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Abstract
The topics of structural proof theory and logic programming have influenced each
other for more than three decades. Proof theory has contributed the notion of sequent
calculus, linear logic, and higher-order quantification. Logic programming has intro-
duced new normal forms of proofs and forced the examination of logic-based
approaches to the treatment of bindings. As a result, proof theory has responded by
developing an approach to proof search based on focused proof systems in which
introduction rules are organized into two alternating phases of rule application. Since
the logic programming community can generate many examples and many design
goals (e.g., modularity of specifications and higher-order programming), the close
connections with proof theory have helped to keep proof theory relevant to the
general topic of computational logic.

Keywords Structural proof theory · Logic programming · Computational logic ·
History of programming languages

1 Introduction

Both symbolic logic and the theory of proof have been applied successfully in the
foundations of mathematics. For example, Gentzen’s early work on the sequent
calculus (Gentzen 1935, 1938) was used to show the consistency of classical and
intuitionistic logic and arithmetic. The last several decades have demonstrated that
logic has a significant and continuing impact on computer science, possibly rivaling
its impact on mathematics. For example, there are major journals that cover the gen-
eral topic of computational logic—the ACM Transactions on Computational Logic,
Logical Methods in Computer Science, the Journal on Automated Reasoning, and the
Journal of Logic and Computation—to name a few. Similarly, there are several major
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conferences (e.g., CADE, CSL, FSCD, LICS, IJCAR) that address various uses of
logic in computational settings. This topic also has its own “unreasonable effective-
ness” paper, namely “On the Unusual Effectiveness of Logic in Computer Science”
(Halpern et al. 2001).

As computer science moves forward, researchers and practitioners occasionally design
new programming languages. Usually, the first demands asked of the designers of
programming languages are short term, such as the need to support effective imple-
mentations and to support interoperability with existing code and hardware. While
such short-term demands can always be realized, poor language designs can lead to
long-term costs. On this point, it is useful to be reminded of the following, oft-cited quote.

Beauty is the first test: there is no permanent place in the world for ugly
mathematics. — G. H. Hardy, A Mathematician’s Apology (Hardy 1940)

The computer scientist sees in this quote a parallel in their own field: a poorly
designed computer system, even one that might be working, may have no permanent
place in the world since many additional demands usually appear and these will likely
force ugly systems to be replaced by those based on better designs. Such additional
demands are numerous and include the requirement that code should be modular to
support maintainability; programs should be compilable so that they work on a single
processor as well as on multiple processors; or that some properties of code may need
to be formally proved before that code is used in critical systems. Satisfying such
additional demands requires a deep understanding of the semantics of a programming
language: quickly hacked languages do not generally support deep understanding or
establishing formal properties.

When looking to articulate and exploit deep principles in computing, researchers
are often led to exploit existing mathematically well-understood concepts or to
develop new frameworks. For example, finite state machines and context-free gram-
mars have been employed to provide a strong foundation for parsing strings into
structured data. When needing to deal with communications and shared resources
in computer networks, process calculi, such as CSP (Hoare 1985) and CCS (Milner
1980), have been developed, studied, and shaped into programming languages (e.g.,
the Occam programming language (Burns 1988)). Occasionally, syntactic systems
that are not traditionally considered logics are so well studied and found to be of such
high quality that they can be used as frameworks for programming languages: the λ-
calculus (Barendregt 1997; Church 1985) and the π -calculus (Milner 1999; Milner
et al. 1992; Sangiorgi and Walker 2001) are two such examples.

In this paper, I show how various features of some well-studied logical systems
directly influenced aspects of programming. At the same time, I provide some exam-
ples where attempts to deal with various needs of computing directly lead to new
designs and results in logic. Logic is a challenging framework for computation:
much can be gained by rising to that challenge to find logical principles behind
computation.

I should make it clear before proceeding that I am a participant in the several-
decade-long story that I give in this paper: I am not a detached and objective historian.
I have two goals in mind in telling this story. First, I want to give specific exam-
ples of the mutual influence that has occurred between the abstract and formal topic
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of proof theory and the concrete and practical topic of computer programming lan-
guages. Second, I want to show how a part of computer science can be attached to
the foundations of formal proof that was pioneered by Hilbert, Gödel, and Gentzen:
the foundation that they and many others provided in the first half of the twentieth
century has had significant and immediate impact on computer science today.

2 Logic and Computation: the Different Uses of Logic

Early in the twentieth century, some logicians invented various computational sys-
tems, such as Turing machines, Church’s λ-calculus, and Post correspondence
systems, which were shown to all compute the same set of recursive functions. With
the introduction of high-level programming languages, such as LISP, Pascal, Ada,
and C, it was clear that any number of computation systems could be designed to
compute these same functions. Eventually, the large number of different program-
ming languages were classified via the four paradigms of imperative, object-oriented,
functional, and logic programming. The latter two base computational systems on
various aspects of symbolic logic. Unlike most programming languages, symbolic
logic is a formal language that has well-defined semantics and which has been studied
using model theory (Tarski 1954), category theory (Lambek and Scott 1986; Law-
vere 1963), recursion theory (Gödel 1965; Kleene 1935), and proof theory (Gentzen
1935; Girard 1987). As we now outline, logic plays different roles when it is applied
to computation.

The earliest and most popular use of logic in computer science views computation
as something that happens independently of logic, e.g., registers change, tokens move
in a Petri net, messages are buffered and retrieved, and a tape head advances along a
tape. Logics (often modal or temporal logics) are used to make statements about such
computations. Model checkers and Hoare proof systems employ this computation-
as-model approach.

Another use of logic is to provide specification and programming languages with
syntax and semantics tied directly to logic. The computation-as-deduction approach
to programming languages takes as its computational elements objects from logic,
namely types, terms, formulas, and proofs. Thus, instead of basing computation on
abstractions of existing technology, e.g., characters on a Turing machine’s tape or
tokens in a Petri net, this approach to programming makes direct use of items found
in symbolic logic. One hope in making this choice is that programs that rely heavily
on logic-based formalisms might be able to exploit the rich meta-theory of logic to
help prove properties of specific programs and of entire programming languages.

There are, however, two strikingly different ways to apply the computation-
as-deduction approach to modeling computation: these different avenues rely on
different roles of proof in the design and analysis of computation.

Proof normalization: Natural deduction proofs can be seen as describing both func-
tions and values. For example, when a proof of the implication B ⊃ C is combined
with a proof of the formula B using the rule of modus ponens (also known as ⊃-
elimination in natural deduction), the result is a proof of C. That proof, however,
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is generally not a proof in normal form. The steps involved to normalize such a
proof (as described by, for example, Prawitz (1965)) are similar to β-reductions in
typed λ-calculi. In that way, a proof of B ⊃ C can be seen as a function that takes
a proof of B to a proof of C (employing modus ponens and normalization). This
computational perspective of (natural deduction) proofs is often used as a formal
model of functional programming.

Proof search: Formulas can be used to encode both programs and goals (think to
rules and queries in database theory). Sequents are used to encode the state of a
computation and (cut-free) proof search is used to provide traces in computation:
changes in sequents denote the dynamics of computation. Cut-elimination is not
part of computation but can be used to reason about computation. This view of
computation is used to provide a foundation for logic programming.

Although both of these frameworks put formal proofs at their core, the difference
between these two approaches is a persistent one. Indeed, advances in understanding
the proof theory of higher-order quantification and of linear logic have resulted in
different advances in both of these paradigms separately. No current advances in our
understanding of proof have forced a convergence of these two paradigms.

The connections between functional programming and proof theory are well doc-
umented and celebrated in the literature as the Curry-Howard Isomorphism: see, for
example, Ong and Stewart (1997) and Sørensen and Urzyczyn (2006). The connec-
tion between logic programming and proof theory is less well documented, and it is
the focus of this article.

