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Abstract
Software-intensive systems are ubiquitous in the industrialized world. The reli-
ability of software has implications for how we understand scientific knowledge
produced using software-intensive systems and for our understanding of the
ethical and political status of technology. The reliability of a software system
is largely determined by the distribution of errors and by the consequences of
those errors in the usage of that system. We select a taxonomy of software error
types from the literature on empirically observed software errors and compare
that taxonomy to Giuseppe Primiero’s Minds and Machines 24: 249–273, (2014)
taxonomy of error in information systems. Because Primiero’s taxonomy is
articulated in terms of a coherent, explicit model of computation and is more
fine-grained than the empirical taxonomy we select, we might expect Primiero’s
taxonomy to provide insights into how to reduce the frequency of software error
better than the empirical taxonomy. Whether using one software error taxonomy
can help to reduce the frequency of software errors better than another taxonomy
is ultimately an empirical question.

Keywords Software error . Error . Philosophy of software engineering . Computer science
education

1 Introduction

To date, there is no comprehensive theory of error in software that is both standardized
and widely used in software engineering practice. In general, what might such a theory
of error look like? A number of approaches are conceivable. One might understand the
purpose of a theory of error to involve explaining the source or sources of error. As
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such, a theory of error would provide an answer to the question of why errors occur.
Alternatively, one might seek a theory that explains what the essential nature of
software error is. Thus, we have at least two questions that a general theory of error
could aim to answer: Why do errors occur? and What is an error? While we can
imagine varying ways to understand the purpose of a theory of error, a first step in the
development of any such theory is to understand clear instances of error in a well-
defined and relatively well-understood domain. In this paper, we focus on errors that
arise in software engineering because it is a domain in which error is a pressing concern
and where considerable resources have been devoted to studying and correcting it.
Empirical research into software error rates is valuable, but as we shall show, it may
have significant limitations. These potential limitations are cast in sharp relief by recent
philosophical work on error in computing/information systems. Primiero’s 2014 tax-
onomy of information systems in particular is coherently and explicitly grounded in an
explicit abstract theory of computing and is more fine-grained than the empirical
software error taxonomies in the published literature that we reviewed and thus might
provide insights into how to reduce the frequency of software error. Whether any use of
any taxonomy can reduce the incidence of software errors better than another is
ultimately an empirical question.

There are some general features of error that philosophers have illuminated and
that can serve as the basis for theoretical engagement with software engineering
practice. At the most general level, for example, Nicholas Rescher notes that error
in human affairs results from our being limited creatures whose Bneeds and wants
outrun our various capabilities^ (Rescher 2009, p. 2). On this view, to err is
human, and insofar as humans have a hand in it, error in software engineering
practice is unavoidable. In general, technological artifacts, like software-intensive
systems, are created to help us exceed our innate capacities (Humphreys 2004). As
we extend ourselves, it seems that we inevitably go astray. Empirical evidence
seems to show that when it comes to software engineering, we go astray at
predictable rates.

Any taxonomy of software error that hopes to help reduce the frequency of software
errors will presumably have to be mapped to software development practices. Accord-
ingly, in Section 2, we provide a sketch of the structure of the software development
process.

Section 3 provides an overview of the results of a wide range of empirical
studies of software error published between 1978 and 2018. Section 4 provides an
informal overview of Primiero’s 2014 taxonomy of error in information systems.
In Section 5, we compare a taxonomy from the literature on empirical software
errors with Primiero’s taxonomy. In Section 6, we sketch an example of how one
could test whether a part of Primiero’s taxonomy would help to reduce the
frequency of software errors better than the Bempirical^ taxonomy we discuss in
Section 3. We further identify practical resources that can guide the construction
of experiments to help assess whether one software error taxonomy is more likely
to help reduce the frequency of software errors than another taxonomy. The
ultimate goals of such experiments are to help determine whether at least some
taxonomies of software error rates can help to reduce the frequency of software
errors better than other taxonomies can, and to help us understand, at least in some
ways, how error in software can limit human inquiry.
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As we discuss below, empirical investigation over the past four decades shows a
good agreement among average software error rates (errors per line of code), regardless
of application type—about one to two empirically observable errors per hundred lines1

of code. One natural response to this finding is to say that it indicates the need for more
rigorous testing in software engineering. However, even in software that has been
tested as well as is practicable, various kinds of error in most non-trivial software
projects occur at the empirically observed average rate of about one error per hundred
lines of code. In addition, it is likely that, for non-trivial software that is useful in
scientific, engineering, or business applications, there are hard theoretical limits to the
project of error correction, in addition to the pragmatic trade-offs faced by software
engineers (Symons and Horner 2017). The persistence of error in software engineering
is a remarkable feature of the empirical studies that we consider. While we will have to
live with error, clearly, some of these errors matter more than others. Understanding the
varieties of error that arise in software will be an important part of learning to cope with
life in an increasingly software-dependent society.2

