in agent-based social simulation might be
linked to two major aspects: first, the foundational philosophical literature has reg-
ularly centred on methodology. The method is presented as an alternative or third
way between the qualitative-quantitative, deductive-inductive, natural-formal lan-
guages, formal theory-experimentation, and computational-social sciences (Anzola,
2019a). In this alleged methodological synthesis, epistemic aspects such as repre-
sentation have been pushed to the background. Second, a relatively formal theory
of confirmation has been implemented in social simulation. The notion of empirical
confirmation in social simulation is strongly associated to the algorithmic nature of
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agent-based models. This is probably due to the fact that the verification-validation
scheme was not developed directly by practitioners of agent-based social simula-
tion, but adopted from computer science and software engineering through complex
knowledge transfer dynamics (Anzola, 2019b). As a result, during the evaluation pro-
cess, the experimental and representational features of agent-based models are often
subordinate to the algorithmic.

Because of the emphasis on methodology, especially on the formal and techni-
cal aspects of computer simulation, issues of social epistemology have usually been
tackled through standardisation. The most paradigmatic standardisation tools are pro-
tocols and frameworks (e.g. Becker et al., 2005; Ghorbani et al., 2013; Grimm et al.,
2006; Grimm et al., 2010; Janssen et al., 2008; Laatabi et al., 2018; Richiardi et al.,
2006; Wang & Lehmann, 2007). Although the focus is different, ultimately, both
tools seek to structure and formalise research practices. Frameworks are aimed at
improving practices through abstraction and generalisation. They are based on the
assumption that widespread systematisation and categorisation at a higher level, e.g.
meta-models, code reuse/repositories or schemes and rules for defensive program-
ming, can lead to better science. Protocols, in turn, are meant to improve practices
by providing detailed descriptions of computational models. They work under the
assumption that adding rigour, clarity and transparency to the model description can
facilitate evaluation and replication.

While standardisation tools have clearly helped make some tacit knowledge
explicit in agent-based social simulation, they cannot moderate the effects of social
epistemology on validation. The following two sections do not discuss social epis-
temology directly, for that would require elaborating on a lengthy and intricate
conceptual framework, but use, instead, the processes of interpretation and commen-
suration as proxies. Interpretation and commensuration are transversal to the practice
of science. Their effects are not exclusive to validation, or evaluation processes
in general, nor are entirely dependent on social epistemology. They, nonetheless,
provide useful insights into how the physical, social and cognitive organisation of
social simulation impacts warrants for belief in the representational adequacy of a
computational model.

3 Interpretation

Interpretation can be briefly described as the process of linking empirical evidence
(provided by direct or indirect interaction with the phenomenon of interest) with
scientific hypotheses and background knowledge (in the form of data and theories)
through a second-order analysis. Issues of interpretation in agent-based social simu-
lation can arise from three different sources: the process of modelling (transformation
of the conceptual model into the computational model), the process of confirma-
tion (calibration, verification and validation) and the process of communication and
socialisation of findings (the narrative put forward in different forms of scientific
reporting). Problems of interpretation need not be exclusive to any particular source.
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Given the scope of this text, the discussion will centre on issues of interpretation
associated with processes of confirmation.1

3.1 Holist Underdetermination

During the process of confirmation, researchers must evaluate to what extent empiri-
cal results constitute evidence for the theory or hypothesis being tested. Perhaps, the
most distinctive problem of interpretation during confirmation processes is what is
commonly known in philosophy of science as underdetermination of theory by data.
There are two basic forms of underdetermination, labelled here as holist and con-
trastive (Stanford, 2017). The former, often referred to as the Duhem-Quine thesis,
is the most popular form of underdetermination. It puts forward the idea that sci-
entific theories and hypotheses are not tested in isolation. Empirical consequences,
it is claimed, can only be derived from a conjoined network of hypotheses, work-
ing together with principles and beliefs about the functioning of the world and the
practice of science. This claim has several major implications. The present discus-
sion, however, will focus solely on the effect of underdetermination on the process
of linking the simulation results back to an underlying network of background
knowledge.

Agent-based social simulations are not used to produce knowledge in the same
way as the equation-based models regularly considered in the philosophy of sim-
ulation literature. Hence, holist underdetermination would be expected to manifest
differently in each case. Equation-based simulations, it is argued, are downward,
motley and autonomous (Winsberg, 2001). Downward is used in the sense of already
established theory often serving as a starting point and as a source of epistemic
justification or entitlement for the computational model; motley, in the sense of
there being extra-theoretical aspects that need to be decided upon to run a simula-
tion; autonomous, in the sense of judgements about the adequacy of the simulation
not being entirely dependent on comparison with external data. The categories
do not instantiate in the exact same way in every equation-based model and dis-
ciplinary domain. For example, not every equation-based model is derived from
already established theory. Still, the typology is useful when considering problems of
underdetermination, for it addresses a model’s relationship both with theory and data.

In the case of agent-based social simulation, because of the multiparadigmatic and
unformalised nature of social theory, models cannot be characterised as downward.
Often, models are developed with only a loose connection to theory and rarely draw

1While confirmation covers both verification and validation, each process is, in principle, linked to differ-
ent problems of interpretation. Verification is usually defined as the evaluation of whether the implemented
computational model does what it is supposed to do. This prescription is understood in agent-based social
simulation either in terms of conforming to the conceptual model (Edmonds, 2000; Rand & Rust, 2011)
or, more generally, to the intention of the modeller (Gilbert & Troitzsch, 2005; David, 2013). As such,
issues of interpretation during verification processes are more related to questions about the epistemology
of measurement (e.g. how are magnitudes or types of data represented by or incorporated into computa-
tional models), instrumentation (e.g. how can models provide indirect knowledge of the phenomenon of
interest) or standardisation and systematisation (e.g. how prior knowledge is accounted for by tools such
as model frameworks or metamodels).
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on it for epistemic support. In turn, practitioners of social simulation rely on alter-
native motley methods and techniques. For example, parameterisation or numerical
solutions methods are not commonly used. Finally, due to the nature of quantifica-
tion in social science, additional concerns must be addressed in the comparison of
the simulation output with external data. First, lack of correspondence might not be
so easily identifiable, for comparison need not be made based on numerical mag-
nitudes. Second, and more important, practitioners of agent-based social simulation
operate under a relatively simplistic separation between empirical and artificial data
that, among other things, does not sufficiently address the value-ladenness of external
data.2

Even though the categories of downward, motley, and autonomous do not apply
to equation- and agent-based models in different disciplinary areas in the same
way, they can still be used to identify sources of holist underdetermination. The
extent to which this type of underdetermination impacts validation practices in agent-
based social simulation is strongly context-bound. Initially, while not entirely down-
ward, warrants for belief in the adequacy of a simulation do vary according to the
level of formalisation and integration in the background theoretical-methodological
framework of a model. In formalised areas of social science, hypotheses and theo-
ries are more explicitly connected, and basic philosophical principles and beliefs are
more uniform. The validity of payoff matrices in iterated games is not extensively
discussed in academic reporting, for it is already a standard interaction structure
in social science. Most practitioners, conversely, would expect an interaction struc-
ture developed ad hoc for an agent-based model to be justified with data or theory.
Even though, similar to mainstream social science, agent-based social simulation evi-
dences low levels of formalisation, the literature on evaluation has yet to explore how
these variations moderate validation processes.