The field of proof theory covers many topics, including consistency proofs, ordi-
nal inductions, reverse mathematics, proof mining, and proof complexity. Here, we
focus instead on structural proof theory, a topic initiated by Gentzen’s introduction
of sequent calculus and natural deduction (Gentzen 1935). The sequent calculus is
particularly appealing since Gentzen explicitly preferred it over natural deduction as
a setting for developing the meta-theory of proofs for both classical and intuition-
istic logics simultaneously. Later, Girard showed that the sequent calculus provides
a natural account proofs in linear logic as well (Girard 1987). As we shall docu-
ment, this feature of the sequent calculus provides logic programming with a natural
framework in which proof search is described for much richer logics (first-order and
higher-order versions of classical, intuitionistic, and linear logics) than the underly-
ing Prolog. Another feature of sequent calculus is its support for abstraction: that
is, it provides mechanisms for allowing some aspects of a program’s specification
to be hidden while other aspects are made explicit. In programming language termi-
nology, such abstractions provide logic programming with modularity, abstract data
types, and higher-order programming. The use of abstractions can significantly aid
in establishing formal properties of programs (Miller 1990).

3 Why Turn to Logic to Design a Programming Language?

In many early programming systems, it was specific compilers (and interpreters)
that determined the meaning of programs. Since computer processors were rapidly
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changing and since compilers map high-level languages to these evolving processors,
compilers needed to evolve in order to exploit new processor architectures. Since the
new compilers did not commit to preserving the same execution behavior of programs
as earlier compilers, the meaning of programs would also change. For the many
people writing high-level code, the fact that their code could break when moving it
between computer systems or to higher version numbers eventually became a seri-
ous problem. This situation became untenable when programs also grew dependent
on the services—such as memory management, file systems, and network access—
offered by operating systems: now programs could also break whenever there were
changes to operating systems.

Early efforts to formalize the meaning of programs employed the computation-
as-model paradigm mentioned above. For example, logical expressions could be
attached to program phrases in order to define pre- and post-conditions. In this set-
ting, the expression {P }S{Q} is used to denote the judgment that “if the formula P

holds and the program phrase S executes and terminates, then the formula Q holds.”
For example, the expression:

{n=0 ∧ a=0} (while n≤10 do a := a+n; n := n+1) {n=10 ∧ a=55}

should be true for most notions of while-loops and variable assignments. While this
approach to reasoning about the meaning of programs has had some success and is
used in several existing systems today, it has also had some significant failures. In
fact, the topic of model checking, in which the search for counterexamples (bugs)
replaced the search for formal proofs, arose from frustration that it was too difficult
to use pre- and post-condition reasoning in many systems, particularly those that had
elements of distributed and concurrent execution (Emerson 2008).

Other mathematical frameworks for specifying the meaning of programming lan-
guages were given by denotational semantics (Stoy 1977), where the meaning of
program phrases is compositionally mapped into well-defined and understood math-
ematical objects, and operational semantics (Milner et al. 1990; Plotkin 2004), in
which program execution is modeled using inference rules to build proof-tree-like
structures.

Still another approach to providing a formal semantics to a programming language
is to accept as a programming language a formal system that already has a mathemat-
ical and well-understood semantics. Here, quantificational classical and intuitionistic
logics have well-developed theories of proofs and models: soundness and complete-
ness theorems relate these two remarkably different means of attributing meaning to
logical expressions. Logic programming is an approach to programming where pro-
grams elements are logical formulas. While this approach can solve the problem of
giving a formal semantics to programs, one must recognize that there is a tension
between the needs of programming and solutions offered by logic. For example, clas-
sical logic views formulas as either true or false and the search for a proof might
establish a given formula as true: in that case, it will always be true. Of course, many
situations need such permanence: for example, once a (sub)proof establishes that the
atomic formula (plus 2 3 5) holds (encoding the fact that 2 + 3 is equal to 5) then
this fact is, of course, always true. On the other hand, computing needs to deal with
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situations where a memory cell contains one value now, but in the future, it con-
tains another value. Modeling such memory cells in classical logic cannot be done as
simply as by using a predicate of the form “the memory location l contains value x.”

Resolving this tension has generally gone along two different avenues. The first
avenue added various features to a programming language, such as Prolog, that were
difficult or impossible to provide a logical description. In these cases, the result-
ing features can be useful but the underlying programming language drifts more and
more from its basis in logic. The second avenue attempted to use more expressive
logics than first-order classical logic in order to gain some expressive strengths. This
paper describes several milestones along this particular avenue for resolving the ten-
sion between what logic and proof theory offers and what programming languages
need. As we shall see, this particular journey starts with classical logic and then moves
to intuitionistic and linear logics in order to provide more expressive programs.

4 A Quick Primer: Terms and Formulas of Predicate Logic

We shall assume that the reader has at least some familiarity with first-order predicate
logic. In this section, we simply review a few concepts that will help anchor our later
discussions.

In order to define term and formula structures, we need to know which symbols
denote predicates and function symbols and what is their arity. Many first-order logic
systems (including most Prolog languages) only declare the arity of such symbols.
For example, the constructors for natural numbers and lists of natural numbers can
be written as:

{z/0, s/1, nil/0, cons/2, append/3}
Thus, cons (the non-empty list constructor) takes two arguments while append (the
relation between two lists and the result of appending them) takes three arguments.
Some first-order logics are sorted: that is, there are primitive sorts, say, nat (for nat-
ural numbers) and list (for lists of natural numbers), and constructors are declared to
take their arguments from certain sorts. For example, the declaration displayed above
could be made more explicit using sorts such as:

{z : 〈〈〉, nat〉, s : 〈〈nat〉, nat〉, nil : 〈〈〉, list〉, cons : 〈〈nat, list〉, list〉}
Above only term constructors are given declarations in which the first member of
their associated tuple is the list of argument types it expects and the second member
is the type of the object that the constructor builds. Predicates could be declared sep-
arately using the declaration {append : 〈list, list, list〉} which associates a predicate
with the list of argument types it expects.

So that we can also comment on higher-order logic and syntax later, we use the
conventions introduced by Church’s Simple Theory of Types (Church 1940). In par-
ticular, a type is either a primitive type (these are introduced as we need them and
correspond to primitive sorts) and an arrow type which is an expression of the form
τ1 → τ2. The arrow associates to the right: thus, τ1 → τ2 → · · · → τn → τ0 reads
as τ1 → (τ2 → · · · → (τn → τ0) · · · ). A function symbol with the sort declara-
tion 〈〈τ1, . . . , τn〉, τ0〉 would correspond to the type τ1 → τ2 → · · · → τn → τ0.
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A predicate symbol with the sort declaration 〈τ1, . . . , τn〉 is encoded as the type
τ1 → τ2 → · · · → τn → o, where we follow Church’s convention to use the prim-
itive type o to denote the (syntactic category of) formulas. Thus, the declarations
above can be revised to be:

{z : nat, s : nat → nat, nil : list, cons : nat → list → list,

append : list → list → list → o}
While the arrow type is natural for presenting first-order logic, its presence will also
make it easy to generalize the syntax of terms and formulas to accommodate higher-
order logic (in Section 9).

A signature is a set containing pairings of tokens with their declared type so that
all tokens are declared to have at most one type. Informally, a �-term of type τ is a
(closed) term all of whose tokens are taken from the signature � and which respects
the typing declarations. For example, if �′ is the signature declared at the end of the
previous paragraph, then (s (s z)) and (cons (s z) (cons z nil)) are valid �-terms of
type nat and list, respectively. The �′-term:

(append (cons z nil) (cons (s z) nil) (cons z (cons (s z) nil)))

has type o which means that it is also a formula. In Prolog syntax, the latter expres-
sion corresponds to the (more compact) append([0], [1], [0,1]), which in
turn denotes the assertion that [0,1] is the result of appending the lists [0] and [1].
In general, we intend the token append to stand for the three-place relation such that
(append L K M) holds if and only if the concatenation of the list L with the list K

is the list M (a formal definition for this predicate is given in the next section).
The terms described above are examples of closed terms in the sense that they

contain no free variables. Let X be an infinite set of token-type pairs of the form
x : τ where τ is restricted to a primitive type. Assume that the two signatures �

(of constants) and X (of first-order variables) do not contain the same token: in
that case, a term over the combined signature � ∪ X are terms with possible free
variables.

