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Abstract The aim of this paper is to propose an alternative behavioural definition
of computation (and of a computer) based simply on whether a system is capable of
reacting to the environment—the input—as reflected in a measure of programma-
bility. This definition is intended to have relevance beyond the realm of digital
computers, particularly vis-à-vis natural systems. This will be done by using an
extension of a phase transition coefficient previously defined in an attempt to charac-
terise the dynamical behaviour of cellular automata and other systems. The transition
coefficient measures the sensitivity of a system to external stimuli and will be used
to define the susceptibility of a system to be (efficiently) programmed.

Keywords Natural computation · Programmability · Compressibility ·
Philosophy of computation · Turing universality · Cellular automata

1 The Question of Computation and Computing

Despite attempts to formulate one spanning several decades, no agreed-upon defini-
tion of computation exists to this day (Putnam 1988; Copeland 1996; Shagrir 2006;
Smith 1996, 2002, 2010; Piccinini 2007). Legitimate objections have been raised,
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for instance, to representationalist and functionalist definitions (Putnam 1988; Searle
1980; Fodor 2000; Piccinini 2007, 2008). No existing account of computation seems
free of the following requirements: that the system’s specification be known and that
a model representation or mappings among states or functions be available, which
makes it difficult to characterise natural computation (some accounts simply decree
that natural computation constitutes computation as such). Here, we advance what to
our knowledge is a novel approach based on the behaviour of a system, very much
in the spirit of Turing’s response when asked about the applicability of the notion
of intelligence to entities other than humans or animals, in particular to computing
machines. Formal thought about computation begins with machines and then pro-
ceeds to consider natural processes (such as brains and physical phenomena), which
runs contrary to the direction of history, since the original “computers”, the entities
engaged in computation when Turing began thinking about electronic computers,
were actually human beings. Perhaps, this paradox has to do with the centrality of the
digital in today’s understanding of computation, as against a possibly more general
notion of computation covering other than digital.

The most important notion of computation has been the notion of digital compu-
tation, and the most important feature of digital computation is universality. Turing’s
abstract idea of a universal computer turned out to be technologically feasible,
showing that though physics may not compute, it at least supports computation,
as we have built devices whose behaviour, despite being governed by the laws of
physics, effectively implements general-purpose digital computation. Even though
other forms of computation may exist or have been advanced—quantum computa-
tion, for instance—they are measured against the digital model, and no consensus
exists as regards the notion of universality except with reference to digital computa-
tion (analogue computation, for example, has no standard definition of universality.
Thus, since Turing, the concept of computation has for the most part been couched
in the form of the concept of digital mechanical computation. The seminal concept
of computational universality can clearly be associated with the amenability of a
machine to be (re)programmed, with the existence of a general-purpose machine that
can emulate any other machine of the same class and is hence deeply related to the
notion of programmability. In this paper, we place the concept of programmability
at the centre of the discussion, with a view of extending the notion of comput-
ing to unconventional and natural computation. Programmability here is invoked in
a slightly different manner than its standard usage (e.g. a specific-purpose TM is
programmable on the present account).

The study of the limits of computation has succeeded in generating insight into
what computation might be. The borderline between the decidable and the undecid-
able has provided an essential intuition in our search for a better understanding of
computation. One can, however, wonder just how much can be expected from such
an approach and whether other alternative approaches to understanding computation
may complement the knowledge and intuition it affords, especially vis-à-vis modern
uses of the concept of computation in the context of nature and physics, correspond-
ing to situations in which objects or events are seen as computers or computations.

One such approach involves not the study of systems lying “beyond” the uncom-
putable limit (also called the Turing limit), but rather the study of the minimum
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requirements for reaching universal computation, through a focus on the “small-
est” possible systems capable of universal computation—how easy or complicated
it is to build a universal Turing machine and how efficient such a machine is. This
minimalistic bottom-up approach is epitomised by Wolfram’s program (Wolfram
2002) together with its interesting older (Minsky 1960; Rogozhin 1996; Kudlek
and Rogozhin 2002; Watanabe 1972) and more recent incarnations (Wolfram 2002;
Cook 2004; Smith 2012; Margenstern 2010; Neary and Woods 2009; Baiocchi 2001).
Putnam (1988) and Searle have advanced strong objections based on the argument
that an overly broad notion of computation leads to trivialisation, where for example,
every system realises every Turing-computable function (strong pancomputational-
ism) and where arbitrary state mappings and encodings yield meaningless definitions
of computation.