Holist underdetermination also has different effects depending on the factors that
could be categorised as motley, e.g. purpose of the model, type of data used for
implementation, calibration and validation, and dimensions and locus of compari-
son between the model and the target phenomenon. In agent-based social simulation,
the overall importance given to the validation process, as well as the amount of
epistemic resources used to validate a model, vary in accordance with the purpose.
Some practitioners even consider that simple abstract models do not require valida-
tion because they are not directly contrasted against empirical data (Edmonds et al.,
2019).3 Likewise, the systematic use of qualitative data, something distinctive of
social simulation, makes it harder to map the relationship between data, models and
theories, for, in contrast to quantitative data, qualitative data is linguistically more
expressive. Finally, because agent-based models are not implemented with the goal

2This separation has prevented practitioners from inquiring into the nature and status of simulated
data, which, as the literature in the philosophy of simulation evidences (Barberousse & Vorms, 2014;
Lusk, 2016; Parker, 2020), might be fundamental to understand how warrants for belief in adequacy of
representation are produced.
3The literature in the philosophy of simulation has a more complex approach to the representational nature
of simple models and, therefore, to their validation (e.g., Grüne-Yanoff, 2009; Knuuttila, 2011; Nguyen,
2020; Weinsberg, 2013; Ylikoski & Aydinonat, 2014).
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of finding a numerical solution for a system of equations, representational adequacy
need not always be tested in the same way. A model might be expected to reproduce
specific values or just general tendencies, and be judged based on a comparison of
the target phenomenon against the simulation input, output, process or a combination
thereof (Rand & Rust, 2011; Tesfatsion, 2017).

Perhaps, where agent-based social simulation evidences a more distinct risk of
holist underdetermination is in its epistemic autonomy. Equation-based simulations
are considered autonomous because they are regularly used in the study of phenom-
ena for which there are issues of accessibility, availability or reliability of data, thus,
the limited scope that ‘comparison against available observations’ has as an evalu-
ation criterion. However, because of the formalised and often downward nature of
these simulations, while not straightforward, the role of external data in the potential
reduction or elimination of underdetermination is relatively well understood (Jebeile
& Ardourel, 2019; Jebeile & Barberousse, 2016; Lenhard & Winsberg, 2010). That
is not the case with agent-based social simulations. The matching of agent-based
modelling’s computational expressiveness and social theory’s multiparadigmatic and
unformalised nature has fostered the emergence of a multiplicity of decidedly dis-
tinct models that are meant to represent the same or similar phenomena (with varying
degrees of precision and specificity). Given the inconclusive nature of evidence in
social science, external data, regardless of the amount and quality, cannot be used in
a confirmatory manner.

Take the case of Schelling’s (1971) model of residential segregation, a canonical
example of agent-based social simulation. The model is a simple cellular automaton
where agents, divided in two populations, must decide whether to stay in the same
place or relocate, based on local preferences for similarity. In part, the model became
popular because it showed that even mild local preferences for similarity lead to clear
segregation dynamics at the population level. Due to the potentially major social
implications of this result, the model has been continuously replicated and extended,
with varying degrees of contrast against empirical data (Bruch & Mare, 2009; Huang
et al., 2014). It is, arguably, the agent-based social simulation for which the extended
network of hypotheses has been more extensively explored, which, following the
orthodoxy, should make it less susceptible to underdetermination and, overall, more
validated.

It is not clear, however, whether these multiple replications and extensions have
significantly reduced Schelling’s model risk of underdetermination. The flexibility
that practitioners experience when it comes to modelling, because of the features of
both agent-based modelling and social theory, hinders the identification of the knowl-
edge being tested and the extent to which it is being tested when a simulation is
executed and the results are later validated. This, at the same time, makes it difficult
to univocally determine whether a replication or extension is reducing the underde-
termination of Schelling’s model or is, instead, contributing more generally to the
research programme on residential segregation.

Most researchers will argue that Schelling’s model is about how variations in indi-
vidual preferences for similarity impact the clustering that emerges at the macro
level. Since the original model can be modified in aspects such as its spatial structure,
population composition, preference function or relocation decision, several questions
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could be made about what eventually counts as an implementation of the model.
They could refer, initially, to the behaviour of the computational implementation, e.g.
whether any kind of clustering constitutes evidence for segregation, or to the model’s
capacity to reflect the features of the real-life phenomenon it intends to represent,
e.g. whether warrants for belief could be significantly affected if the original cellu-
lar automaton is replaced by a GIS. Further inquiry could revolve around the need to
make sense of the output at a higher level of abstraction. If the model uses, instead,
a population of agents that tend to integration, does it still count as an implementa-
tion of Schelling’s model? Likewise, did Schelling develop a model about residential
segregation or about a mechanism of spatial asymmetry?

A large amount of questions related to the model’s representational capacity or
its implementation have been previously discussed in the literature. Benenson and
Hatna (2011), for example, suggest that different types of segregation might emerge
if some aspects of the implementation are modified. Similarly, Crooks (2010) claims
that more intricate spatial structures affect the overall dynamics of segregation. Zhang
(2004), in turn, argues that segregation emerges even if agents prefer to live in inte-
grated neighbourhoods. Finally, Clark and Fossett (2008) argue that analysing the
underlying mechanism at a higher level of abstraction might not yield understand-
ing about social dynamics of segregation. Different extensions and replications do
not all produce the same or equivalent results. Yet, variations in the simulation out-
put are not used to prove or falsify previous models. Rather, they are approached
as evidence of the real-life phenomenon’s complexity. Specific implementations are
rarely challenged based on their diverging output, first, because segregation at the
population level remains a consistent pattern, so most authors will argue that their
model proves the robustness of Schelling’s original conclusions, second, because the
different implementations usually remain conceptually plausible and not mutually
exclusive and, third, because there are no standardised criteria to decide whether a
model is a replication or extension of Schelling’s model or just another model of
residential segregation.

Common validation techniques in agent-based social simulation do not test the
adequacy of assumptions regarding, for example, whether a model that changes
Schelling’s original preference function for one where agents tend to integration
should count as an extension or whether conflicting results might be taken as
negative evidence for Schelling’s model. To understand the effect of the conjoint
network of hypotheses on warrants for belief in adequacy of representation, practi-
tioners must inquire into aspects such as how they make sense of evidence both to
position their work within general research agendas (Anzola & Rodriguez-Cȧrdenas,
2018) and to engage in wider collective dynamics of justification (Ylikoski &
Aydinonat, 2014).