Predicate symbols are introduced as a means to collect together some terms and
to yield an atomic formula (such as the assertion about appending lists above).
Non-atomic formulas are created using the following propositional constants (along
with their declared types): 
 : o (truth), ⊥ : o (false), ¬ : o → o (negation),
∨ : o → o → o (disjunction), ∧ : o → o → o (conjunction), and ⊃: o → o → o

(implication). The two quantifiers are parameterized by a type: ∀τ x.B and ∃τ x.B
denote the universal and existential quantifiers (respectively) of the variable x of type
τ within the formula B. If a quantifier is written without a subscript type expression,
then that type either is unimportant or is easy to infer from its context.

5 Early Foundations of Logic Programming

The logic programming paradigm had a beginning within the artificial intelligence
community dating back to the 1960s and 1970s. We start our story here with the
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first systematic development of a proof procedure by Kowalski (1974), which pro-
vided a (non-deterministic) procedural interpretation of logic that lines up well with
the nearly simultaneous development of the first Prolog system by Colmerauer and
Roussel (1993).

5.1 Declarative vs Procedural Programs

A central and early question about Prolog was how it might be possible to turn declar-
ative information about a desired computation into an actual procedure or program.
For example, consider the simple problem of concatenating two lists to get a third
list. A declarative treatment of concatenation can be given by stating the following
two facts.

1. Concatenating an empty list on the front of a list L yields the list L.
2. If the result of concatenating list L to the front of list K is the list M , then the

result of concatenating list (cons X L) to the front of list K is the list (cons X M)

for any X (of type nat).

Of course, there are many other statements about concatenation that one could make
(for example, that concatenation is associative). The two facts above can be captured
easily in first-order logic. Using the predicate symbol append introduced in Section 4,
the above two facts about concatenation can be encoded as the two formulas:

∀L(append nil L L) and

∀X∀L∀K∀M[(append L K M) ⊃ (append (cons X L) K (cons X M))]
(Here, the type of X is nat and of L, K , and M is list.) Following standard Prolog-
inspired conventions, we shall write variables as tokens with an initial capital letter
and we shall drop all quantifiers assuming that all variables are universally quantified
around such formulas. Another convention used by Prolog is to reverse the direction
of the implication and to use an ASCII approximate :- to a turnstile (�). Following
these conventions, we have the following Prolog-style program definition: 1

append nil L L.

append (cons X L) K (cons X M) :- append L K M.

For a second example of a declarative specification written using Prolog syntax,
Fig. 1 contains a small graph along with the specification of both the adjacency rela-
tion of that graph and a specification of the notion of a path between two points in
that graph. In the last line of that specification, another Prolog convention is used: the
comma denotes conjunction. That last line can be read as follows: if there is a step
from X to Z and a path from Z to Y then there is a path from X to Y . We have also
assumed that the signature for these formulas contains the following items:

a : node, b : node, c : node, d : node,

step : node → node → o, path : node → node → o

where node is a primitive type denoting nodes in the graph.

1We use the syntax of λProlog instead of Prolog: for simple programs, the difference between these
languages is small.
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In general, the logical formulas that underlie the Prolog programming language
are formulas generally referred to as Horn clauses. These formulas are of the form:

∀x1 . . .∀xn[(A1 ∧ · · · ∧ Am) ⊃ A0], (n, m ≥ 0)

where the formulas A0, A1, . . . , Am are atomic formulas all of whose free variables
are in the set {x1, . . . , xn}. If n = 0, then we do not write any universal quantifiers
and if m = 0, then we do not write the implication. In classical logic, it is possible
to convert all formulas to a logically equivalent formula (of essentially the same
size) in which implication ⊃ is not present and where all occurrences of negation ¬
are applied only to atomic formulas. Such formulas are in negation normal form. In
particular, the negation normal form of the Horn clause above is:

∀x1 . . .∀xn[¬A1 ∨ · · · ∨ ¬Am ∨ A0].
If we let P be the set containing the five formulas displayed in Fig. 1, it would seem
natural to expect that provability from P and computing with this logic program
might be related. For example, it is the case that P proves (in classical and intuition-
istic logics) the atomic formula (path a c) (i.e., that there is a path from node a to
node c) and that the formula (path a d) has no proof. While one might expect this
connection to be rather immediate, the early history of Prolog obfuscated this connec-
tion with provability by describing logic programming computation as a refutation,
as we shall now illustrate.

5.2 Refutation and Skolemization

In the late 1960s and early 1970s, the resolution refutation procedure of Robinson
(1965) was applied in various areas of computational logic. For example, Green
(1969) showed that resolution refutations could be used to provide answers within
question-answering systems. Given the dominance of resolution, it was natural for
Kowalski to have adopted it to provide a description of the operational behavior of
Prolog.

On one hand, the choice of resolution was natural for this purpose since term
unification was needed to describe Colmerauer’s Prolog and since unification was
built into the principle inference rule of resolution. On the other hand, this choice was
unfortunate since it required turning what is most naturally considered a problem of
searching for a proof into the problem of searching for a refutation. Since classical
logic has an involutive negation, it is the case that proving A from P is equivalent to

Fig. 1 A small graph on four nodes and a Prolog specification of it
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proving ⊥ from P ∪ {A ⊃⊥}: that is, building a refutation of P ∪ {A ⊃⊥}. Note
that this latter step is not valid in intuitionistic logic: in general, resolution is not
a sound procedure for intuitionistic logic (without significant modifications to that
procedure).

There seems to be only one reason why refutation and not proof dominated the
early years of theorem proving in classical logic, and that was the use of skolem-
ization to simplify quantifier structures in formulas. The process of skolemizing a
first-order formula, say B (in negation normal form), involves repeatedly replacing
a subformula occurrence ∃y.C(y) in B with C(f (x1, . . . , xn)), where f is a new
function symbol (an extension to the formula signature) and where x1, . . . , xn is the
list of universally quantified variables of B that contain the occurrence ∃y.C(y) in
their scope. A Skolem normal form of B is then a formula that arises from repeatedly
removing existential quantifiers in this manner until no occurrences of existential
quantifiers remain. The main theorem that relates a formula B with a Skolem normal
form of B is that they are equisatisfiable: that is, there is a model of B if and only if
there is a model of a Skolem normal form of B. Since skolemization can introduce
new constants (Skolem function symbols), the models of B are necessarily different
from the models of a Skolem normal form of B. Thus, the stage is set for introduc-
ing refutations: in order to prove B is a theorem, we can show instead that ¬B is
unsatisfiable. This restatement is, of course, equivalent to showing that the skolem-
ized form of ¬B is unsatisfiable. It is this latter property that the resolution refutation
framework is designed to demonstrate.