One can think of formal semantics as an approach to defining computation
through programming languages and models of computation, which makes a distinc-
tion between syntax and semantics, mapping programs onto mathematical objects
describing the relationship between the syntax and the model of computation (thus
being model dependent). According to the semantic approach, a computation is a
function that maps input onto output (Scott 1970). Syntax defines the correct form for
valid programs and semantics determines what (if anything) they compute. In other
words:

Computation = PL Syntax + PL Semantics

with PL meaning programming language. There are several widely used techniques
(e.g. algebraic, axiomatic, denotational, operational and translational) for the descrip-
tion of the semantics of programming languages, all of which deal with their
behaviour. The distinction is often made between syntax, concerned with what con-
stitutes a program, and semantics, concerned with the question of what a program
computes, or what an expression means and whether or not two expressions are
equivalent.

In most accounts of computational processes as realised by physical mechanisms,
it is also often assumed that there is a one-to-one correspondence between causal
physical states and the states of a computation defined by some abstract model in
which these states can be represented. Putnam (1988) and Scheutz (1999) discuss the
issue of the correspondence of abstract/computational state to physical state.

The traditional mapping-states definition of physical computation is probably
inspired by formal semantics, in that it requires that a mapping be established
between a model and a physical system, meaning that states and events in the model
are used to label states and events observed in the system treated as mathematical
objects. For example, if φ is a Turing universal computing machine, for any other
computational process ω, there is an effective mapping M such that any input x for
ω can be encoded as an input M(x) for φ, so that after φ has performed its compu-
tation, φ(M(x)) can be decoded to the answer that ω would have given for x, that is
M−1(φ(M(x))) = ω(x) if ω halts.

However, one can rarely find or justify such mappings M in natural systems
(independently of whether they exist), models of natural systems are often not eas-
ily amenable to formal analysis and simulation at different scales. In general, it is
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arbitrary to, for example, map a “natural state” to a halting state for the standard def-
inition of digital computation to apply, nor can we always know what path nature
has taken to produce a given outcome, regardless of whether or not we see this path
as constituting a computation (and even independently of whether there is a causal
connection).

The syntactic approach to defining computation is closely related to the common
(and often informal) view that computation is information processing, which in turn
is related to what I think is an informal gesture toward “programmability”. The direct
connection between computation and information processing is not trivial at all and
Floridi has advocated to make a clear distinction between two variations of informa-
tion of semantic content (Floridi 2010) where the observer plays an important role.
Floridi’s account of one of two types of information (Floridi 2005), that is instruc-
tional information, may be related to what this approach is proposing regarding the
existence of an interpreter that transforms what is in a system into a set of instruc-
tions to be executed by a computer, showing that the system can be said to compute.
The importance of this comment stems from the role that propagation/processing of
information plays in the present account.

From the point of view of this behavioural approach to computation, the syntactic
approach falls short of achieving its own objective, viz. distinguishing what compu-
tation is from what it is not, because it is not at all clear how one can or cannot find
a mapping between the states of any given (even natural or physical) system and a
computational one in the broad contexts we are interested in. The semantic approach,
however, appears to accommodate some common intuitions about what does and does
not count as a computing system, but it requires that relations be established between
computational states. For example, it can be made to work by introducing the notion
of an interpreter. If an interpreter exists to transform what is in a system into a set of
instructions to be executed by a computer, then the system can be said to compute.
This, however, is not an easy task when it comes to making such mappings between
natural and state-oriented computing systems.