Having access to external data on segregation dynamics could certainly help to
better bridge theory and models in agent-based social simulation and reduce underde-
termination, among other things, by limiting the possible changes and the parametric
space explored in an extension or by setting specific dimensions or loci of compari-
son. It is unlikely, however, that empirically calibrating the models will permit com-
pletely ruling out problems of holist underdetermination. Initially, a researcher will
rarely have access to all the relevant empirical data associated with a complex social
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phenomenon such as segregation. In real life, for example, decisions to relocate have
been shown to be affected by a multiplicity of factors, not necessarily connected, such
as race, income, marital status, the housing market or job location (Bruch & Mare,
2006). In social science, there is, as well, always the question about the extent to which
any empirical data set is representative of every possible situation. As a result, empiri-
cal models are likely to remain underdetermined in at least one key dimension. For
example, extensions that use external data about preferences or decision-making pro-
cesses (e.g. Bruch & Mare, 2006; Clark, 1991; Tsvetkova et al., 2016) remain under-
determined regarding contextual aspects, such as the spatial structure of interaction.

External data might also prove insufficient to rule out underdetermination that is
not connected to the way the phenomenon is theorised about, but to beliefs and prin-
ciples regarding how agent-based modelling, as a method, can be used to acquire
knowledge of social phenomena. In agent-based social simulation, modelling prac-
tices are grounded on a particular understanding of the type of phenomena that can be
modelled, i.e. complex social dynamics, and what is important to model about these
phenomena. For example, the temporal evolution of the simulation is interpreted as
a correlate for processes of emergence (Anzola, 2021). While there will likely be
widespread agreement among practitioners that Schelling’s model evidences an
emergent process in which local individual action produces unintended and uncoor-
dinated clustering at the macro level, there might not be a consensus regarding the
theory of emergence being tested. Does this theory of emergence assume the exis-
tence of levels of reality? If it does, are these levels ontological or epistemological?
Is their relationship of supervenience and realisation? Is there downward causation?

Holist underdetermination poses a challenge for standardisation tools, and, in
general, for validation, because there is a significant amount of knowledge that is
incorporated into the model interpretation and, yet, is not really tested during the
process of validation. This knowledge is diverse in nature. It might be decidedly
practical, e.g. about some aspects of the phenomenon for which there is no external
data available, but could also have strong theoretical foundations, e.g. what practi-
tioners believe constitutes a good explanation (and the adequate manner to report
it). Practitioners rarely reflect upon the wider network of underlying knowledge dur-
ing validation processes, for in most cases, it remains tacit during the simulation life
cycle and knowledge transfer processes. This knowledge is not validated by practi-
tioners in individual instances of modelling; rather, it becomes normalised through
social consensuses in relatively complex dynamics of interaction.

Explicitly inquiring into the social epistemology of agent-based social simulation
practices is necessary, for currently, this knowledge is unlikely to be revisited unless
consensuses break down. The emergence of the KIDS approach to modelling (‘Keep
it Descriptive, Stupid’; a preference for empirically calibrated models), for instance,
fostered a reconceptualisation of the approach to validation practices in social simu-
lation with its claim that simpler models are not necessarily truer (Edmonds & Moss,
2005). It made evident a growing discontent with the epistemic status of abstract
models that, eventually, led to a change in warrants for belief in the adequacy of a
simulation (Anzola, 2019a).

The debate regarding the representational capabilities of abstract and empirically
calibrated models fostered major changes in knowledge justification processes. It
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evidenced, among other things, the need for practitioners to clearly state the purpose
and scope of the model, so that others could judge on the adequacy of the inferences.
It also brought to the fore a concern with the technical and methodological aspects
of the operation and validation of a simulation, which has resulted in an increasing
identification and systematisation of the tools and mechanisms practitioners use to
interact with evidence. Finally, it fostered a discussion about how agent-based social
simulation is inserted into the scientific methodological and institutional landscape,
for example, by stressing the importance of empirically calibrating the models, in
order to raise the profile of the method. Standardisation tools were not popular at
the time the KIDS approach emerged. If they were, however, they might have likely
remained unaffected by the debate, for, as it is evidenced by contemporary practices,
they can equally accommodate abstract or empirically calibrated models.

3.2 Contrastive Underdetermination

This second form of underdetermination questions whether empirical results can be
constructed as evidence for more than one theory or hypothesis. In equation-based
modelling in formalised disciplines, contrastive underdetermination is comparatively
less significant, for both models and theories are formal and theories regularly have
paradigmatic status. While the multiple aspects considered during the implementa-
tion of an equation-based model make the relationship between theory and models
one-to-many, models are more often contrasted in terms of the adequacy of the
numeric approximation they provide (Lenhard & Winsberg, 2010). The discussion of
competing explanations proper is still mostly reserved for theories. Conversely, social
simulation, because of the multiparadigmatic nature of social theory and the looser
theory–model connection, is more likely to experience difficulties with contrastive
underdetermination.

The literature in agent-based social simulation shows a longstanding awareness
about the potential effects of contrastive underdetermination. This awareness, how-
ever, has not led to the formulation of any sort of account of contrastive explanation
(i.e. in the form of ‘why p rather than q?’, instead of just ‘why p’). For example,
when Epstein formulated the generative motto: ‘If you didn’t grow it, you didn’t
explain its emergence’ (1999, p. 43), arguably, the most popular explanatory princi-
ple in agent-based social simulation, he acknowledged that growing a phenomenon in
silico was not sufficient for explanation, since there might be alternative micro foun-
dations leading to the same macro pattern. His argument, though, was geared towards
showing that generation was a necessary condition for explanation, so he limited
himself to suggesting that candidate explanations should be dealt with in everyday
practice, depending on their correspondence with empirical data.

The rigorous testing of candidate explanations, while conceptually straightfor-
ward, is rare in everyday practice. In one article, Gilbert (2003), performs a simple
exercise in which he replicates the distinctive clustering of Schelling’s model using
several alternative micro foundations (e.g. property values, cell history, self-defined
populations). The exercise is carried out, in part, to evidence that it is possible, espe-
cially when using simple models, to grow a phenomenon in silico using a multiplicity
of mechanisms. More interestingly, reflecting upon his experience as the editor of
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JASSS, agent-based social simulation’s flagship publication, Gilbert pointed out that
contrastive explanations were far from standard in the journal and, overall, the social
simulation literature.