There are at least a couple of reasons why basing the theory of logic program-
ming on skolemization and refutation was not a good idea, at least in hindsight.
First, Horn clauses do not contain quantifier alternations and, hence, skolemization
is not a needed processing step. Since skolemization is not required, the motiva-
tion to use refutations as outlined loses its force. Second, a couple of the extensions
to the design of logic programming that we shall cover soon do not work sim-
ply with either skolemization or refutations. In particular, intuitionistic logic plays
an important role in the development of logic programming, but skolemization and
resolution refutation are both not a sound process in intuitionistic logic. It is also
the case that higher-order quantification plays an important role in the development
of logic programming and in that setting, and when higher-order substitutions are
present, skolemization is a more complex and problematic process. For example,
since higher-order instantiations can introduce new instances of quantifiers, the result
of a higher-order instantiation of a formula in Skolem normal form may result in a
formula that is no longer Skolem normal (something that cannot happen in the first-
order setting). More seriously, in higher-order logic, Skolem functions can give rise
to uses of the Axiom of Choice even for situations (such as logic programming)
where one does not intend for the Axiom of Choice to be a relevant logical feature.
For example, Andrews (1971) has described a generalization of resolution refutation
for a higher-order logic that can dynamically re-skolemize after the application of a
higher-order substitution, but his system was not sound. If the Axiom of Choice was
admitted, his system became sound but no longer complete. While an improvement to
unification (a key component of resolution) was found that can make skolemization
sound (Miller 1987), many computer systems that use unification in a higher-order
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intuitionistic logic setting, such as λProlog (Miller and Nadathur 2012), Twelf (Pfen-
ning and Schürmann 1999), and the Isabelle theorem prover (Paulson 1989), have
found ways to avoid both resolution and skolemization entirely.

5.3 SLD-resolution

There were two main ingredients in resolution refutations. The first ingredient is
clauses, which are formulas of the form:

∀x1 . . . ∀xn[L1 ∨ . . . ∨ Lm], (n, m ≥ 0)

where x1, . . . , xn is a (possibly empty) list of first-order variables and L1, . . . , Lm is
a (possibly empty) list of literals (atomic formulas or their negation). From what we
noted above, Horn clauses can be seen as clauses in which exactly one literal is an
atomic formula (instead of the negation of an atomic formula). In general, however,
a clause can have any mixture of atomic formulas and negated atomic formulas.

The second ingredient is inference rules that take clauses as their premises and
conclusion. The only one of these rules that interest us here is the so-called resolution
rule which can be written as:

∀x1 . . . , ∀nn[L ∨ M] ∀y1 . . . , ∀ym[¬K ∨ N]
∀z1 . . . , ∀zp[θM ∨ θN] θ = mgu(L, K).

Here, L and K are atomic formulas, M and N are (possibly empty) disjunctions of
literals, and the proviso for this rule is that L and K are unifiable and that θ is set
to the most general unifier L and K . A resolution refutation of the set of clauses
{C1, . . . , Cq} is a tree of such inference rules (plus another rule called factoring) in
which the leaves come from the set of clauses and the root is the empty clause. When
such a tree exists, the fact that the empty disjunction is clearly unsatisfiable can then
be transferred to the collection of clauses in its leaves.

The resolution rule is rather remote from Gentzen’s rules for sequent calculus.
While Gentzen’s introduction rules process exactly one logical connective per rule,
the resolution rule above will deal with n + m + p universal quantifiers along with
a number of disjunctions. Furthermore, the operation of unification is not contained
in sequent calculus presentations (although the implementation of theorem provers
based on the sequent calculus often uses unification).

Kowalski and Kuehner developed a specialized form of resolution based on lin-
ear resolution with selection function (SL-resolution) (Kowalski and Kuehner 1971).
When this variant of resolution is applied to Horn clauses, it was called SLD-
resolution (D for definite, since Horn clauses have also been called definite clauses)
(Apt and van Emden 1982). In this setting, attempting to prove the conjunctive goal
A1∧. . .∧An from the Horn clauses in P results in attempting to refute the clauses in
P together with the clause ¬A1 ∨ . . .∨¬An: this latter clause is distinguished in that
the literals it contain are all negated atoms. In this setting, SLD resolution is essen-
tially the restriction of resolution so that one of the clauses being used in the premise
of a resolution is always the most recently produced such distinguished clause. This
greatly restricted version of resolution could be seen as forming the basis of the
engine used in Prolog. Effective implementations of SLD resolution were developed,
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with the most popular one based on the Warren abstract machine (Aı̈t-Kaci 1991;
Warren 1983).

Several variations on Horn clauses have been considered: these include disjunc-
tive logic programs (Lobo et al. 1992; Minker and Seipel 2002) and constraint logic
programs (Jaffar and Lassez 1987). In the latter variation, equality of terms is gen-
eralized to be a richer relation (e.g., greater-than and non-equal-to) than syntactic
equality: such constraints do not normally have most general solutions so one should
not choose to solve them immediately but rather delay them until additional con-
straints are discovered. Most of these extensions were limited to features that could
either be seen as retaining the basic characteristics of SLD resolution or which
could be compiled into the Warren Abstract Machine. While some extensions, such
as HiLoG (Chen et al. 1993), proved useful in some circles, they often exerted no
influence on the topics of logic and proof theory.

There are, however, many downsides of using resolution as the core explanation
of how logic programming languages should work.

– Refuting is an odd choice in a setting where proving seems more natural.
– In order to present formulas as Horn clauses, one may need to transform a for-

mula into its conjunction normal form, and this can cause an exponential increase
in formula sizes or require the introduction of new predicate constants in order
to keep that size from exploding.

– First-order unification maintains the normal form of clauses while this is not the
case with higher-order quantification since predicate substitutions can transform
a formula in normal form into one that is not in normal form. This particu-
lar problem could be addressed by re-normalizing after predicate substitutions
(Andrews 1971; Huet 1973).

– More importantly, resolution does not naturally fit with intuitionistic and linear
logics although it is possible to develop them based on the structure of sequent
calculus proofs (Fitting 1987; Tammet 1996).

These limitations with resolution refutations were then limitations to the designs
of new logic programming languages. At roughly the same time as this framework
was being designed for logic programming, researchers in functional programming
languages were embracing many features of computational logic and proof theory
that go well beyond the theory of first-order Horn clauses. In particular, higher-
order programming, intuitionistic-logic based typing, and linear logic where all being
considered as central and powerful themes in the design of modern functional pro-
gramming languages. Guided by the Curry-Howard Isomorphism, the proof theory
of higher-order intuitionistic logic helped guide the design of many functional pro-
gramming and reasoning systems (Coquand and Huet 1988; Martin-Löf 1985) and
linear logic was seen as offering new features (Wadler 1990).

6 Proof Theory Characterization of Horn Clauses

Gentzen’s sequent calculus provides a natural setting for describing the operational
behavior of proof search. Instead of building a refutation, one could instead attempt
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a proof. When attempting the proof of a goal G from a set of program clauses P , we
can consider the problem of building a Gentzen-style proof system with the sequent
P � G. For example, let P be a set of Horn clauses and let one of them be:

∀x1 . . .∀xm[(A1 ∧ · · · ∧ An) ⊃ A0].
The following backchaining rule of inference is then admissible in Gentzen’s LK
calculus:

P � θA1 · · · P � θAn

P � A
BC,

where it is the case that θ is a substitution such that �A0 = A. Admissibility of this
rule is easy to see since it is the combination of one occurrence of a contraction, n

occurrences of ∀-left introduction, one occurrence of ⊃-left, and one occurrence of
the initial rule. A stronger statement is also possible: this is the only inference rule
that is required. That is, P � A is provable in classical logic implies that there is a
proof of that sequent in which only instances of the BC rule are needed.

Let A be a syntactic variable that ranges over first-order atomic formulas. Let G1
and D1 be the sets of all first-order G- and D-formulas defined inductively by the
following rules:

G := 
 | A | G1 ∧ G2 | G1 ∨ G2 | ∃x G,

D := A | G ⊃ A | D1 ∧ D2 | ∀x D.

For the rest of this paper, the formulas of D1 are called first-order Horn clauses.
For the reader familiar with Church’s treatment of higher-order logic, we define

also a higher-order generalization to first-order Horn clauses. Let H1 be the set of all
λ-normal terms that do not contain occurrences of the logical constants ⊃, ∀, and ⊥.
Let A and Ar be syntactic variables denoting, respectively, atomic formulas and rigid
atomic formulas (atomic formulas with a constant as its head symbol) in H1. Let G2
and D2 be the sets of all higher-order G and D-formulas defined inductively by the
following rules:

G := 
 | A | G1 ∧ G2 | G1 ∨ G2 | ∃x G,

D := Ar | G ⊃ Ar | D1 ∧ D2 | ∀x D.