2 Software Systems, Specifications, and Errors

The empirical and conceptual parts of this paper are restricted to errors in software
systems. ISO/IEC 2017 defines a software system S to be a collection of functions,
processes, and artifacts, abstract or concrete, that are essentially or by fiat associated
with a sequence of instructions written in computer languages (such as as C++, Fortran,
or Ada) that execute on some hardware system, within some usage context. In this
sense, a software system includes computer programs written in one or more computer
languages (See Symons and Horner 2014; Horner and Symons 2014).

A system specification, H, is a set of imperative sentences (called Brequirements^)
that state what objectives a system must achieve, but not how, at least in all details, the
system must achieve those objectives.3 For example, the imperative BBy 1969, the send
a man to the moon and bring him back alive^ is part of what a system must achieve, but
BUse a Saturn rocket whose flight software is implemented in IBM assembly language^
addresses part of how the objective might be satisfied.4

1 For the purposes of this paper, a line of code is a Bstatement,^ as Bstatement^ is defined in the standard for a
given computer language. For a closely related view, see Table 2.53 in Boehm et al. (2000).
2 Petricek 2017 contains an engaging dialogue about how we might approach living with software error. For
our view on what it means to live with error in the epistemology of software-intensive research, see Symons
and Alvarado (2019).
3 In practice, it is common to distinguish elements of a specification that are mandatory from those that are not.
Typically, the qualifier Bmust^ or Bshall^ is used to delineate a mandatory requirement.
4 Alternately, the imperative sentences of H can be classified in terms of functional, vs. non-functional
requirements. Informally, functional requirements define what a system is supposed to do and non-
functional requirements define how a system is supposed to be. Functional requirements are usually in the
form of Bthe system shall do <requirement>,^ an individual action or part of the system, perhaps explicitly in
the sense of a mathematical function. In contrast, non-functional requirements are in the form of Bthe system
shall be <requirement>,^ an overall property of the system as a whole or of a particular aspect and not a
specific function. We thank an anonymous reviewer for noting these alternatives. Nothing in this paper,
however, depends on whether requirements are organized under the Bwhat/how,^ vs. the Bfunctional/non-
functional,^ taxonomy.
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A software specification, Hsoft, is a set of imperative sentences that state what
objectives S (the software in the system) must achieve, but not how S must achieve
those objectives.5

For expository convenience, we posit that Hsoft is not an element of S. From a high-
level software engineering perspective, errors that may arise in S involve life cycle
process phases and associated products (artifacts) of S. Given Hsoft, those life cycle
processes are:

& Creating a logical (sometimes called a Bfunctional^) design (LD) of S, allocating
elements of Hsoft to the LD, then

& Creating a physical design (PD) for S that includes extensive realizations of S in
computer languages and allocation of elements of the LD to the PD, then

& Implementing the PD in computer languages to run on designated hardware, then
& Integrating and system testing S, then
& Deploying S, then
& Maintaining/sustaining S

Each of these phases typically generates documents and uses processes that are
subjected to review (including detection of errors) during the life cycle.6 Several
variants of the life cycle process are possible (see, for example, Stutzke 2005, esp.
Chap. 10), but apart from mandating that S satisfies Hsoft, these differences make no
difference for the purposes of this paper.

However, S is implemented, we posit that in order to be correct, S must satisfy Hsoft;
in our view, this satisfaction relation can be characterized in model theoretic terms.7 If S
does not satisfy Hsoft, we will say S has a software error.