It is not hard to understand why contrastive explanation might not be a generalised
practice in social simulation: it puts a heavy burden on the process of validation. The-
ory in social science is not thoroughly formalised, so, in many cases, the same theory
could, in principle, be used to support a variety of different models (e.g. Muelder
& Filatova, 2018; Poile & Safayeni, 2016). In addition, there are several social phe-
nomena for which available data is insufficient and unreliable, and for which proper
collection processes might be expensive or even impossible. There are, as well, some
instances where additional data might not be enough to rule out among competing
explanations (Ahrweiler & Gilbert, 2005). Finally, there might be some cases where
a model is able to fit theory and data and, yet, fail to provide an illuminating expla-
nation (Conte, 2009) or where the modeller is purposefully inquiring about possible
rather than actual explanations (Ylikoski & Aydinonat, 2014).

In an article arguing why sociologists should use agent-based models, Chattoe-
Brown (2013) claims that Schelling’s model ‘certainly shows a bi-directional interac-
tion process between individuals and social entities (‘neighbourhoods’)’ (para. 5.4),
making a reference to Giddens’ (1984) structuration theory. The alleged bidirection-
ality and the connection with structuration theory are a matter of interpretation. The
plausibility of this reading of Schelling’s model depends on the extent to which Gid-
dens’ ‘duality of structure’, a particular approach to the reproductive character of
social life, can be made sense of. Some practitioners, for instance, could find it more
plausible to interpret the model in terms of Merton’s (1936) idea of unanticipated
consequences of action. Merton’s approach, unlike structuration theory, emphasises
the bottom-up character of social phenomena and can dispense with any form of
downward causation.

In spite of the differences between the two interpretations, both are equally pos-
sible, given the loose connection between the main output of the model, i.e. spatial
clustering, and the network of beliefs, principles and theories about segregation as
a complex social phenomenon. The methodological features of the cellular automa-
ton do not have a univocal straightforward interpretation. Potential interpretations are
provided by the modeller and contested or agreed upon by the community, depending
on shared theoretical and methodological commitments. While some practitioners
might consider Chattoe-Brown’s interpretation compelling, some other will find Mer-
ton’s better. There might even be some practitioners that come up with a synthesis of
the two.

In the context of Schelling’s model, all these theoretical views are underdeter-
mined by the data provided by the simulation. Since the model does not attempt
to realistically represent the reasons for individuals to move, the interpretation of
the resulting macro pattern can equally accommodate accounts of preference for-
mation that incorporate or waive downward causation. Empirically calibrating the
model may reduce contrastive underdetermination in agent-based social simulation,
but, again, only to a certain extent, for models can hardly be used with confirmatory
purposes. Regardless of the amount and quality of data that could be potentially col-
lected and used for the design, calibration and validation, a model alone will lack the
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sufficient explanatory power to rule out alternative theoretical conceptualisations of
segregation.

For example, empirical research on segregation has focused on two major issues:
the clarification of some aspects of measurement, e.g. the quantification of segre-
gation, and the incorporation and production of suitable data for calibration and
validation, e.g. survey data on individual preferences for relocation (Bruch & Mare,
2009; Huang et al., 2014). While empirical research on residential segregation has
naturally advanced the overall understanding of segregation dynamics, there are a
few issues that could make it difficult to avoid contrastive underdetermination when
addressing a highly complex theoretical construct such as segregation.4 Initially, res-
idential segregation is an easily observable phenomenon, but its quantification is far
from straightforward. There are aspatial and spatial operationalisations of segregation
that do not involve the same variables nor the same scales and levels of measurement,
ultimately, affecting both the outcome of the model and the conceptualisation of the
phenomenon (Reardon & O’Sullivan, 2004; Bruch & Mare, 2009). In addition, the
empirical research on decision-making has centred on the preferences themselves,
but not on how they form (Clark & Fossett, 2008; Huang et al., 2014), which is crucial
to identify whether there are any downward effects. Finally, any potentially relevant
downward effect might be difficult to conceptualise, for its computational representa-
tion might be affected by non-related issues of implementation. The character of the
clustering, for instance, varies depending on the computational agent’s vision (Fossett
& Dietrich, 2009). Thus, a model with empirically calibrated decision-making will
still not be able to avoid contrastive underdetermination associated with ecological
conditions of social interaction.

If competing explanations are not evident and the results of a model cannot be used
as evidence to rule out these alternative explanations, it becomes necessary for prac-
titioners to analyse surrounding beliefs and assumptions that affect judgements on
adequacy. For example, as mentioned before, agent-based social simulation’s account
of explanation strongly relies on the generative principle. This explanatory principle,
however, has been questioned because, among other things, it accounts for emer-
gence, but not for downward causation (Conte, 2009). Should downward causation
become an important explanatory requirement, a change in beliefs about adequacy
of representation, similar to the one produced by the popularisation of the KIDS
approach to modelling, will likely occur.

As with holist underdetermination, standardisation practices cannot account for
contrastive underdetermination or additional explanatory requirements during val-
idation practices. The contrast of alternative explanations is not something that
standardisation tools explicitly contemplate, so practitioners must decide whether to
report on it. In agent-based social simulation, however, there are noticeable negative
incentives for the identification of alternative explanations: the localised nature of
models (i.e. the fact that they offer relatively restricted explanations) and the looser
theory–model connection. When narratives put forward in scientific reporting do not

4In fact, segregation is presented in the literature as a higher order mechanism that operates indistinctly
across domains where clustering patterns emerge at the population level, e.g. classrooms, workplaces,
online networks.
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directly address alternative models and explanations, additional epistemic resources
must be invested to determine whether two models offer competing explanations. For
example, Hegselmann (2017) shows the level of detail in the analysis of the imple-
mentation that must be reached to identify that Sakoda’s (1971) model, a cellular
automaton in which agents, divided in two populations, relocate based on the added
weighted sums of attitudes (negative, neutral or positive) that they have towards both
groups, can be considered a generalised instance of Schelling’s.5

Underdetermination is, by no means, the only source of problems of interpretation.
It, nonetheless, illustrates how the validation of a computational model is not a self-
contained activity that can be approached as a first-order analysis. In agent-based
social simulation, the model output and the available external data for validation
alone do not provide warrants for belief in the adequacy of a computational model.
Some criteria from which these warrants are produced go beyond the implementation
and operation of any given simulation and might remain tacit for the entire simulation
life cycle. Considering the scope of standardisation tools, these criteria would be left
unaccounted for if the impact of social epistemology is not independently analysed.

Making these criteria explicit could further understanding about dynamics of the-
ory building and testing in agent-based social simulation, particularly regarding the
interplay between individual models, model clusters and research programmes. Due
to the multiparadigmatic and unformalised nature of social theory, validation prac-
tices take place in a context where the theory–model relationship is many-to-many
and novel data, because of its inconclusive nature, cannot fully rule out issues of
interpretation. By clarifying the links between warrants for belief and wider networks
of knowledge, social epistemology could not only render validation practices more
transparent, but also contribute to relevant contemporary debates in social science
that hinge on this diversity of alternative models and theories, such as the connec-
tion between model pluralism and adequacy of explanation (e.g. Aydinonat, 2018;
Grüne-Yanoff & Marchionni, 2018).

