
RESEARCH ARTICLE Open Access

Computing and Programming
in Context—Introduction

Tomas Petricek1

Received: 25 March 2020 /Accepted: 14 June 2020
The Author(s) 2020

Abstract
In a society where computers have become ubiquitous, it is necessary to develop a
broader understanding of the nature of computing and programming, not just from a
technical viewpoint but also from a historical and philosophical perspective. Computers
and computer programs do not exist in a vacuum. Instead, they are a part of a rich socio-
technological context that provides ways for understanding computers and reasoning
about programs. This includes not only formal logic, mathematics, sciences, and tech-
nology but also cognitive sciences and sociology. The focus of this special issue is on
questions that arise whenwe consider computing and programming in a wider context. In
particular, the papers in this special issue explore the interplay between computing or
programming and mathematics, formal logic, sciences, technology, and society.

Keywords Philosophy of programming . Formal logic . Simulations . Natural language
processing

Mathematics and formal logics—What role have mathematics and formal logics
played in the history of computing and programming? What is the nature of the
relationship between computer programs as technical computing artifacts and their
formal models?
Sciences—Does computing and programming provide qualitatively new methods
in sciences such as physics or biology? What can we learn by tracing the
interaction between computing and scientific knowledge through the history?
Technology—In what ways have technological innovations enabled developments
in computing and programming? What is the nature of the technological artifacts
used in computing and how does it differ from other areas of technology?
Society—What are the societal implications of computing and programming?
How are developments in computing interlinked with activities of professional

https://doi.org/10.1007/s13347-020-00411-w

* Tomas Petricek
t.petricek@kent.ac.uk

1 University of Kent, Canterbury, UK

Philosophy & Technology (2021) 34:7–11

9 JulyPublished online: 2020/

http://crossmark.crossref.org/dialog/?doi=10.1007/s13347-020-00411-w&domain=pdf
mailto:t.petricek@kent.ac.uk

organizations or businesses? How does programming contribute to disciplines
outside of a narrow business programming context in areas such as art?

This special issue brings together works exploring computing and programming across
their rich formal mathematical, scientific, technological, and social contexts. We are
convinced that an interdisciplinary approach is necessary for understanding computing
and programming in their multifaceted nature. As such, this issue presents interdisci-
plinary submissions by researchers coming from a diversity of backgrounds, including
historians, philosophers, and computer scientists.

1 Interdisciplinary Approach to Computing and Programming

The special issue is based on the work of the DHST/DLMPST Commission on the
History and Philosophy of Computing (www.hapoc.org), which was established in
2013. The Commission aims to create opportunities for collaborations and discussions
across disciplinary and methodological boundaries. It engages with all aspects of
computing and programming including the philosophy and the history but also its
technical and formal aspects. We are convinced that it is only by being embracive and
tolerant with respect to different viewpoints, methods, and topics that it is possible to
develop a history and philosophy of computing which accounts for both the scientific,
social, and technological aspects of the discipline.

The Commission organizes two series of interleaving events—a larger and broader
one, the Conference on the History and Philosophy of Computing (HaPoC), and a
smaller and a more focused one, the Symposium on the History and Philosophy of
Programming (HaPoP). This special issue follows two recent events, the fourth HaPoC
conference, held in Brno, Czechia, in October 2017 and the fourth HaPoP symposium,
held in Oxford, UK, in April 2018. Several of the papers presented in this special issue
are full papers based on talks given at those events.

The interdisciplinary approach advocated by the Commission also inevitably places
a burden on the reader of this special issue. The individual papers in this issue follow
different approaches and methods. The unifying theme is that each paper combines
computing or programming with at least one other discipline. As such, you will find
here papers that are thoroughly historical, highly technical, and political. However,
following the open and collaborative approach of the Commission, all of the presented
papers are written with a broader audience in mind. This special issue presents 7 papers
that embody the interdisciplinary approach to studying computing and programming
advocated by the Commission on the History and Philosophy of Computing.

2 Computing and Programming Meet Philosophy and Culture

The first two papers consider the history of technical concepts, namely, metasyntactic
variables and middleware from broader philosophical and cultural perspectives.

In Foo, bar, baz...: The metasyntactic variable and the programming language
hierarchy, Brian Lennon follows the history of naming metasyntactic, or deliberately
meaningless, variables using the terms “foo,” “bar,” and similar. Lennon points out that

T. Petricek8

http://www.hapoc.org

such naming of meaningless variable is an element of a particular programming culture.
A variable name, which means nothing to a machine and is not even needed for
understanding the purpose of the program code here, has a fundamental cultural
meaning. This is substantiated by an investigation looking at historical uses of the term
“foo” but also domains which explicitly discourage their use such as the software
craftspersonship movement. The paper concludes by drawing an inspiring analogy
between the technical notion of “pointer” and a cultural interpretation of pointers—
metasyntactic variables like “foo” and “bar” are cultural pointers that link the program
to a broader programming culture and history.

In Middleware’s Message: The Financial Technics of Codata, Michael Castelle
traces the history of middleware—essential subsystems for asynchronous messaging
that have been, and still remain, a vital component of many software systems not just in
the finance domain. On the historical side, the paper follows the development of
middleware from the appearance of a “stock ticker,” a telegraphic device introduced
at the New York Stock Exchange in the 1860s, to the contemporary publish/subscribe
programming abstractions. On the technical side, the paper identifies the stock ticker as
an instance of “codata,” a notion of potentially infinite data streams used in contem-
porary programming research. Finally, on the philosophical side, the paper explores
links between the ticker and the work of early twentieth-century philosophers of
synchronous experience, simultaneous sign interpretations, and flows of discrete events
(Bergson, Mead and Peirce, Bachelard).