3 Review of Empirical Studies of Software Error

As early as 1969, it had become apparent to the software engineering community that
the number of errored instructions in software systems was increasing primarily as a
function of software system size (i.e., as the number of lines of software in the system
of interest; Royce 1970). This observation suggested that a quantitative characterization
of error rates in software is relevant to the management of complex programming
projects. Numerous studies along these lines were published in the late 1970s and early
1980s. After this initial period of high interest, however, the number of quantitative

5 We thank an anonymous reviewer for recommending we emphasize the distinction between a software
specification and a system specification. In a given system, the software requirements are a proper subset of
the entire set of system requirements.
6 In general, the process of allocating H to the elements of the system proceeds by phases and involves
Bderiving^ and allocating requirements from previous phases in the life cycle. The end result of this allocation
process is an acyclic graph of allocations to elements of the developed system. A systematic account of
allocation is beyond the scope of this paper. For our present purposes, all that matters is that allocation
ultimately yields a mapping, A, in the set-theoretic sense, from the models of H into the models of artifacts and
processes of the deployed system.
7 We believe the satisfaction relation can be captured as follows: BS satisfies Hsoft if every model M of H is
homomorphic to some model of S.^ It is not, however, essential to this paper that this specific formulation
characterizes the notion of Bsatisfying a software specification.^
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empirical studies of software error rates published per year diminished until the early
2000s. Thereafter, interest in the quantitative characterization of empirical software
error rates grew again. Among the reasons for this renewed interest was the increasing
codification and institutionalization of software engineering processes beginning in the
late 1990s (e.g., IEEE 2000; ISO-IEC 2017). The growing importance of security,
concerns about liability, and an increase in theoretical consideration of software
engineering practice among philosophers and other humanists may have also contrib-
uted to the revival.

Managing error in large, multi-person software projects is now a matter of consid-
erable concern and attention. Despite this concern, most contemporary software devel-
opment projects almost never involve statistical hypothesis testing based on quantita-
tive error rates (DeMarco 1982; Humphrey 2008): typically quantitative error analysis
in large software projects emphasizes tracking the number of errors, with relatively little
attention to the nature of those errors, as a function of time.8

In practice, of course, software engineering projects catch some errors during
software development by using model-checking, compilers, linkers, software develop-
ment environments, formal reviews, and testing. Inevitably, however, errors escape
these checks and are detected, if at all, only after the software has been deployed.

Roughly 100 empirical studies have been published since 1970 on software error
rates. To help characterize the empirical software error distribution reported in the
literature, we first examined every abstract in IEEE Transactions on Software Engi-
neering that mentioned Bsoftware error^ or Berrors in software.^ We had two objec-
tives. The first was to estimate the range of empirical software error rates (expressed in
errors per line of code), aggregated over Ball^ error types reported in the surveyed
literature. We hypothesized (but did not assume) that this aggregate rate was, to coarse
approximation, on average on the order of a few errors per hundred lines of code. The
second objective was to assess whether the error types reported in the literature could
be subsumed under a relatively small, but plausibly informative set (containing ~ 5
members) of taxonomic categories that (a) had been reported in the empirical software
error literature and (b) was mappable to measurands obtainable during the software
development phases mentioned in Section 2.

If the abstract of a paper chosen as noted above literally mentioned Bsoftware error^
or Berror(s) in software^ we reviewed the associated full paper. If the body of such a
paper reported studies (as a report on new research, or via references to the literature) of
the error rates in at least five9 projects, a broad range of error types, and a variety of
application types, we extracted a paper identifier, the error types, their associated
application type, and the frequency of those types reported that paper. In addition to
our survey of the literature, one of us (AU No. 1) conducted an error analysis of the

8 Large software projects typically use an error tracking system that records error reports generated by
developers and testers and records actions taken (status tracking) concerning those reports (see, for
example, Plutora 2018; Mantis 2019; Micro Focus 2019).
9 As a rough rule-of-thumb, a t test on a sample size of 10 is often sufficient to support practical statistical
inference (P < 0.1) about the values of the parameters of normal distributions. The actual sample size required
for a given statistical test depends on the distribution-type of the population, the particular kind of sample
statistics computed, the type of test, the statistical hypothesis, the experimental design, and what is known,
independently of the test of interest, about population parameters. See, for example, Crow et al. (1955);
Devore (1995); Gopal (2006); and Hogg et al. (2005).
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Linux operating system (excluding the kernel) software using the splint static analyzer
(University of Virginia 2018).

Eleven papers (of the ~ 100 Transactions in Software Engineering papers, 1970 to
the present, whose abstract contained the phrase Bsoftware error^ or Berror(s) in
software^ we reviewed) met all of the criteria described above.