Note that the type of quantified variables in this definition can be at any type includ-
ing higher-order (predicate) types. The formulas of D2 are called higher-order Horn
clauses. Notice that G2 is precisely the set of formulas contained in the set of terms
H1.

The proof theory surrounding the higher-order version of Horn clauses has some
challenges. In particular, higher-order (predicate) instantiations of higher-order Horn
clauses may no longer yield higher-order Horn clauses. Nadathur was able to prove
(Nadathur 1987; Nadathur and Miller 1990), however, that in the restricted setting of
logic programming, whenever there was a proof involving higher-order Horn clauses,
it was also possible to restrain higher-order substitutions so that the only instances of
Horn clauses were other Horn clauses.
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Influence: Proof theory on logic programming

Sequent calculus provides a flexible framework for formalizing logic program-

ming using Horn clauses with both first-order and higher-order quantification.

Notice that goal formulas (G-formulas in the definitions above) are not necessarily
limited to atomic formulas: in the Horn clause setting, they can also be conjunctions,
disjunctions, and existential quantifiers. Thus, backchaining is not the only inference
rule that can be used in this setting. In fact, one can prove the following: when a
sequent contains a non-atomic right-hand side (i.e., a goal formula with a logical
connective) then the proof of that sequent can be assumed to be a right-introduction
rule. Thus, provability with respect to this presentation of Horn clauses builds proofs
divided into two phases: when the goal formula is atomic, the backchaining inference
rule is used but when the goal formula is non-atomic, then the goal is reduced by
using a right-introduction rule (reading proofs from the conclusion to premises).

This two-phase aspect of proof search has a natural appeal. The processing of log-
ical connectives in the goal is fixed (by the right-introduction rules). It is only when
a non-logical symbol (the predicate at the head of an atomic formula) is encountered
as the goal that we need to consult the (logic) program.

Now that we have a firm basis for logic programming using Horn clauses in
sequent calculus, we can ask a natural question: What is the dynamics of proof
search? More precisely, if P � A is a root of a sequent calculus proof and P ′ � A′
is any other sequent in that proof (where A and A′ are atomic formulas), then how
are P and P ′, and A and A′ related. In the case of Horn clauses, we know that there
are rather natural proof systems for classical logic in which P = P ′. Thus, dur-
ing the search for a goal, there is no change to the left and, thus, the logic program
is global and flat: every part of it is present at all times. Another way to describe
this is to say that the only dynamics—the changing of atomic formulas—takes place
within non-logical contexts, that is, in the scope of the non-logical symbols that are
the predicates of atoms. Putting the dynamics of computation outside of logical con-
texts certainly seems to diminish the potential of logic to encode and reason about
computational dynamics.

This characterization of Horn clauses has important implications for the structur-
ing of programs: if a program clause is ever needed during a computation, it must
be available at the beginning of that computation. Thus, Horn clauses do not support
directly any hiding of one part of a program from other parts of a program: such a
lack is a significant problem for a modern programming language (Miller 1990).

7 What’s Past is PROLOGue: Intuitionistic Logic Extensions

Working from this last observation about how the left-hand side of sequents using
Horn clauses is a fixed and global value, the simple suggestion to use goals that
are implications would allow contexts to grow as one moves up a proof from
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the conclusion to premises. In particular, Gentzen’s right-introduction rule for
implication:

P, D � G

P � D ⊃ G

can be interpreted as adding the new program element D (which might be a Horn
clause) to the logic program P . Thus, an attempt to prove the query (D1 ⊃ A1) ∧
(D2 ⊃ A2) from the logic program P would be expected to yield the attempts to
prove A1 from P ∪ {D1} and to prove A2 from P ∪ {D2}. Thus, attempts to prove
the two goals A1 and A2 are performed with different logic programs.

While this approach to adding a form of modularity to logic programming is rather
immediate, one must confront the fact that classical logic does not provide the proper
foundations for this notion of modularity. For example, one expects that attempting
to prove (D1 ⊃ A1) ∨ (D2 ⊃ A2) from P would result in an attempt to prove A1
from P∪{D1} or to prove A2 from P∪{D2}. But this interpretation is not supported
by classical logic. Since the classical interpretation of the implication D ⊃ G is the
same as (¬D) ∨ G, then (D1 ⊃ A1) ∨ (D2 ⊃ A2) is logically equivalent to both
(D2 ⊃ A1) ∨ (D1 ⊃ A2) and (D1 ⊃ (D2 ⊃ (A1 ∨ A2)). That is, classical logic does
not support the intended scoping interpretation.

In the mid-1980s, the author was developing just such a scheme for providing
λProlog (Miller and Nadathur 2012; Nadathur and Miller 1988) with a form of mod-
ularity: the theory quickly settled on the need to use intuitionistic logic and not
classical logic in order to achieve this approach to modularity (Miller 1986, 1989).
By the mid-1980s, intuitionistic logic and its proof theory had had a long devel-
opment, much of that was in the general area of the Curry-Howard Isomorphism
(proofs-as-programs). As it turns out, at about this same time, there was nearly simul-
taneous development of computational uses of large parts of intuitionistic logic that
fell outside the Curry-Howard Isomorphism and more squarely in the proof-search
framework. These various developments include the following.

– The N-Prolog language of Gabbay (1985) and Gabbay and Reyle (1984) was
designed to allow hypothetical implications in a Prolog-like setting.

– McCarty (1988a, b) explored using intuitionistic logic to extend the expressive-
ness of logic programs.

– Miller, Nadathur, Pfenning, and Scedrov (Miller et al. 1991, 1987) devel-
oped a higher-order version of hereditary Harrop formulas in order to support
within logic programming rich notions of abstractions, such as modules, abstract
datatypes, and higher-order programming.

– Paulson employed an intuitionistic logic to maintain proof states within the
Isabelle theorem prover (Paulson 1989).

– Hällnais and Schroeder-Heister applied proof-theoretic considerations to extend
Horn clause programming in ways similar to these other approaches (Hallnȧs
and Schroeder-Heister 1991).

The simultaneous development of similar uses of intuitionistic logic within the
logic programming (proof search) setting provided a great deal of confidence that
intuitionistic logic and formulas with logical complexity much richer than Horn
clauses could have important applications in computational logic. Since resolution
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refutations fundamentally rely on classical logic principles, the familiar framework
on SLD resolution needed to be rejected as a framework for these newly extended
logic programming proposals. The sequent calculus provided just such a new starting
point.

Influence: Proof theory on logic programming

The sequent calculus provided a direct and straightforward characterization of

goal-directed proof search, and that provided a notion of abstract logic pro-
gramming language.

A uniform proof (Miller et al. 1991, 1987) is a single conclusion (cut-free) sequent
proof in which each occurrence of a sequent whose right-hand side contains a non-
atomic formula is the conclusion of a right-introduction rule. In other words, a
uniform proof is a sequent proof such that, for each occurrence of a sequent 	 � G

in it, the following conditions are satisfied:

1. If G is 
, then that sequent is immediately proved.
2. If G is B ∧ C, then that sequent is inferred from 	 � B and 	 � C.
3. If G is B ∨ C, then that sequent is inferred from either 	 � B or 	 � C.
4. If G is ∃x B, then that sequent is inferred from 	 � [t/x]B for some term t .
5. If G is B ⊃ C, then that sequent is inferred from B, 	 � C.
6. If G is ∀x B, then that sequent is inferred from 	 � [c/x]B, where c is a

variable (parameter) that does not occur free in ∀x B nor in the formulas in 	.
Gentzen referred to such variables used in this manner as eigenvariables of the
proof (Gentzen 1935).