3 Computing and Programming Meet Formal Mathematical Logic

The second two papers of this special issue look at the relationships between research
on functional and logic programming and work in formal logic, more specifically,
combinatorial logic and proof theory.

In From Curry to Haskell – Paths to abstraction in programming languages, Felice
Cardone studies conceptual links between notions in Curry’s 1920s ideas on combi-
natorial logic and corresponding notions in 1990s source code written in the functional
language Haskell. The paper studies the ways in which Curry’s work on logic,
motivated by problems in the foundations of mathematics, provides concepts that
nowadays serve as the foundations of the functional programming paradigm. Those
concepts include formal systems which, like functional programming languages, strive
towards abstraction; the use of function application as the only primitive for combining
the objects of combinatory systems or, later, program fragments; and the inversion
principle of formal systems, which is linked to the functional programming notion of
folds.

In Reciprocal influences between proof theory and logic programming, Dale Miller
provides another example of why we need to look beyond narrow disciplinary bound-
aries in order to understand important developments in the history of programming.
The paper traces a fruitful interaction between mathematical logic and programming.
Writing from the perspective of a participant in those developments, Miller introduces
important proof-theoretic ideas that found use in research on programming languages
and vice versa. In the former direction, sequent calculus, linear logic, and higher-order
quantification influenced logic programming and programming language research more

Computing and Programming in Context—Introduction 9

generally. In the latter direction, new ways of structuring proof search in logic
programming inspired richer analyses of proofs.

4 Computing and Programming Meet Science and Engineering

Running scientific simulations and performing engineering computations has been an
important domain for computing and programming since the era of the first digital
computers. The next two papers in the special issue consider the history and philosophy
of applied computing in those two domains.

In A formal framework for computer simulations: surveying the historical record
and finding their philosophical roots, Juan Manuel Durán uses a historical approach to
shed new light on the philosophical question of “how do computer simulations
explain?”. The paper looks at definitions of the notion of computer simulation throughout
the history and identifies two different ways of thinking about simulations. According to
the first viewpoint, simulations are finding a set of solutions in a mathematical model.
According to the second, simulations are descriptions of patterns of behavior. The two
viewpoints form a methodological map of computer simulations, but they also allow the
author to clarify philosophical assumptions that different approaches to computer simu-
lations entail.

In Concepts of solution and the finite element method: A philosophical take on
variational crimes, Nicolas Fillion and Robert M. Corless explore a methodological
issue with typical real-world use of the finite element method for solving partial
differential equations. Computational convenience is often chosen over mathematical
soundness, which is known as “variational crime.” According to the authors, claiming
that “the crime does pay” would be too simplistic. They distinguish two different
strands of accuracy used to evaluate inexact solutions and document how applied
mathematicians deploy much ingenuity to counteract the damage that could be caused
by the committed variational crimes. Although the paper has a specific focus on one
concrete “crime” in the context of applied mathematics, we can also see it as an
example of a ubiquitous conflict between computing in theory and practice.

5 Computing and Programming Meet Linguistics

Finally, the last paper of this special issue uses a broader philosophical perspective to
look at a recent development of deep neural network models in computational
linguistics.

In Why can computers understand natural language? The structuralist image of
language behind word embeddings, Juan Luis Gastaldi explores the remarkable recent
success of deep neural network models in the field of Natural Language Processing.
The paper attempts to depict the image of language that those new computational
models offer to us. Much work on deep neural network models (such as word2vec) has
been driven by technological motivations and innovations, but the image of language it
offers is not so unfamiliar. Most of the underlying mechanisms can be explained by
well-known techniques in computational linguistics, and the paper links the resulting
image of language to structuralist roots dating back to Saussure.

T. Petricek10

6 Concluding Remarks

The contents of this special issue reflect the typical contents of presentations at events
organized by the Commission on the History and Philosophy of Computing, including
the HaPoC 2017 conference and HaPoP 2018 symposium. At a first glance, it may
seem difficult to find a common theme among the individual papers. Indeed, the topics
range from epistemology of scientific simulations to cultural references in variable
naming! The theme joining together the papers in this special issue is not a single
problem or a single topic but a shared approach. All papers presented here study their
topics with an open-minded interdisciplinary method. They recognize that we cannot
truly understand deep neural networks without considering work done in linguistics or
that we cannot talk about software engineering concepts such as middleware without
being aware of discussions in the philosophy of time.

The call for papers for this special issue received 14 submissions, out of which 7 were
eventually accepted. Many of the 14 submissions were based on earlier presentations at
HaPoC 2017, which featured 21 talks over 3 days, and HaPoP 2018, which was a one-
day event featuring 10 talks. This special issue would not be possible without the hard
work of the organizers of those events, support of the HAPOC Commission, and the
many anonymous reviewers of the submitted papers. Last but not least, we are grateful
to the editors of the Philosophy & Technology journal, namely, Luciano Floridi and
Giuseppe Primiero, whose support throughout the editorial process was indispensable.
Some of the work on this special issue has been supported by the ANR project
PROGRAMme (ANR-17-CE38-0003-01).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the
article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Computing and Programming in Context—Introduction 11

https://doi.org/

	Computing and Programming �in Context—Introduction
	Abstract
	Interdisciplinary Approach to Computing and Programming
	Computing and Programming Meet Philosophy and Culture
	Computing and Programming Meet Formal Mathematical Logic
	Computing and Programming Meet Science and Engineering
	Computing and Programming Meet Linguistics
	Concluding Remarks