Deutsch (1998) has defended the position that computers are physical objects, and
computations are physical processes governed by the laws of physics. However, the
theory of computation has traditionally been studied almost entirely in the abstract, as
a topic in pure mathematics. If computers are closer to physical and natural processes,
one may expect to face some of the same challenges in the approach to defining com-
putation for abstract systems than for natural systems. Turner (2011), for example,
points out De Millo’s “argument from complexity” (De Millo et al. 1979). That is,
“that the complexity of many contemporary computational systems irrespective of
their ontological nature, demands that they be treated as physical systems”, because
there is no practical approach to verifying the correctness of a sophisticated com-
puter program (for example, an air-traffic controller) without treating it as a “natural
system”, that is performing experiments and observing their outcomes (and this is in
practice one of the pillars of software verification in techniques such as randomised
testing), and not as a “mathematical system” for which one can verify its correctness
without having to run the program (very much along the lines of Wolfram’s
Principle of Computational Equivalence (Wolfram 2002) that seems to synthesise
and generalise this position).
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We advance here a metric of behaviour of computation along these lines, distin-
guishing objects to which some degree of computation can be assigned according
to how they behave, particularly how they can be programmed, hence placing pro-
grammability at the centre of the discussion and definition of computation. Clearly,
by such a definition, one may now not call something a computer if for any input it
leaves it unchanged, or if for any input the same output is always produced, which is
what we take as the contrary of the action of “being programmed”. Between these two
cases, however, we think there is room for a behavioural definition. Thus a system
will be a computer depending on its capabilities to react to external stimuli related
to the notion of programmability. The usual feeling with things such as calculators is
that one does not program a calculator because it is a “specific-purpose computer”
but still a calculator is highly sensitive to external stimuli and depends completely
on the input (numbers and operations) to determine the output; hence, it is in this
sense highly programmable. In our context, programmable does not mean therefore
to rewire a system but to make it behave in a desired way (e.g. adding or multiply-
ing given numbers). We think this is the spirit behind the concept of universality, that
is, that hardware or software rewiring is at some fundamental level equivalent. The
idea of a universal Turing machine is precisely to have a general-purpose machine
to be able to behave as any specific-purpose Turing machine. Turing showed that
one could encode such a specific-purpose machine as data for the universal Turing
machine. In other words, a Turing universal computer has no problem with behaving
as an electronic calculator without rewiring the universal computer. This also goes in
the other direction. For every specific-purpose program running on a universal Tur-
ing machine, one can build a machine implementing the specific-purpose program.
Hence, no fundamental distinction between hardware and software exists.

One immediate reaction, and a possible objection to a behavioural approach to
computation, is the applicability of such a behavioural and observer-oriented defini-
tion to offline computing systems (e.g. batch processing systems). This is a legitimate
objection, and in Zenil (2012c), I discuss this and other objections, which also apply
to other behavioural approaches to other notions, such as the notion of intelligence,
and the Turing test. The immediate answer to the objection is that even a batch pro-
cess would have to be programmed at some time, so its “black box” status, “hiding”
a computing process from the observer, is only transitional. This is discussed further
and addressed in Zenil (2012b, c) by way of a definition of limit behaviour.

A second immediate reaction is whether placing programmability at the centre
of a definition of computation involves too strong assumption, as there are artificial
and natural systems that may not look programmable which one would nevertheless
grant are capable of computing (e.g. discrete neural networks). I think this objec-
tion proceeds from a conflation between the standard meaning of programming and
the behavioural one I am advancing here. While it is true that for many artificial
and natural systems a concept of programmability is difficult to determine, the con-
cept of programmability advanced in this paper amounts to whether one can, by any
means, make a system behave differently from the way it was already behaving. In
this sense, for example, a logic circuit or a batch process may not qualify as compu-
tation if these are unable to react to external stimuli, or if the observer is unable to
witness such an interaction if it happened in the design or the launch of a computing



404 H. Zenil

process, which brings us back to the previous objection and to the discussion in
Zenil (2012b, c).

2 A Behavioural Approach

Significant effort has been invested in defining computation in denotational, oper-
ational and axiomatic terms. For example, while most approaches prove that their
definitions of a computation and the universe of operations they are able to com-
pute coincide (leading to the Church–Turing thesis), some have adopted operational
approaches (Dershowitz and Gurevich 2008) which raise the question of whether
their definitions are simply too broad. An axiomatic approach has also been devel-
oped, with some interesting results (Gandy 1980; Sieg 2012). Nevertheless, some
authors have extended the definition of computation to physical objects and physi-
cal processes at different levels of physical reality (Wheeler 1990; Feynman 1994;
Fredkin 1992; Wolfram 2002; Deutsch 1998; Lloyd 2002) ranging from the digital to
the quantum. In Wolfram (2002), for instance, Wolfram states that “. . . all processes,
whether they are produced by human effort or occur spontaneously in nature, can be
viewed as computations”, a definition which is vulnerable to the criticisms of Searle
(1980) and Putnam (1988).