The notion of a uniform proof reflects the search instructions associated with the
logical connectives. The logic program is only examined (via left-introduction rules)
in the case that a non-logical symbol rises to the top of the query: such non-logical
symbols are predicates and these are given meaning (axiomatized) by the logic pro-
gram on the left-hand side of a sequent. An abstract logic programming language is
a triple 〈D, G , �〉 such that for all finite subsets P of D and all formulas G of G ,
P � G holds if and only if there is a uniform proof of G from P . It is in the fol-
lowing sense that uniform proofs are intended to capture the notion of goal-directed
search. The impact on the search for proofs is fixed by the top-level logical connec-
tive of the goal. We only examine the program when there is a non-logical symbol at
the head of the sequent.

One example of an abstract logic programming language is the one based on
Horn clauses. In particular, both the triples 〈D1, G1, �C〉 (capturing first-order Horn
clauses) and 〈D2, G2, �C〉 (capturing higher-order Horn clauses), are abstract logic
programming languages. This statement is also true if classic provability is replaced
by intuitionistic provability in both of these triples.

The following is a more complex example of an abstract logic programming lan-
guage. Let A be a syntactic variable that ranges over first-order atomic formulas. Let
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G3 and D3 be the sets of all first-order G- and D-formulas defined by the following
rules:

G := 
 | A | G1 ∧ G2 | G1 ∨ G2 | ∀x G | ∃x G | D ⊃ G,

D := A | G ⊃ A | ∀x D | D1 ∧ D2.

Formulas in D3 are called first-order hereditary Harrop formulas. It is proved in
Miller et al. (1991) that the triple 〈D3, G3, �I 〉 is an abstract logic programming
language.

Let H2 be the set of all λ-normal terms that do not contain occurrences of the
logical constants ⊃ and ⊥. Let A and Ar be syntactic variables denoting, respectively,
atomic formulas and rigid atomic formulas in H2. Let G4 and D4 be the sets of G-
and D-formulas that are defined by the following mutual recursion:

G := 
 | A | G1 ∧ G2 | G1 ∨ G2 | ∀x G | ∃x G | D ⊃ G

D := Ar | G ⊃ Ar | ∀x D | D1 ∧ D2.

The formulas of D4 are called higher-order hereditary Harrop formulas and it
is proved in Miller et al. (1991) that the triple 〈D4, G4, �I 〉 is an abstract logic
programming language.

As in the case of Horn clauses, proof search with hereditary Harrop formulas
yields uniform proofs that are organized into alternating phases: one phase reduces
goal formulas (using right-introduction rules), and one phase performs backchaining
steps (using left-introduction rules and the initial rule) (Miller 1991; Miller et al.
1991).

The λProlog programming language was designed to implement most of the intu-
itionistic theory of higher-order hereditary Harrop formulas: a key design goal of
that language was to demonstrate the abstraction mechanisms that those formu-
las provide (Miller and Nadathur 2012; Nadathur and Miller 1988). Since there is
a significant gap between having a description of a logic programming language
in a sequent calculus and an actual implementation of that language, there were a
number of significant developments that needed to be made prior to having compre-
hensive implementations of that language, of which there are two currently, namely
Teyjus (Nadathur and Mitchell 1999; Qi et al. 2015) and ELPI (Dunchev et al. 2015).
The description of a unification algorithm that works well in the sequent calculus
where eigenvariables are present was one of those challenges (Miller 1991, 1992;
Nadathur et al. 1995): such unification made it possible to avoid the problematic use
of Skolem terms.

At the end of Section 6, we described the dynamics of proof search with Horn
clauses as flat since the logic program used during proof search never changes during
a computation. When we examine the dynamics of change using hereditary Harrop
formulas, we note that the left-hand side of sequents (the logic program) can grow
monotonically as we move from the conclusion to premises.

The overview of structuring mechanisms for logic programming given in Bugliesi
et al. (1994) provides still additional examples of how proof theory considerations
can provide or can influence this aspect of designing logic programming languages.
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8 Linear Logic and Logic Programming

As we noted in the previous section, the use of intuitionistic logic and heredi-
tary Harrop formulas allowed logic programs to be seen as a structure that grows
in a stack-based discipline as the search for proofs moves from the conclusion
to premises. While such growth in logic programs is an improvement over what
was available using only Horn clauses, many additional problems existed in com-
putational logic that were just out of reach of having an elegant solution using
intuitionistic logic.

For example, in the area of natural language, a good treatment of filler-gap depen-
dencies (used to characterize such natural language constructs as questions and
relative clauses) was hard to achieve using standard Horn clause-based logic gram-
mars and lead to the development of the slashed non-terminal in the framework of
Generalized Phrase Structure Grammar (GPSG) (Gazdar et al. 1985). A different
approach using intuitionistic logic made it possible to identify the linguistic notion
of gap introduction with hypothesis introduction that arises from an implicational
goal. As reported by Pareschi (1989) and Pareschi and Miller (1990), that tech-
nique provided an elegant new perspective to that linguistic phenomenon but it also
failed to treat known restrictions on the distribution and use of gaps-as-hypotheses:
in particular, gaps needed to be used and they could not appear in certain parts of
phrases.

For another example, Hodas and Miller (1990) and Hodas (1994) described how
it was possible to capture partially the notion of objects-with-state within logic pro-
gramming. Again, intuitionistic logic provides a partial solution. In particular, it is
possible to store the value of a register as an atomic formula among the other clauses
of a logic program. For example, the atomic formula reg(4) can encode the fact that
a register has a value of 4. Unfortunately, there is no way to have that atomic formula
replaced with, say, reg(5) within intuitionistic logic. More specifically, it is not pos-
sible to write a logic program clause such that backchaining on it would justify the
following inference:

P, reg(5) � A′

P, reg(4) � A

where both A and A′ are atomic formulas. The best one can do within intuitionistic
logic is to move to a context in which both atoms reg(4) and reg(5) are present: that
is, the following inference is possible.

P, reg(4), reg(5) � A′

P, reg(4) � A

Unfortunately, this situation (where a register has two different values) does not
provide a proper model of a register.

With the appearance of Girard’s linear logic (Girard 1987), it was possible to
extend the design of previous logic programming languages so that they could solve
the cited problems in both the gap-threading and the state-encapsulation situations.
Logic programming provided other important examples that helped convince a num-
ber of computer scientists of the value of linear logic to computational logic: beyond
the two examples mentioned above, additional examples appeared in the areas of
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concurrency (Kobayashi and Yonezawa 1993; Miller 1993), Petri nets (Engberg and
Winskel 1990; Kanovich 1995), and theorem proving (Hodas and Miller 1994).

Influence: Logic programming on proof theory

A large set of examples arose from the logic programming community, in which

linear logic was immediately applicable. Such examples increased the confi-

dence in the utility of linear logic in computational logic.

Linear logic also provided a richer analysis of the role of structural rules in
Gentzen’s sequent calculus and, as a result, greatly improved our understanding of
proof search. For example, if one can restrict the uses of the structural rule of con-
traction (which can be done in linear logic), one can often turn a naive proof-search
mechanism into a complete decision procedure.

After Girard’s introduction of linear logic in 1987, it became clear that there
should be linear logic programming languages: the logic programming paradigm
lacked certain features (e.g., side effects and communications) which linear logic
seems capable of capturing.

Among the first linear logic programming languages designed, there was a diver-
gence along two axes. One of the most challenging connectives in linear logic for
computer scientists to appreciate was the multiplicative disjunction . For the proof
theorist, this connective was not a challenge since it could be identified with the
comma appearing on the right of Gentzen’s multiple conclusion sequents. It could
also be seen as the de Morgan dual of the multiplicative conjunction ⊗. In computa-
tional logic, however, intuitions coming from intuitionistic logic can make it difficult
to find computational meaning for since Gentzen identified intuitionistic logic with
single conclusion sequents. While an early proposal for a linear logic programming
language avoided using , the first linear logic programming language actually made
prominent use of that connective.