We chose to call a summary of the indicated software error information for a given
paper an Berror descriptor^ (for that paper). On the surface, the 11 error descriptors we
abstracted from the literature appeared to span more than 100 types of software errors
with almost no (literal) duplication of error types from paper to paper.10 That result,
where no further analysis possible, would imply that little to no interesting statistical
structure could be inferred by comparing the papers we reviewed. On closer inspection,
however, it became clear that all the error types reported in the literature we examined
could be subsumed under a small set of empirical software error types described in
Bowen (1980) and Boehm (1981), p. 383): misunderstanding of the specification,
errors in logic, errors in numerical precision/accuracy, and errors in memory manage-
ment. These categories can straightforwardly be mapped to the development phases
outlined in Section 2 (see, in particular, Boehm 1981, p. 383). The categories in this
taxonomy are briefly described in the following (Sections 3.1, 3.2, 3.3, and 3.4).

3.1 Misunderstanding the Specification

The kind of error most frequently reported in these studies was BMisunderstanding the
specification.^ Diagnosing this error type presumes that the specification is clearly and
unambiguously formulated (at least for sufficiently informed, well-intentioned readers).
In many software system development projects, however, the software engineers
assigned to implement to a part of the specification may not be fluent in the domain
the specification addresses, and often enough, do not even know who the specification
writers are. This can lead to all manner of misunderstandings. An engineer could fail to
understand the specification in at least two different ways. For example, the engineer
could fail to understand that a particular model or theory (e.g., Newtonian mechanics)
was (perhaps implicitly) presumed by the specification. Or, the engineer might incor-
rectly allocate or map the requirements stipulated by the specification. For example,
suppose the engineer were given the requirement to compute the trajectory of a missile
in real time. Suppose further that the engineer allocated this requirement to a machine
that was too slow to perform the computation. This would be an error in allocating
requirements.

3.2 Errors in Numerics

Many application types require a representation of real numbers (e.g., in the represen-
tations of forces, distances, and temperatures; more generally, continuous real-valued
quantities). In general, modern digital computing systems can only approximate the
true value of real number quantities of interest. In some applications, the difference
between the digital approximation and the true value of the quantity of interest does not
matter and can be ignored. But it often does, and this is a relatively common source of

10 There is no widely used (Bstandardized^) taxonomy for software error types in the literature.
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error. More specifically, it is not uncommon to find errors in deployed software arising
from the following sources (the list is neither mutually exclusive nor jointly exhaustive;
see University of Virginia 2018 for a more comprehensive and more fine-grained (C-
language-oriented) list):

a. The developer does not understand, or provide protection against, the numerical
accuracy and precision limitations in a numerical algorithm.

b. The developer is not aware of, or does not pay attention to, the limitations of
numerical type conversions in the computer language. For example, a developer
might try to replace the value of a 64-bit-precision variable with the value of a 128-
bit-precision variable. The precision of the result could be 64 bits, 128 bits, or ill-
defined. In many software development environments, this kind of error, even if it
is undefined in the language of interest, is not reported by the compiler.

c. The developer is not aware of smallest positive value representable in the comput-
ing environment (in computing jargon, often called the Bplatform epsilon^). Every
computing environment has a smallest positive value that is representable in that
environment. Any attempt to compute a value smaller than this may result in an
undetected error,11 in some cases with disastrous results.

d. Most scientific software (e.g., of the kind used in hydrodynamics, electromag-
netics, acoustics), a software system accepts (as inputs, or asserts as constants)
values derived from measurements that are external to the software. Those mea-
surements have whatever accuracy and reproducibility limits they do. If an engi-
neer does not fully reflect these accuracy and reproducibility limits in software, the
software can generate results that appears to have higher accuracy or precision than
the measurements themselves have. Hatton, for example, studied this problem in
detail and concluded that across a wide range of deployed scientific application
software systems, the output had, when represented in scientific/exponential nota-
tion, at most one significant digit, even though the output often reported seven or
more digits when expressed in exponential notation form (Hatton 1997).