4 Commensuration

Science’s success greatly depends on being able to classify and compare. Dynamics
of commensuration can take different forms, depending on the disciplinary tradition.
This section will centre on two popular forms of commensuration in agent-based
social simulation: docking and replication. The former is the inquiry about whether
two models can produce the same outcome, so a to allow for comparison, selec-
tion or subsumption (Axtell et al., 1996). The latter is an alternative implementation
of an already existing model that differs from the original model in at least one of
the following dimensions: time, hardware, language, toolkit, algorithm and authors
(Wilensky & Rand, 2007). Two cases will be discussed to exemplify how issues of

5The article also offers an interesting account of why dynamics of accreditation neglect Sakoda’s pionee-
ring contribution to the study of clustering dynamics.
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social epistemology might affect dynamics of commensuration: Axtell et al.’s (1996)
docking exercise, and Will and Hegselmann’s replication of Macy and Sato’s trust
model (Macy & Sato, 2002; 2008; 2010; Will, 2009; Will & Hegselmann, 2008a;
2008b).

4.1 Docking

Axtell et al.’s (1996) article discusses the docking exercise carried out to commen-
surate two computational models of cultural transmission, originally developed by
Axelrod (1995) and Epstein and Axtell (1996). Axelrod’s model is a cellular automa-
ton where agents are endowed with culture, codified in a 5-bit vector (each with 10
possible values). In each iteration, two agents interact, i.e. adopt the same value for
one of the five vector positions, depending on a probability based on cultural simi-
larity. Agents in Epstein and Axtell’s Sugarscape model are, as well, endowed with
culture, codified in a 11-bit vector (each with 2 possible values). In each iteration,
agents also have the chance to interact with a partner and adopt the same value for
one bit of the culture vector. The model, however, is much more complex than Axel-
rod’s, for it is set in a foraging environment, where agents engage in dynamics such
as trade, combat or reproduction.

The article documents the collaborative effort in which the authors of both mod-
els engaged to make the comparison possible. The collaboration started with the
agreement of a research agenda that included issues such as a plan to modify
the implementation of the models, the selection of commensuration criteria and
a timetable for the activities required. Extensive collaboration among the authors
was needed to dock the models because, while they both address the phenomenon
of cultural transmission, each model follows different research interests and log-
ics of research. While Axelrod’s model is designed to experimentally test a single
mechanism of cultural convergence and polarisation, Epstein and Axtell’s model is
designed to be a fully fledged artificial society (Axtell et al., 1996).

The article is interesting, for it reports on the entire docking exercise, not just its
results. Hence, it provides insights into commensuration as a scientific practice. For
the present discussion, it is worth noting that the authors encountered obstacles that
are linked to matters beyond implementation and the comparison of the simulation
output with the phenomenon of interest. For instance, standard reporting practices are
criticised. According to the authors, some models are poorly documented in scien-
tific reports, making commensuration exercises impossible without collaboration. In
addition, they question the lack of incentives for docking, even though it is a practice
that could clearly help both test the robustness of the results and stress the importance
of commensuration in scientific inquiry. Journals and funding bodies, they suggest,
should develop a normative framework that rewards this type of validation exercises.

4.2 Replication

Inadequate documentation in academic reporting impacts replication practices as
well. Unlike Axtell et al’s (1996) docking attempt, the replication of Macy and Sato’s
(2002) trust model is carried out as an independent effort. The original model inquires
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about possible causal mechanisms that explain cross-societal differences in trust-
building processes. It is an iterated prisoner dilemma with option to exit, where trust
formation is explored by allowing agents in a network to interact, based on condi-
tional strategies that take into account: the agent’s propensity for cooperation, the
position of both agents in the network (which makes the exchange local or global)
and the perceived trustworthiness of the partner.

The replicaters initially tried to replicate the model within a pedagogical context.
Yet, given the difficulties encountered, they later decided to reflect on their experi-
ence in an academic outlet. The most significant obstacle, the replicaters argue, is that
the documentation for the initial model was insufficient and, at times, ambiguous and
inconsistent (Will & Hegselmann, 2008a). Their effort resulted in two independent
models, neither of which was able to reproduce the basic dynamics of the original
model. In part, Will and Hegselmann’s exercise was negatively impacted by not being
able to properly communicate with the original authors. During the process, some
brief questions about the model were answered by email. Yet, the replicaters did not
have access to the source code or the unconsolidated results of the original model.
Following the first reply from the original authors (Macy & Sato, 2008), there is an
additional replication that uses the source code (Will, 2009). While the results of
the original model are successfully replicated this time, the replicater considers there
to be a problematic assumption built into the model. The original authors, however,
disagree with this assessment (Macy & Sato, 2010).

The lack of communication between original and replicating authors, initially,
increased the duration of the replication process. For the docking exercise, results
were produced after a couple of months and disseminated in a joint publication the
following year. Comparatively, for the replication exercise, the original model was
published in 2002, the first replication attempt was carried out in 2008 and the last
publication on the issue dates from 2010. More importantly, not having direct com-
munication increased the amount of epistemic resources used for commensuration.
The narrative provided in the articles documenting the replication process evidences
the complex sense-making both the original and the replicating authors went through.
These processes were demanding, especially for the latter, given the lack of success
in the initial replication. Even though the results of the original model were even-
tually replicated, the exercised ended, at least in academic publications, without a
complete agreement about the practical and theoretical consequences that should be
drawn from the trust model. It is not entirely clear whether the model should be
considered validated.

4.3 Normalisation of Knowledge

There are two key aspects of commensuration in agent-based based social simulation
evidenced by these two cases that are worth highlighting. First, it is common to find
models that address the same phenomenon but do not readily lend themselves for
commensuration, for they are grounded on significantly different representational
strategies. Second, exercises on commensuration, even if rigorously and thoroughly
performed, might lack the confirmatory power to fully accept or refute the results of
a given model. These are problems the authors themselves identify, which motivates
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the call for communication and collaboration in commensuration exercises that is
made in the articles. Over the years, the literature on commensuration in agent-based
social simulation has especially centred on the potential positive effects of the former:
communication.

Communication in commensuration processes is fundamental because it allows
making tacit knowledge explicit. Standardisation tools could, in principle, be used
to avoid problems of contingency, e.g. availability or cooperation from the origi-
nal author. In a review of the ODD protocol, Grimm et al. (2010) claim that the
increasing popularity of the protocol has allowed for more rigorous formulation of
computational models. Having to break down the simulation processes into the dif-
ferent categories of ‘Overview, Design concepts, and Details’, they suggest, has made
practitioners aware of their theoretical motivations, eventually facilitating practices
such as replication.