8.1 Linear Objects

Historically speaking, the first proposal for a linear logic programming language was
LO (Linear Objects) by Andreoli and Pareschi (1991a, b). LO is an extension to the
Horn clause paradigm in which, roughly speaking, the role of atomic formulas in
Horn clauses is generalized to multisets (built using ) of atomic formulas. In LO,
backchaining captures multiset rewriting and the dominant examples of LO were
taken from those domains where multiset rewriting had proved useful, namely object-
oriented programming and the coordination of processes. Program clauses in LO are
formulas of the form:

Here, p > 0 and m ≥ 0; occurrences of ↪→ are either occurrences of −◦ (linear
implication) or ⇒ (intuitionistic implication); G1, . . . Gm are built from ,
&, and ∀; and A1, . . . Am are atomic formulas. The two implications are related by
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the familiar linear logic equivalence between B ⇒ C and (! B) −◦ C. By applying
(uncurrying) equivalences, the displayed formula above can be rewritten as:

where §Gi is either Gi if Gi is to the immediate left of a −◦ or is ! Gi if Gi is to the
immediate left of a ⇒. Note that if this displayed formula contained no occurrences
of and ⇒ then it is an easy matter to view that formula as a simple Horn clause.

8.2 Lolli

The Lolli logic programming language was introduced by Hodas and the author as
a linear logic extension to the intuitionistic theory of hereditary Harrop formulas. In
particular, Lolli can be seen as a revision and small extension to the logic of heredi-
tary Harrop formulas (Section 7). For our purposes here, the following definitions of
goal formulas and program clauses are simplified slightly from the definition found
in Hodas and Miller (1994).

G := A | G1&G2 | ∀x G | D ⇒ G | D −◦ G,

D := A | G −◦ D | G ⇒ D | ∀x D | D1&D2.

Note that the intuitionistic conjunction used in hereditary Harrop formulas corre-
sponds here to &. A more significant difference is that both −◦ and ⇒ are available in
the positions where only occurrences of the intuitionistic implication appear in hered-
itary Harrop formulas. (Note that there is no difference here between G-formulas and
D formulas: they are both formulas freely generated using &, −◦, ⇒, and ∀.)

For the benefit of the reader familiar with the sequent calculus, we briefly describe
a proof system for Lolli since it illustrates two innovations that arise from accounting
for proofs in linear logic. The inference rules for Lolli are presented in Fig. 2. This

Fig. 2 The proof system for Lolli. The rule for universal quantification has the proviso † that y is not free
in any formula of the conclusion. In the ∀-left rule, the proviso ‡ requires t to be a term of type τ
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proof system differs from those used by Gentzen (1935) and Girard (1987) in two
important ways.

1. The left-hand context is divided into two parts �; � (where both � and � are
multisets of D formulas). The context � denotes those formulas that can be
used any number of times during the search for a proof while those in � are
controlled is the sense that the structural rules of contraction and weakening are
not applicable to them. As a result, the context � is often called the unbounded
context and � is often called the bounded context.

2. There are two kinds of sequents written as �; � � G and (where, A

is restricted to being an atomic formula). These sequents can be mapped into the
more usual linear logic sequents by rewriting:

(Here, !� is defined to be the multiset {!D | D ∈ �}.) The formula that is placed
on top of the turnstile in the second class of sequents is the formula involved
with backchaining. The left-introduction rules are only applied to the formula
that labels such a turnstile.

In every inference rule, it is the case that the unbounded context of the conclusion
is a subset of the unbounded contexts over every premise sequent. Such an invariant
is not true of the bounded context: in particular, when the inference rule is one of the
left-introduction rules for −◦ and ⇒. In the case of the left-introduction for −◦, the
bounded context in the conclusion must be divided into two multisets �1 and �2 and
the two premises use each one of these splits. Thus, as one moves from a conclusion
to a premise, the bounded contexts of sequents can reduce. In the case of the left
introduction for ⇒, the bounded context in the conclusion must again be split but the
only legal split is one where the left premise must have an empty bounded context:
that is, the entire bounded context must move to the right premise.

The use of two different kinds of sequents allows for a succinct presentation of the
two-phase construction of proofs that we have already mentioned. Sequents of the
form �; � � G, where G is not atomic, can only be proved by a right-introduction
rule: hence, such sequents are used to describe the goal-directed phase. The sequent
�; � � A, where A is an atomic formula, can only be proved by first choosing
a formula D from either � or from �. In the decide rule, D is chosen from the
unbounded context and D remains in the unbounded context of the premise sequent.
In the decide rule, D is chosen from the bounded context and that occurrence of D

no longer remains in the bounded context of the premise. In effect, the decide rule
contains a built-in application of the contraction rule: note also that this rule is the
only explicit occurrence of contraction in this proof system.

The form of the init rule in Fig. 2 reveals that it can only apply in the backchaining
phase, only when the bounded context is empty, and only when the formula labeling
the sequent arrow must be the same atomic formula as the conclusion of the sequent.
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We can now illustrate how we can model the change in a register’s value. Assume
that � contains the formula:

D = ∀N∀G[reg(N) −◦ (reg(N + 1) −◦ G) −◦ inc(G)]
Using the proof rules in Fig. 2, we can write the following partial derivation.

Here, D′ is the formula (reg(5) −◦ G) −◦ inc(G). Thus, the inference that this
derivation gives rise to is simply:

�; �, reg(5) � G

�; �, reg(4) � inc(G)
.

Critical for the correct modeling of the change in state of this register is the splitting
of the linear context in the −◦ left-introduction rule between its two premises and the
fact that the linear context must be empty in the initial rules.

8.3 Goal-Directed Search with Multiple Conclusion

A natural question is whether or not it is possible to view LO and the Lolli as
sublanguages of a larger linear logic programming language. While Lolli contains
occurrences of many linear logic connectives, it does not allow occurrences of , its
unit ⊥, and its associated exponential ?. One thing to note is that if one adds to Lolli
just ⊥, all connectives of linear logic can then be defined. For example, can be
defined as (B −◦ ⊥) −◦ C and ? B can be defined as (B −◦ ⊥) ⇒ ⊥. In Miller (1994,
1996), the author proposed a new logic programming language, called Forum, which
results from adding , and ? to Lolli. Thus, Forum is essentially a presentation
of all of linear logic as a logic programming language.

The most direct way to view all of linear logic as a logic programming language
suggests attempting to generalize the notion of uniform proof from single-conclusion
to multiple-conclusion sequents. This can be done if we insist that goal-reduction
should continue to be independent of not only the logic program but also other goals,
i.e., multiple goals should be reducible simultaneously. Although the sequent calculus
does not directly allow for simultaneous rule application, it can be simulated easily
by referring to permutations of inference rules (Kleene 1952). In particular, we can
require that if two or more right-introduction rules can be used to derive a given
sequent, then all possible orders of applying those right-introduction rules can be
obtained from any other order simply by permuting right-introduction inferences. It
is easy to see that the following definition of uniform proofs for multiple-conclusion
sequents generalizes that for single-conclusion sequents: a cut-free, sequent proof 

is uniform if for every subproof � of  and for every non-atomic formula occurrence
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B in the right-hand side of the end-sequent of �, there is a proof � ′ that is equal to
� up to permutation of inference rules and is such that the last inference rule in � ′
introduces the top-level logical connective occurring in B (Miller 1993, 1996). The
notion of an abstract logic programming language can be generalized to include this
extended notion of uniform proof.