3.3 Incorrect Logic

Arguably, logic errors could arise in almost any aspect of any taxonomy of errors.
Given that programmers are not logically omniscient, we cannot expect to prevent logic
errors in a system with even moderate levels of complexity. Among the more common
types of logic errors are:

a. The developer does not understand the logical structure of what is being repre-
sented. Suppose, for example, that a payment tracking system is intended to
separately track paying by cash, check, or credit card. Suppose that the software
engineer lumps paying by cash with paying by check, not realizing that the
requirement is to track payment mode each on its own terms.

11 The performance cost of detecting every possible occurrence of this of error, in most computing systems, is
prohibitive.
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b. In a mutually exclusive list of logical cases, the developer fails to manage one or
more cases. Suppose, for example, that in the payment tracking system mentioned
in a, the software engineer fails to track Bpaying by cash.^

3.4 Memory Management Errors

All of today’s general-purpose computing systems contain physical memory (hardware
in which information is stored and from which it is retrieved) that must be managed. At
some level, these computing regimes require management of memory allocation
(designating specific memory for use by a program), referencing (identifying a location
in memory), writing to and reading from memory, and deallocation (releasing previ-
ously allocated memory for other uses) in order to satisfy speed (Btime complexity^
(Aho et al. 1983, 2006, Section 1.4)) or space (Bspace complexity^ (Aho et al. 1983,
Chap. 12)) constraints. In some languages or applications, this kind of detail is
managed automatically, by the operating system, a run-time environment, or the
compiler/linker. In such cases, the software engineer does not have to explicitly manage
memory. In some languages or environments, memory management must be done by
the application programmer.

We Brebinned^ the error types in the first set of descriptors to the four categories
described in Sections 3.1, 3.2, 3.3, and 3.4 and, for each record, transcribed or
computed the average error rate, and the standard deviation of that rate where data
was available to support such a calculation, per line of code, for each of the projects
reported in the papers we analyzed. The range of software error rates per line of code
obtained from this analysis was 0.5 to 3.0 per hundred lines of code, consistent with our
initial hypothesis about this rate. Table 1 contains a summary of our results for the 11
papers from the literature and the Linux source code error analysis performed by AUT
No. 1.

3.5 Limitations and Caveats

Most of the projects referenced in Table 1 were developed under best practicable
engineering standards.12 The error rates in Table 1 are those found in the referenced
software projects after the software became operational.

The taxonomy described in Sections 3.1, 3.2, 3.3, and 3.4 certainly does not exhaust
the varieties of errors and failures that software projects encounter. Empirical studies
that focus on deployed software will tend to miss many important ways that things can
go wrong. For example, it has been estimated that about 15% of software projects are
terminated (Bfail^) before, or shortly after, completion of development because of errors
in the specification, i.e., the specification does not actually state what the procurer/user
needs/wants (DeMarco 1982, p. 3; Stutzke 2005, p. 9). No data from projects that Bfail^
in this sense are reflected in Table 1.

In addition, computing hardware is susceptible to failure. Some of these failures are
transient and are detected and automatically corrected by the computing environment.

12 Those standards have evolved over the surveyed range of publications dates (1970 to the present), but none
of those changes materially affect our analysis.
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Some are not. No computing hardware failures are considered in the empirical studies
we evaluated, nor are they discussed further in this paper. Hardware failure is an
unavoidable reality for software-intensive systems insofar as software must be imple-
mented in physical devices and these devices are subject to the contingencies of the
physical world.13

Furthermore, a software error has at least two dimensions: the type of the error,
considered independently of how the software system is used, and the consequences of
the error in the context in which the software system is used (see MISRA 2013;
Rescher 2009, p. 4). An error in one usage context might be of no consequence, but
that same error might be fatal in another usage context. The taxonomy in Table 1 does
not sharply distinguish these two dimensions.

Not least, developers rarely publish metrics, including error metrics, on their projects
(DeMarco 1982). There are at least two reasons for this. First, it takes time and money
to analyze error metrics, and almost no software procurement specifically pays a
developer to attend to software error metrics analysis.14 Second, a published error
metric discloses something about the performance of the developer, and this can create
the perception of a developer weakness or even lead to legal liabilities.

These limitations and caveats are not intended to be a criticism of the empirical work
conducted to date. Regardless of how one approaches a characterization of software
error, it is likely impossible to find a taxonomy that strictly partitions (i.e., provides a
mutually exclusive, jointly exhaustive decomposition of) software error space. A
typographical error, for example, could be associated with essentially any kind of error.