Sutner (2011) has this to say in regard to Wolfram’s conception of computation
in nature: “This [Wolfram’s] assertion is not particularly controversial, though it
does require a somewhat relaxed view of what exactly constitutes a computation—as
opposed to an arbitrary physical process such as, say, a waterfall.” However, the work
of several of the aforementioned physicists and computer scientists does indeed allow
us to ask whether natural and physical systems are (or can be viewed as) computa-
tional processes. In fact, the claim does not have the same content when advanced by,
say, Wolfram rather than by Lloyd, as the former calls for digital computation while
the latter makes use of quantum computation.

But to make sense of the term “computation” in these contexts, I propose a
behavioural notion of nature-like computation but meaningful in broader contexts,
independent of representation and possible carriers and classical in the sense it that
does not require any other model but the traditional digital one even if it does not
need to commit to any specific model (and that I claim is the most distinguishable
property and advantage of this proposal, that is model-specific independent). This
will require a measure of the degree of programmability of a system by means of a
compressibility index ultimately rooted in the concept of algorithmic complexity.

The behavioural approach takes this abstraction to the limit (keeping it physical as
opposed to mathematical), with its central question being whether one can program
a system to behave in a desired way. This approach, which bases itself on the extent
to which a system can be programmed, tells us to what degree a given system resem-
bles a computer. It can serve as an epistemological framework for interpreting the
computational nature of a system in the broader modern sense of computation,
particularly in a physical context.

As suggested by Sutner (2011), it is reasonable to require that any definition
of computation in the general sense, rather than being a purely logical description
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(e.g. in terms of recursion theory), should capture some sense of what a physical com-
putation might be. While Sutner’s suggestion (Sutner 2011) has similar motivations
to ours, it differs from ours in that his aim is to map the behaviour of a system to the
theory of computation, notably computational degrees. Sutner aligns his approach
with his reading of the following claim made by Searle (1980) “Computational states
are not discovered within the physics, they are assigned to the physics.” Sutner adds
“A physical system is not intrinsically a computer, rather it is necessary to interpret
certain features of the physical system as representing a computation.” This obliges
Sutner to take into consideration the act of interpretation of a physical system as well
as the observer. Sutner’s observer’s language maps the physical object to an inter-
pretation of what the object does as a computational process. In Sutner’s view, the
observer may in the process of interpretation slightly modify the computation with-
out adding to or carrying out the computation attributed to the physical object. One
can see Sutner’s model as consisting of a pair of coupled automata, where one is the
physical object and the other is the observer. The observer is defined as an automa-
ton constrained in computational power, capable of mapping (interpreting)—by way
of a transducer—a physical object onto a computational process using electrical sig-
nals. As in my behavioural approach, the observer plays an important role here, one
that is often overlooked in traditional approaches to the definition of computation
(indeed even ruled out). This is discussed further in Zenil (2012c). Our approach is
only concerned with the qualitative character of a computational process and not its
inner workings.

Does the question behind computation concern what enables universality in a com-
putational setup and how pervasive it is? As Wolfram (2002) has long claimed (and
captured in his intuitive Principle of Computational Equivalence), and as Davis has
more recently acknowledged (Davis 2011), it takes very little to reach universality.
In fact, it is now clear that it is more difficult to devise non-trivial systems that are
not Turing universal than it is to devise universal ones. We know, for example, that
systems that nobody ever designed as computers are able to perform universal com-
putation, for example, Wolfram’s Rule 110 (Wolfram 2002; Cook 2004), and that
these, like other remarkably simple systems, are capable of complex behaviour and
universal computation (e.g. Conway’s Game of Life or Langton’s ant). These systems
may be said to readily arise physically, as they have not been deliberately designed.