The protocol, however, cannot guarantee that the necessary or right criteria are
used for commensuration. Standardisation yields the process more transparent. While
the success of some commensuration exercises depends on making tacit knowledge
explicit, in other cases, like Macy and Sato’s trust model, there might be additional
representational and operational aspects for which new forms of consensus must be
reached. As such, their resolution hinges more generally on the social epistemol-
ogy of the agent-based social simulation, particularly, the criteria and procedures that
practitioners have adopted or devised for the resolution of disagreements. Standardi-
sation tools do not entirely solve issues of validation, for they might help make tacit
knowledge explicit. Yet, they cannot normalise it.

The issues that require new consensuses and normalisation do not arise from the
process of validating an individual model, but from beliefs and principles about the
knowledge that can be obtained through agent-based modelling as a method and
agent-based social simulation as a scientific practice. In general science, for instance,
replication is often taken as a hallmark of the rationality of science. On one hand,
successful replication constitutes one of the most robust types of confirmation; on the
other hand, it stresses the peer-reviewed nature of scientific discovery (Burman et al.,
2010; Collins, 1992; Resnick, 2013). In agent-based social simulation, conversely,
there are different approaches to replication due to the unevenly distributed skill and
knowledge landscape. Since practitioners are not trained as computational social sci-
entists, new entrants, particularly those with a background in social science, often
lack programming skills. These skills are occasionally acquired by replicating previ-
ous computational models. The reason is simple: this approach bypasses the nuances
associated with formulating and validating the model. It allows new entrants to focus
on the technical aspects of computational modelling, while still providing contextu-
ally relevant learning practices. This view of replication as a task for new entrants
coexists with a view of replication as an activity that demands significant knowledge
and command of the method, for it helps identify and assess differences in alternative
implementations of a model. While the former view is not meant to impact validation
processes, the latter view has validation as its main concern.

Agent-based social simulation’s idiosyncratic approach to replication practices has
produced a distinctive set of beliefs and practices when it comes to commensuration.
Unlike general science, in agent-based social simulation, replication (and, to a certain
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extent, docking) is sometimes perceived as an exercise on verification (e.g. Edmonds
& Hales, 2003; Gilbert, 2010), rather than validation. This is due, in part, to the role
played by the implementation process in research practices, but also to the fact that,
so far, several well-known exercises of commensuration have focused on (and found
difficulties with) implementation. As a result, the process of replication has been
framed within a view of epistemic justification where the replicater has the role of
‘[...] catching and correcting one’s errors’ (Kerr et al. 1996, p. 696). This ‘individu-
alist’ view of the role of replicaters in social simulation stands in stark contrast with
the ‘collectivist’ view that prevails in general philosophy of science. Replication has
a privileged epistemic status in both realist (Popper, 1959) and constructivist (Collins,
1992) epistemologies, for it is seen as an exercise on collective knowledge-building:
it allows for an inter-subjective testing and confirmation of knowledge.

While commensuration does indeed help with verification in agent-based social
simulation, its role in validation should not be overlooked.6 Scientific results and
their material realisation (in this case, computational models) have a many-to-many
relationship. Thus, commensuration is one of the mechanisms to turn simulation
results into knowledge claims. To produce and accumulate knowledge, criteria to
deal with mismatches in commensuration must be developed and normalised. It is
after these criteria, on one hand, that concepts such as ‘success’, ‘error’ or ‘truth’
are articulated, and, on the other hand, that measurement and testing standards are
established.

Social simulation faces distinctive challenges for the development of criteria that
adequately cover both fronts. The definition and application of measuring and testing
standards has so far proven difficult, in part, because programming languages are suf-
ficiently flexible syntactically and semantically, so the same theory (e.g. Muelder &
Filatova, 2018; Poile & Safayeni, 2016) or formal model (e.g. North & Macal, 2002)
can easily lead to different computational implementations. While the equation-based
modelling literature has previously acknowledged that some issues of commensu-
ration mismatch may be due to the methodological nature of computer simulation
(Parker, 2017; Lenhard & Küster, 2019; Lloyd, 2018; Roy, 2019), commensuration
practices regularly rely on well-defined numerical magnitudes linked to the variables
measured through an underlying formal theory. In agent-based modelling, conversely,
points of commensuration, especially for docking exercises,7 need to be discussed
and agreed upon. Axtell et al. (1996) put forward probably the most well-known com-
mensuration typology, according to which commensuration practices in agent-based

6There seems to be a difference between interpretation and commensuration when it comes to their effect
on the process of confirmation. As mentioned above, problems of interpretation are different, depending
on whether the interest is on verification or validation. Conversely, the effect of commensuration seems to
be more diffuse and might require knowledge about the goals of the modeller to be made sense of. Those
authors that acknowledge that commensuration could be used both for verification and validation (e.g.
Axelrod, 1997; Wilensky & Rand, 2007) do not elaborate on the reasons for which a researcher might
choose one or the other or whether, in practice, the distinction is so clear-cut.
7Commensuration in docking is, in part, more challenging than in replication, for the term encompasses a
more diverse set of activities. North and Macal (2002), for example, use the term ‘docking’ to describe an
exercise in which they compare implementations of the beer game, originally, a system dynamics model, in
three different platforms: Mathematica, Re-past and Swarm. This exercise, however, significantly differs
from that of (Axtell et al., 1996).

1350 D. Anzola



modelling can be carried out on three separate dimensions: the traditional numerical
identity (i.e. correspondence in numerical output), along with distributional equiva-
lence (i.e. statistical equivalence in distributions of results) and relational alignment
(i.e. correspondence in internal relationships among results). The last two categories,
while rare in general science, they suggest, are probably the most suitable dimensions
of commensuration for agent-based social simulation.

Adopting measurement and testing standards that are not common in other
branches of science also limits the extent to which external commensuration appa-
ratuses can be successfully employed in social simulation, especially for empirically
calibrated models.8 Traditionally, ‘measuring’ has been understood as the process of
estimating a ratio between a magnitude being measured and a magnitude used as a
standard (Michell, 2007). If numerical identity cannot be systematically used as a
dimension of commensuration, a different approach to the quantification of the mag-
nitudes, the ratio and the estimation must be adopted.9 Practitioners have usually
acknowledged that validation techniques cannot be transferred from other disciplines
or fields without prior critical discussion, for there should be an agreement on how
adequate measurements are produced when using agent-based modelling (Lee et al.,
2015; Lorscheid et al., 2012; ten Broeke et al., 2016; Windrum et al., 2007). This
has led to an ongoing revision of the methodological tools available for validation,
as well as an epistemological revision of how the method instantiates even the most
common scientific epistemic goals, e.g. prediction (Troitzsch, 2009). It is not clear,
however, whether every aspect that affects warrants for belief in the adequacy of rep-
resentation can be satisfactorily addressed, especially when considering the place of
agent-based modelling in the larger social science’s methodological landscape. It has
been argued, for example, that the epistemic opacity of computer simulation could
negatively impact judgements about adequacy in social researchers that are used to
methods in which there is analytical derivation of the results (Lehtinen & Kuorikoski,
2007).