3.6 Interpreting the Results of Empirical Studies

At least three significant observations can be made about the empirical studies of
software error summarized in Table 1. Most strikingly, there is good agreement among
averages of aggregate empirical software error rates reported from 1978 to 2018,
regardless of application type—about one to two empirically observable errors per
hundred lines of code. This is strong indication that the empirically observed error rate in
software development has been roughly constant over nearly 40 years of software
engineering practice, despite explicit community wide efforts to reduce that rate. Note
also (see Table 1) that standard deviations of the empirical error rates, where determin-
able from the published literature, are large relative to the average error rates. This
suggests that the empirical software error rate data has, at least in some studies, relatively
high mean deviation (i.e., the mean deviation is about the size of the sample average;
Crow et al. 1955, p. 13). Third, the splint error measurements (performed by AU No. 1)
on Linux are unexpected.Why? Linux is used in, or used in the development of, roughly
10 billion devices worldwide. We would expect a widely used operating system to have
among the lowest empirical software error rates. A splint analysis suggests that this
expectation is misplaced—Linux, exclusive of the kernel, has an empirical error rate of
2% (on average, there are two errored C-language statements per 100 C-language

13 We discuss the role of such unavoidable constraints due to the character of physics in Symons and Horner
(2017).
14 In a competitive environment, of course, a developer that paid no attention to software error would go out of
business.
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statements, exclusive of the kernel, making the Linux error rate (exclusive of the kernel)
comparable to that of non-operating-system code. The consequences of these errors in
any given usage regimen, of course, is a separate question.

Analysis of empirical studies of error rates shows some striking features, as illus-
trated in Table 1. However, the error types shown in Table 1 may not shed sufficient
light on how we might best reduce error rates. It seems plausible that individuating and
understanding the kinds of errors that arise, their prevalence, their seriousness, and
ideally their sources, might help us to make progress on reducing the prevalence of the
errors that we care about. Whether a given taxonomy of software errors will help to
reduce the frequency of software errors better than another taxonomy is ultimately an
empirical question. We regard Giuseppe Primiero’s 2014 taxonomy of errors in infor-
mation systems as a promising alternative to the empirical taxonomy of software error
shown in Table 1. In the following (Section 4), we briefly review Primiero’s taxonomy.

4 An Overview of Primiero’s Taxonomy of Errors in Information
Systems

Primiero’s (2014) taxonomy of errors in information systems recognizes that comput-
ing systems have both epistemic (informational/semantic content) and computational
(Bmechanical operational^/Binstructional^) features, and these are related in various
ways. An adequate account of error in computing systems must take both these features
and their relationship into account (see Piccinini 2015, esp. Chaps. 1–7, for a critical
survey of these issues.) To achieve this end, Primiero begins by characterizing infor-
mation systems in terms of an informational semantics that is cast in a procedural idiom
(analogous to the idiom of Abstract State Machines).15 The procedural idiom includes
two main operations on informational contents: access and use. In that idiom, local
validity (i.e., Btrue in a given context^) of informational content Bis explained in terms
of the instructions needed to reach a given state; global validity is given by the set of
states the system goes through to reach a given goal^ (Primiero 2014, p. 251). BMoving
to reach a goal is explained by accessing the information at a given starting state and
using that information by performing syntactic transformations on it, obtaining the next
state.^ (Primiero 2014, p. 251).

Primiero 2014 then defines a taxonomy of errors whose highest-level types are
mistakes, failures, and slips, as follows.

On Primiero’s account, B[m]istakes are errors involving the description and the
design of the problem to be solved, or the specification to be implemented. […]
resulting from a faulty or incorrect explanation and presentation of the object for which
a validation procedure is required.^ (Primiero 2014, p. 259). Mistakes have both
conceptual and material subtypes.

A conceptual mistake is a mistake in which a […] pair (P, G), where P is a procedure
and G is a goal, contains or refers to an ill-defined Bcategory^16 A (Primiero 2014, p.

15 Characterizing how the epistemic content of a computing system could be cast in a procedural idiom
involves some interesting, and likely difficult, questions, such as BCan we reduce ‘knowing’ to a procedural
idiom?^ Addressing those questions is beyond the scope of this paper.
16 By Bcategory^ in this context, we take Primiero to mean Btype,^ in the sense of the reserved term Btype^ his
formal characterization of information systems.
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259). For example, consider a specification that requires as its subroutine an algorithm
to compute Newtonian velocity. To define the domain of such function in a way that
accommodates Einstein-relativistic behavior would represent a conceptual mistake.