As suggested by Blanco (2011), a program can be interestingly defined as that
which turns a general-purpose computer into a special-purpose computer. This is not
a strange definition, since in the context of computer science, a computation (and not
even only digital but in general) can be typically regarded as the evolution under-
gone by a system when running a program. However, while interesting in itself, and
not without a certain affinity with our approach, this route through the definition of
a general-purpose computer is a circuitous one to take to define computation, for it
commits one to define computational universality before one can proceed to define
something more basic, which ideally should not depend on such a powerful (and even
more difficult to define) concept. Universality is without a doubt the most impor-
tant feature of computation, but every time one attempts to define computation in
relation to universal computation, one ends up with a circular statement (computation
is (Turing) universal computation), thus merely leading to a version of a CT thesis.
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3 Programmability

3.1 Cellular Automata as a Case Study

A cellular automaton (CA) is a computational model that has proved to be an inter-
esting object of study, both as a computational device per se and for modelling all
kinds of phenomena (Wolfram 2002; Illachinski 2001). A CA consists of an array
of cells where each takes a value from a finite set of states. Every cell updates its
value depending on the state of its neighbouring cells. Hence, the global behaviour
of the automaton depends on the local interaction of its cells. An elementary cellu-
lar automaton (ECA) is a finite automaton defined in a one-dimensional array. The
automaton assumes two states and updates its state in discrete time according to its
own state and the state of its two closest neighbours, all cells updating their states
synchronously.

As demonstrated by Wolfram (2002), the evolution of a system like a cellular
automaton can be viewed as a computation. As shown in Wolfram (2002, page 638),
ECA Rule 132 (denoted from now on as R132, R0, R30, etc.) is a simple cellu-
lar automaton whose evolution effectively computes the remainder after division of
a number by 2. Starting from a row of n black cells, zero number of black cells
survives if n is even, and one black cell survives if n is odd. So in effect, this cellu-
lar automaton can be viewed as computing whether a given number is even or odd.
Wolfram provides other CA examples computing functions in the traditional sense
(e.g. R94 as enumerating even numbers, R62 that can be thought of as enumerating
numbers that are multiples of 3, the central column of the pattern of R129 that can
be thought of as enumerating numbers that are powers of 2, or a CA with 16 states,
as capable of computing prime numbers).

The CA community has developed a strong intuition for determining the ability
of a CA to transmit information and be considered a candidate for universal com-
putation. Evident properties of rules like the Game of Life (Berlekamp et al. 1982)
(a two-dimensional cellular automaton proven to be computationally universal) and
of rules like R110 (Wolfram 2002) (a one-dimensional nearest neighbourhood) sim-
ple cellular automata are structures persisting over time but sensitive to perturbations.
These structures transmit information through a system, for example, in the form
of characteristic gliders and all sorts of other well-known structures. These struc-
tures are unpredictable in a fundamental way if the system in question is capable
of universal computation (as we will learn below from the work of Gödel and
Turing). Predictable rules, or rules with no persistent structures, are often dismissed
as incapable of carrying messages and behaving as universal computers. Neverthe-
less, CA computing in a one-dimensional space, with only two states and nearest
neighbour, already has sufficient internal richness, despite this simplicity, to simu-
late a cyclic tag system for implementing a universal computing device (Cook 2004;
Wolfram 2002).

Wolfram noticed (Wolfram 2002) this richness, and by careful visual inspection
of the evolution of two-dimensional space-time orbits, he was able to classify all
the various behaviours into four general classes for CA starting with a random ini-
tial condition. A measure based on the change of the asymptotic direction of the



What Is Nature-Like Computation? 407

size of the compressed evolutions of CA (but not limited to CA) for different initial
configurations (following a proposed Gray-code enumeration for one-dimensional
systems) was presented in Zenil (2010). It gauges the resiliency or sensitivity of a sys-
tem vis-à-vis its initial conditions. This measure led to an interesting characterisation
and classification of CA, which, when applied to ECA, yielded exactly Wolfram’s
four classes of systems’ behaviour. The coefficient works approximating the algorith-
mic complexity (by compression) of the different evolutions through time of systems
starting from different initial configurations.

3.2 The Metric

On the basis of the principles of algorithmic complexity, one can try to characterise
the behaviour of the system (Zenil 2010) as approximated in Eq. 3. If the evolution is
too random, for example, a compressed version of the evolution of the system would
not be much shorter than the length of the original evolution itself (one may argue
that the complexity of the system is the same, but this is not true, as the complex-
ity of the closed system includes the input of the system). As shown in Zenil (2010),
this characterisation is not only possible but seems to provide interesting information
about the systems (phase transition detection, rate of information transmission, sen-
sitivity, etc.). A classification, based in the phase transition coefficient as defined in
Zenil (2010) and here in Eq. 3, places at the top systems that can be considered to be
both efficient information carriers and highly sensitive (hence related to a measure
of programmability), given that they react succinctly to input perturbations. Systems
that are too perturbable, however, do not show phase transitions and are grouped
as inefficient information carriers along with rules displaying only trivial behaviour.
The efficiency requirement is to avoid what is known as Turing tarpits (Perlis 1982),
that is systems that may be capable of universal computation but are actually very
hard to program. This means that there is a difference between what can be achieved
in principle and the practical ability of a system to perform a task. This approach
is therefore sensitive to the practicalities of programming a system rather than to its
potential theoretical capability of being programmed.