The definition and application of key concepts of commensuration is also
impacted by the methodological features of agent-based modelling. The literature
on replication has evidenced that these models are highly sensitive to changes. Sim-
ple arithmetic modifications can affect the emergent macro pattern (e.g. Edmonds &
Hales, 2003). In turn, modifying apparently innocuous assumptions can sometimes
radically change the simulation outcome (e.g. Galán & Izquierdo, 2005). Results can
equally vary due to predefined features of the high-level language or software (e.g.
Anzola & Rodriguez-Cȧrdenas, 2018). In some cases, it has been acknowledged that
conflicting results might not be worked out without a socialisation of behavioural
or structural assumptions implicitly built into the model (Rouchier, 2003),

8Commensuration in abstract models is not as problematic, for it can rely on loose criteria of resemblance
or plausibility. Different segregation models, for example, could be simply commensurated in their ability
produce clustering at the macro level.
9This claim has particularly interesting implications when discussed in the context of qualitative research,
for some authors in this tradition deny the possibility to qualitatively quantify social phenomena (Lincoln
& Guba, 1985).
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and that judging the adequacy of two simulations with contradictory output might
not depend on the amount of data available (Ahrweiler & Gilbert, 2005). Given that,
comparatively, the evidence produced by agent-based social simulation is not easily
quantifiable, the definition of ‘experimental success’ has to be carefully articulated,
so as to avoid unnecessarily undermining knowledge claims produced with evidence
provided by this computational method.

Increasing confidence in commensuration as a tool for validation, particularly
when the results are conflicting or contradictory, requires the normalisation of some
aspects of social epistemology, such as the effect of epistemic goals on warrants for
belief in the adequacy of representation. Rouchier (2003) describes a failed attempt
to replicate a model addressing the emergence of speculation in economic exchange
involving different types of agents and goods. She claims that the inability to repli-
cate the results of the original model is due to a difference in the implementation
of the cognitive processes that control the agents’ decision-making. Her analysis
indicates that the decision heuristic of the original model is not realistic, yet, she
acknowledges, it might have been purposely designed that way, for the goal of the
original author was to use a computer simulation to replicate experimental results.
While a more realistic decision-making heuristic could be desirable, it should not be
always expected or required. What is missing in this case is a discussion about the
extent to which realism in representation influences warrants for belief in adequacy of
representation.

As with interpretation, the distinctive nature of social theory and data affects com-
mensuration practices in agent-based social simulation. It has led practitioners to
develop idiosyncratic testing standards and criteria of success that accommodate the
challenges for quantification in the social sciences. More importantly, it has fostered
the adoption of a logic of confirmation that minimises the role of commensuration
as an exercise in collective knowledge testing. As a result, the role of several crite-
ria of evaluation that are more generally associated with higher order beliefs, values
and research goals, e.g. realism in representation, are not sufficiently addressed in
the validation literature and its use remains mostly tacit. In this context, social episte-
mology has the potential to provide a more nuanced understanding of the connection
between judgements on adequacy and the social, cognitive and physical organisation
of agent-based social simulation.

5 Accounting for Social Epistemology in Validation Practices

Even though thinking of validation as a matter of correspondence is conceptually
straightforward, in practice, judgements about adequacy are mediated by a multiplic-
ity of criteria that are not univocal, nor linked exclusively to a first-order analysis of
the simulation and its results. There are, as well, noticeable differences in the way
correspondence is meant to be tested. The literature usually distinguishes among four
types of validation:

– input/micro-face validation (i.e. correspondence in the elements implemented in
the model),
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– process/macro-face validation (i.e. correspondence in the patterns and processes
produced by the simulation),

– descriptive output/empirical input validation (i.e. accommodation of previous
data),

– predictive output/empirical output validation (i.e. prediction of new data) (Rand
& Rust, 2011; Tesfatsion, 2017).

There is a multiplicity of techniques, not necessarily exclusive, that can be
deployed to evaluate each type of validation. In turn, not all types of validation tech-
niques measure correspondence in the same way. The specific locus of comparison
and the techniques employed depend on issues related, first, to the problem being
modelled, e.g. the amount of data available, second, its implementation, e.g. the epis-
temic goals set for the model, and, third, general beliefs and principles underlying the
overall practice of agent-based modelling, e.g. what the modeller believes to count
as an explanation.10

Because of this diversity, standardisation tools have a limited role in improving
validation practices, for, as claimed before, these tools are not designed for normali-
sation. There might even be issues of social epistemology surrounding the application
of standardisation tools that warrant some discussion. To be successful, standards
must have widespread adoption. Yet, in spite of the multiple benefits associated with
the use of protocols, for example, the proportion of articles that include the ODD,
arguably, the most popular protocol, is relatively low and clearly varies according to
traditional disciplinary lines (Grimm et al., 2020). There are likely some institutional
factors linked to logics of reporting that are preventing both authors and journals,
regardless of the disciplinary tradition, from consistently adopting this practice.

Identifying the reasons for the still limited popularity of standardisation tools
requires to explicitly addressing the nature of testimony in agent-based social sim-
ulation. The epistemology of testimony could also help understand the nature
of epistemic trust in social simulation. Practitioners often highlight that indi-
vidual interests, ideologies, goals and values affect the process of modelling.
It is, at the same time, necessary for them to acknowledge and inquire into
how several individual cognitive features are learnt or acquired from peers and
upheld collectively, and are also permeated and affected by institutional factors,
such as the cognitive division of labour, the reward system or the reputation
landscape (Kitcher, 1993; Strevens, 2003). The uneven popularity of Schelling’s
and Sakoda’s model, for example, could be partly attributed to the academic
standing of both authors before the consolidation of computational social sci-
ence (Hegselmann, 2017). Explicitly addressing these dynamics is necessary in
the case of social simulation, given that, as mentioned, models do not univo-
cally contribute to a single theory with paradigmatic status, so, in comparison to
equation-based modelling in formalised disciplines, it is more likely for models

10Beliefs about what constitutes a good explanation are far from standard in agent-based social simulation,
reflecting a more general disagreement about this topic in the philosophy of science. Consensus is not
widespread even for some basic scientific values, such as prediction (see, for example, the discussion
between Epstein (2008), Thompson & Derr (2009) and Troitzsch, (2009)).
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offering competing explanations to coexist without creating disciplinary tension, and
for the community of practitioners to be divided around these models.