A material mistake involves B[…] the structural design of the strategy, where a pair
(P,G) is given that includes elements operations or processes that do not constitute a
strategic (sub-) goal to G. […] This means that at the design level (e.g., in the physical
design of the software) there is an error implementing the system requirements
specification.^ (Primiero 2014, p. 259). For example, suppose the system specification
required computing leap years (which must be divisible by 4) but the implementation
tried to compute leap years by testing to see whether the years were divisible by 3.

Primiero defines failures as B[…] errors explicitly referring to the rules used in the
evaluation and resolution of the problem (respectively, the validation of the specifica-
tion) or related to the resources these rules have to access.^ (Primiero 2014, p. 260). As
with mistakes, Primiero explains how failures have both conceptual material subtypes.
Conceptual failures involve B[…] problems in the selection and formulation of rules or
strategies.^ (Primiero 2014, p. 260).

Material failures involve B[…] problems related to the accessibility of the resources
required for the correct execution of a procedure for the problem or specification at
hand.^ (Primiero 2014, p. 260). All memory management errors in the sense of Table 1,
for example, are material failures.

The least clearly delineated type of error discussed by Primiero is what he calls slips.
According to Primiero, slips are Berrors generated by the applications of rules that are
appropriate to the given goal, but that do not match some formal criteria.^ (Primiero
2014, p. 261). Slips have both conceptual and material subtypes.17 Conceptual slips are
Bpractical errors related to algorithm design, i.e. where the selection of range and
domain, the order of rules applied and subrecursion definitions are chosen for an
efficient algorithm^ (Primiero 2014, p. 262). For example, we might try to apply a
second-order-valid numerical integration routine that requires a fourth-order-valid
integrator.

5 Comparing Empirical Software Error Studies with Primiero’s
Taxonomy of Errors

With these definitions in hand, we can now compare the empirical software error
taxonomy of error types in Table 1 with Primerio’s taxonomy of errors in information
systems (see Table 2).

Two observations immediately follow from Table 2. First, it is clear enough that the
error types described in the literature on empirical software error rates (i.e., the error
types shown in Table 1) correspond in various ways to some of the error types in
Primiero’s taxonomy. That correspondence, however, is not always one-to-one, even
where the empirical, and Primiero’s, categories at least partially overlap. Second, there
are error types in Primiero’s taxonomy for which there is no clear counterpart in the

17 Primiero infelicitously defines slips as Bmaterial errors^ (Primiero 2014, p. 261), thus making the subcat-
egories of conceptual and material slips less clear than they should be. We simply strike Bmaterial^ from the
original definition of slip here for the purposes of our exposition.
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empirical software error types of Table 1. That observation implies that the set of error
types in the existing empirical studies that we reviewed are, relative to Primiero’s
taxonomy, less fine-grained and thus could fail to capture some important features of
software error. In this sense at least, philosophical analysis can provide a more
discriminating differentiation of error types and dimensions than we find in the existing
empirical software error literature.

6 How Do We Determine Whether Settling on One Taxonomy Reduces
the Frequency of Software Errors Better than Another?

Whether any particular taxonomy, as realized in a given set of practices, can help to
reduce the frequency of software errors better than another taxonomy (as realized in a
given set of practices), are empirical questions that are answerable only by experiment.
In such an experiment, we must first define what experimental question we wish to
pose, use that to help identify data is to be collected, how that data is related to the
taxonomy of interest, under what protocol the data will be collected and analyzed, and
what Bbetter^ means.

We can sketch an example of such an experiment. In this experiment, let us suppose
we want to gain some insight into whether lumping all Bmisunderstandings of the
specification^ into a single category helps to reduce the frequency of software errors
better than tracking misunderstandings of the specification under multiple subcate-
gories. We might perform the experiment in a software engineering class of the kind
typically offered at the undergraduate computer science level. We divide the class into
two development teams, A and B. Both teams are assigned the Bsame^ software
development problem. Both teams have formal tracking and resolution of software
errors that arise in the course of the development process. During error tracking and
resolution, Team A, which we will call the Bempirical taxonomy-oriented^ team, would
classify Bmisunderstandings of the specification^ in a single category. Team B (which
we will call the BPrimiero-taxonomy-oriented team^), in contrast, would classify
Bmisunderstandings of the specification^ under various subcategories, including, for
example, Binherently ambiguous specification language,^ Bsoftware engineer failure to
understand logical implications of a clearly written specification,^ and Bsoftware