8.4 Focusing

As it turns out, the completeness of multiple conclusion uniform proofs for Forum
had actually been proved a couple of years before the introduction of Forum. The
Ph.D. dissertation of Andreoli (1990) introduced a new sequent calculus proof sys-
tem for linear logic, called a focused proof system, that was composed of two kinds
of sequents and two phases of proof construction. That proof system resembles the
proof system in Fig. 2 and the formula that is placed over the turnstile in that figure
corresponds to the focus that exists in one of the phases of focused proofs. The
completeness of focused proofs (see also Andreoli 1992) provided the completeness
result for Forum (Miller 1996) (see also Bruscoli and Guglielmi 2006). However,
Andreoli’s presentation of a focused proof system of linear logic provided impor-
tant and deeper insights into the structure of proof search in the sequent calculus. In
particular, Andreoli’s analysis of the two phases of rule application was based on a
notion of polarity of logical connectives and that polarity is flipped by de Morgan
duality. (Polarity of a logical connective is related to whether or not its right intro-
duction rule is invertible or not.) The use of two phases of proof construction was a
powerful addition to the results of pure proof theory. Several subsequent efforts have
been made to provide focused proof systems for classical and intuitionistic logic all
of which appear to be captured by the LKF and LJF focused proofs system of Liang
and the author (Liang and Miller 2009).

Influence: Logic programming on proof theory

When the notion of uniform proof, with its two phases for structuring proof

search, was extended to linear logic, a richer analysis of proof structure was

developed using focused proofs.

8.5 Other Linear Logic Programming Languages

Besides LO, Lolli, and Forum, various other subsets of linear logic have been studied
as logic programming languages. The Lygon system of Harland et al. (1996) is based
on a notion of multiple-conclusion goal-directed proof search different from the one
described above (Pym and Harland 1994). The operational semantics for proof search
in Lygon is different and more complex than the alternating of goal reduction and
backchaining found in, say, Forum. Various other specification logics have also been
developed, often designed directly to deal with specific application areas. In par-
ticular, the language ACL by Kobayashi and Yonezawa (Kobayashi and Yonezawa
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1993, 1994) captures simple notions of asynchronous communication by identifying
the primitives for sending and receiving of messages with two complementary lin-
ear logic connectives. Lincoln and Saraswat have developed a linear logic version
of concurrent constraint programming (Lincoln and Saraswat 1993; Saraswat 1993),
and Fages, Ruet, and Soliman have analyzed similar extensions to the concurrent
constraint paradigm (Fages et al. 1998; Ruet and Fages 1997).

Let G and H be formulas composed of , and ∀. Closed formulas of the form
∀x̄[G−◦H ] (where H is not ⊥) have been called process clauses in Miller (1993) and
are used there to encode a calculus similar to the π -calculus: the universal quantifier
in goals are used to encode name restriction. These clauses, when written in their
contrapositive form (replacing, for example, with ⊗), have been called linear Horn
clauses by Kanovich and have been used to model computation via multiset rewriting
(Kanovich 1994). A generalization of process clauses was presented in Miller (2003)
and was applied to the description of security protocols.

Some aspects of dependent typed λ-calculi overlap with notions of abstract logic
programming languages. Within the setting of intuitionistic, single-side sequents,
uniform proofs are similar to βη-long normal forms in natural deduction and typed
λ-calculus. The LF logical framework (Harper et al. 1993) can be mapped naturally
(Felty 1991) into a higher-order extension of hereditary Harrop formulas (Miller et al.
1991). Inspired by such a connection and by the design of Lolli, Cervesato, and Pfen-
ning developed a linear extension to LF called Linear LF (Cervesato and Pfenning
2002).

An overview of linear logic programming up until 2004 can be found in Miller
(2004b).

Influence: Proof theory on logic programming

Linear logic allowed for the development of new logic programming languages

that modularly extend and enhance previously designed logic programming

languages.

9 First-order and Higher-order Quantification

While most work in proof theory and logic programming has addressed only
first-order quantification, several researchers have defined and implemented logic
programming languages that include higher-order quantification.

Church, the inventor of the λ-calculus, is also the inventor of the most popular
version of higher-order logic in use in computational logic presently. In particu-
lar, Church’s Simple Theory of Types (STT) (Church 1940) defines the syntax of
both terms and formulas using simply typed λ-terms (simple types have been intro-
duced in Section 4). STT used only one form of binding, and that is the one used
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to form λ-abstractions: all other bindings—for example, the universal and existen-
tial quantifiers—are built using the λ-binder. In STT, it was possible to quantify
over variables of primitive type (first-order quantification) as well as types—such as
list → list, nat → o, and (list → o) → o—that contain the arrow constructor and
the primitive type o (higher-order quantification).

When implementing computer systems that need to manipulate syntactic expres-
sions in artificial and natural languages, the strings containing those syntactic
expressions need to be parsed. The result of such a parse is generally a parse tree
or abstract syntax tree representation capturing the structure of the parsed expres-
sion. Most traditional programming languages—functional, imperative, logic—have
convenient and flexible means to process tree structures. However, a majority of syn-
tactic expressions that need to be parsed and manipulated contain more than recursive
tree structures: they also contain binding structures. While binding structures can,
of course, be encoded in tree structures (using techniques such as de Bruijn’s name-
less dummies (de Bruijn 1972)), no traditional programming language contains direct
support for such an important feature of many syntactic expressions.

A good starting point for treating bindings in logic programming would then
seem to involve a proper merging of Church’s logic with Gentzen’s sequent calculus.
Such a merging also involves continuing Church’s identification of bindings to one
additional level. That is, term-level bindings (λ-abstractions) and formula-level bind-
ings (quantifiers) need to also be merged with proof-level bindings, which are the
eigenvariables of the sequent calculus. It is possible to consider eigenvariables to be
bindings around sequents: that is, if V is a set of distinct variables then the expres-
sion V : 	 � � can be interpreted as the formal binding of the variables in V over
the formulas in both 	 and �.

To illustrate this merging of bindings at these three levels, consider specifying
the binary predicate typeof whose arguments are encodings of an untyped λ-term
and of a simple type, respectively. The intended meaning of this predicate is that
(typeof �B� �τ�) holds if and only if the untyped λ-term B can be typed with τ .
For this example, we will write �t� to denote some encoding of untyped λ-terms
into simply typed terms: the key for this encoding is that bindings in the untyped
terms are encoded as binders in the encoded terms. We also assume that there is
some encoding, also written �τ�, of simple type expressions into (first-order) terms.
Consider the following derivation involving the specification of typeof :

V , x : �, typeof x �α� � typeof �B� �β�
V : � � ∀x(typeof x �α� ⊃ typeof �B� �β�)∀R

V : � � typeof �λx.B� �α → β�
Informally, this partial derivation can be seen as reducing the attempt to show that
the term λx.B has type α → β to the attempt to show that if (the eigenvariable) x

has type α then B has type β. In this case, the binder named x moves from term-
level (λx) to formula-level (∀x) to proof-level (as an eigenvariable in V , x). Thus, an
integration of Church’s STT and Gentzen’s sequent calculus supports the mobility of
binders.
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Influence: Logic programming on proof theory

One approach to writing logic programs that manipulate bindings with data

allows bindings to move from terms, to formulas, to proofs. Proof theory can

account for this mobility of binders by identifying eigenvariables as proof-level
binders.

λProlog was the first programming language to embraced this notion of binder
mobility (Miller 2004a; 2018), although this notion is also present in specification
languages based on dependently typed λ-calculus (Coquand and Huet 1988; Harper
et al. 1993; Pfenning and Schürmann 1999). The Isabelle theorem prover (Paulson
1989) also supports binder mobility using the technical device of ∀-lifting to link
proof-level bindings to formula-level quantification.

10 Conclusion

There have been significant reciprocal influences between researchers working on
structural proof theory and those working on logic programming. While it is not sur-
prising to find that the older and more mature topic of proof theory provided the bulk
of that influence, it is still the case that problems identifies within logic programming
forced proof theorists to deepen and extend their results. The development of two-
phase proof constructions that resulted in focused proof systems might be the most
prominent example; the encoding of binder mobility has been a second such example.
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