The possibility of finding competing explanations that cannot be easily ruled out
by linking back to a background formal theory and the additional challenges for com-
mensuration in social simulation require from practitioners, along with testimony, to
pay more attention to the epistemology of disagreement. It might be useful, first, to
clarify the factors that justify a given set of positions to constitute a disagreement, e.g.
whether not using numerical identity as the main commensuration criteria increases
or decreases the chance of disagreement, and, second, the types and orders of evi-
dence that might come into play when validating an agent-based social simulation,
e.g. whether replication is believed to provide higher-order evidence for extensions.

Social epistemology could equally provide some insights into the effect of group
justification dynamics linked to aspects such as the interdisciplinary and collabo-
rative nature of agent-based social simulation. Researchers converging in everyday
practices of computer modelling are trained in different disciplines and might
operate under philosophical principles that are not necessarily socialised and subse-
quently normalised. This cognitive gap between practitioners’ knowledge, expertise
and approach to scientific practices generates particular conditions of epistemic
dependence and also imposes some obstacles for collaborative work, among other
things, because there are no shared values, methods or theories (MacLeod, 2016;
Wagenknecht, 2016). There is, then, an opportunity for practitioners to engage in
an ongoing sense-making process that identifies these disciplinary differences, along
with tensions in general science and the philosophy of science, so that the multi-
ple criteria used during validation practices are made explicit. This process should
start by characterising the current social, physical and cognitive organisation and its
effect on everyday interactions (e.g. how it moderates beliefs about adequate report-
ing standards), and later move forward to accommodate new concerns that arise with
the maturation and evolution of the practice of social simulation (e.g. the ethics of
computational modelling).

The sense-making process should also foster a critical assessment and update of
the knowledge that has been transferred from other disciplines or fields. Representa-
tion, as mentioned, is a current topic of debate in philosophy of science that might
influence validation processes and warrants for belief in the adequacy of the method.
It is not the same, though, to assume that the model and the target phenomenon
are isomorphic, as to assume the former is a fiction that distorts important features
of the latter (Frigg & Nguyen, 2017). While the first interpretation can partially fit
the idea of the computational model as a direct simplified representation of the tar-
get phenomenon that could be validated in terms of similarity or isomorphism, the
second interpretation radically differs from it. Practitioners of agent-based social
simulation have yet to address the nature of representation in computer simulation,
in spite of these models being, in comparison with equation-based models, more
representationally flexible.

The results from these sense-making and normalisation processes need not be gen-
eralised. It is possible that, in fact, new consensuses lead to further fragmentation
of the practice of agent-based social simulation, depending on how different epis-
temic goals are parsed and different modelling trade-offs are dealt with (Edmonds
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et al., 2019; Graebner, 2018; Matthewson & Weisberg, 2009; Parker & Winsberg,
2018). For instance, it is regularly argued that, in comparison with comprehension,
prediction requires agents with more intricate cognitive structures. Hence, validation
processes might eventually vary in accordance with the computational agents cogni-
tive structure. Likewise, the acknowledgement and popularisation of non-traditional
modelling goals such as optimisation or control might propagate new practices and
lead to more complex modelling styles and preferences. Within the applied subdisci-
plinary context of organisational decision-making, it might be the case that models’
mechanisms become less transparent because of the subordination of explanation to
problem-solving.

The scope of consensuses could also be limited, first, by the model-based nature
of social simulation and, second, by the social character of science as an institu-
tion. Initially, model-based reasoning is an activity that cannot be separated from the
cognitive features of the knowing subjects that intervene in the processes of design,
operation analysis and socialisation of computational models, nor from the social and
physical context in which these processes are carried out. Thus, there will be sig-
nificant contextual limits to the level of generality that normalisation processes can
achieve in social simulation. In turn, additional validation criteria might be intro-
duced, with varying degree of consensus among practitioners, following bidirectional
reinforcing dynamics of influence between science and society. Policy-oriented prac-
titioners could start using criteria of evaluation associated with impact,11 which is an
issue current validation processes rarely involve.

While normalisation will unlikely be universal, it is nonetheless necessary. Agent-
based modelling has yet to cement its status as a reliable scientific method in social
science. In part, this is because some questions remain regarding how the method is
used to tackle representation, i.e. how it is provides reliable indirect knowledge of
the phenomenon of interest. Making explicit and normalising general beliefs and cri-
teria that support validation processes could help, on one hand, to provide a more
accurate, consensual and transparent answer to those that still do not fully trust the
methodological soundness of the method and, on the other hand, to reduce the amount
of epistemic resources used for processes such as commensuration and interpreta-
tion, making it easier for researchers to achieve higher levels of theoretical detail and
integration in everyday practices.

6 Conclusion

This text discussed the need for practitioners of agent-based social simulation to
address the effects of social epistemology on validation practices. It argued, first,
that agent-based social simulation experiences distinctive challenges for validation
linked to the combined effects of the computational expressiveness of agent-based
modelling, the multiparadigmatic and unformalised nature of social theory and the

11Similarly, for example, to public sociology (Burawoy, 2005), a strand within mainstream sociology that
has the engagement of non-academic audiences as a criterion of ‘success’.

1355Social Epistemology and Validation in Agent-Based Social Simulation



inability to use social data with confirmatory purposes; and, second, that tackling
issues of social epistemology through standardisation is a strategy of limited success,
for these tools are unable to make explicit all the knowledge that affects warrants for
believe in the adequacy of a simulation.

After briefly describing how social epistemology permeates everyday practices
of social simulation, its impact on interpretation and commensuration, two funda-
mental activities in validation practices, was addressed. Social epistemology, it was
claimed, can minimise issues of interpretation by making sense of the many-to-many
theory–model relationship in agent-based social simulation and equally help make
explicit the idiosyncratic rationale for criteria and procedures of commensuration.
In both cases, it was suggested, standardisation tools could render the process more
transparent, but are unable to normalise some knowledge that is needed to strengthen
validation practices.

Overall, the discussion about interpretation and commensuration highlights the
opportunity to develop new consensuses in agent-based social simulation in which
knowledge production and transfer dynamics, as well as the use of computational
models as objects of representation, are better understood as a collective endeavour.
The acknowledgement that social epistemology has an impact on validation offers
an opportunity to intervene in the evolution of key scientific practices. Agent-based
social simulation is an area of research with an approach to validation that provides
significant advantages. For instance, it provides exemplary evidence of the role of
scientific replication, in a context where the general reproducibility of science has
been put into question (Baker, 2016). It also has opportunities to improve, however.
In most cases, for example, models are organised in clusters of basic models with
multiple replications/extensions that might not be entirely cogent, nor lead to fully
articulated theories. Reducing and simplifying the amount of resources required for
interpretation and commensuration might not only help appraise individual models,
but also systematise the knowledge produced in agent-based social simulation.
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