Table 2 Correspondence be-
tween empirical software error
types shown in Table 1 and ele-
ments of Primiero’s (2014) tax-
onomy of information system er-
rors. S = misunderstanding the
specification, N = numerics, L =
logic, M= memory management,
as defined in Table 1. ND = not
well-differentiated in the empiri-
cal software error literature

Primiero’s (2014)
taxonomy

Correspondence to the taxonomy
of errors in Table 1

Mistakes

Conceptual S (ND)

Material L (ND)

Failures

Conceptual S

Material N (ND), L(ND), M

Slips ND

Conceptual ND

Material ND
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engineer failure to choose an algorithmic approach relevant to the specification.^ What
Teams A and B do with the software error data they acquire during development is left
to the teams to decide. Both teams complete the project, and the frequency of software
errors in the two approaches is recorded. The experiment is repeated a sufficient
number of times to ensure that the sample size is large enough to ground conventional
statistical hypothesis at a significance level of interest (see, for example, Crow et al.
1955; Devore 1995; Gopal 2006; Hogg et al. 2005).18

A comprehensive account of how to construct experiments to help determine
whether one error taxonomy, as used in practive, can help to reduce the frequency of
software errors better than another taxonomy, as used in practice, is beyond the scope of
this paper. Fortunately, there are several good engineering practice–oriented sources
available on the subject. Stutzke 2005 (esp. Chaps. 16 and 25), for example, provides
an excellent overview of the issues that must be addressed. Grady 1992 provides useful
checklists and guidance on implementing a practical software metrics (including error
metrics) program. McGarry et al. 2002 provide good definitions for many error-related
quantities of interest. Florac and Carleton (1999) identify possible measures and discuss
selecting, collecting, and analyzing software (including software error) metrics.

7 Discussion

Primiero’s (2014) characterization of information systems can support a more general
notion of information system error than the Bmistake/failure/slip^ taxonomy that he
provides. One could argue, more generally, that any aspect of any computing system
that is inconsistent with any feature of a given formal characterization of information
systems could be called an Berror in an information system.^ Even within Primiero’s
taxonomy of errors, the Bmistake/failure/slip^ types represent just one of several
logically possible partitioning of the space of error types (in the generalized sense of
Berror in an information system^ mentioned in the previous sentence).19 How one
carves up the space of the taxonomies of error that can be defined in terms of a given
characterization of an information system will depend on the interests of the
Bpartitioner.^ Those interests may include, but are not limited to, the concerns of the
community of software engineering practitioners.

8 Conclusions

The reliability of software is intimately related to, if not fully determined by, the
distribution of errors in software systems and the uses to which that software is put.

18 In a typical undergraduate computer science degree program, a software engineering course is offered as an
elective, and typically only one section of that course is taught per year. In an undergraduate software
engineering degree program, such as that offered at Carnegie Mellon University, multiple sections of software
engineering courses are offered every semester.
19 Primiero’s interest in partitioning information system error space into mistakes, failures, and slips appears to
be twofold. First, that particular partition corresponds in some natural ways with the way software engineering
practice talks about errors (Primiero 2014, p. 258). Second, Primiero’s classification corresponds reasonably
well with at least one classification of errors in science (Primiero 2014, p. 258).
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Even in software that has been tested as well as is practicable, various kinds of error in
software occur at the empirically observed average rate of about one error per hundred
lines of code. Reducing the frequency of software error is a major goal of software
engineering practice. Empirical software error rate studies provide at least some insight
into the nature of software error.

In this paper, we compared the taxonomies of empirically observed software error
rates reported in the published literature with Primiero’s taxonomy of error in informa-
tion systems. This comparison shows that although philosophical research into the
problem of error in software has barely begun, this kind of analysis of software error
can provide a more fine-grained than the taxonomy of software errors than that
provided by the taxonomy of empirical error we selected in Section 2, in several
important respects. Philosophical analysis can help to formulate software error taxon-
omy comparison hypotheses for statistical testing, while at the same time grounding
those hypotheses in an epistemically and logically transparent model of computation.
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