The first notion to advance is the notion of algorithmic complexity (Kolmogorov–
Chaitin or program-size complexity), defined as follows (Kolmogorov 1965; Chaitin
1975):

KT (s) = min
{|p|, T (p) = s

}
(1)

which is the length of the shortest program p that outputs the string s running
on a universal Turing machine T (Kolmogorov 1965; Chaitin 1975). A technical
inconvenience of K as a function taking s to be the length of the shortest program that
produces s is its non-computability, proven by reduction to the halting problem. In
other words, there is no program which takes a string s as input and produces the inte-
ger K(s) as output. This is usually taken to be a major problem, but one would expect
a universal measure of complexity to have such a property. The measure was first
conceived to define randomness and is today the accepted objective mathematical
measure of complexity, among other reasons because it has been proven to be
mathematically robust (in that it represents the convergence of several independent
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definitions). The mathematical theory of randomness has proven that properties of
random objects can be captured by non-computable measures. One can, for example,
approach K using lossless compression algorithms that detect regularities in order to
compress data. The value of the compressibility method is that the compression of a
string as an approximation to K is a sufficient test of non-randomness. If the short-
est program producing s is larger than |s| the length of s, then s is considered to be
random.

Let C be the approximation to K (given that K is non-computable) by any means,
for example, by using lossless compression algorithms. Let us define the function f

as the variability of a system M as the result of fitting a curve φ (by regression anal-
ysis) to the data points produced by different runs of increasing time t ′ (for fixed n)
up to a given time t , of the sums of the differences in length of the approximations to
Kolmogorov complexity (C) of a system M for inputs ij , j ∈ {1, . . . , n}, divided by
t (n− 1) (for the sole purpose of normalising the measure by the system’s “volume”,
so that one can roughly compare different systems for different n and different t).
Formally,

f (M, t, n) = φ

(∑n−1
j=0

∣∣C
(
Mt(ij )

) − C
(
Mt(ij+1)

)∣∣

t (n− 1)

)

(2)

where Mt(i) is a system M running for time t and initial input configuration i. For
one-dimensional input binary systems, a natural numbering scheme devised in Zenil
(2010) based on the Gray code is an example for one-dimensional systems.

At the limit, C captures the behaviour of Mt for t → ∞, but the value of Ct
n

depends on the choices of t and n (we may sometimes refer to C as assuming a certain
t and n), so one can only aim to capture some average or asymptotic behaviour,
if any (because no convergence is guaranteed). C is, however, an indicator of the
degree of programmability of a system M relative to its external stimuli (input i).
The larger the derivative, the greater the variation in M and hence in the possibility
of programming M to perform a task or transmit information at a rate captured by
C itself (that is, whether for a small set of initial configurations M produces a single
significant change or does so incrementally).

Now, we can use f to define a system’s programmability (first basic definition)
measured by the partial derivative with respect to time:

C
n
t (M) = ∂f (M, t, n)

∂t
. (3)

For example, according to this coefficient C, ECA with rule numbers 0 and 30 is
close to each other because they remain the same despite the change of initial con-
ditions (despite the choice of t and n), and they are hardly perturbable. The measure
indicates that rules like rule 0 or rule 30 (denoted from now on as R0, R30, etc.)
are incapable of transmitting information, given that they do not react to changes
in the input. In this sense, they are alike because there is no change in the qualita-
tive behaviour of this CA when fed with different inputs, regardless of how different
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the inputs may be—and this is what C measures. R0, for example, remains entirely
blank, while R30 remains mostly random looking, with no apparent emergent coher-
ent propagating structures (other than the regular and linear pattern on one of the
sides).

On the other hand, rules such as R122 and R89 have C close to each other because
they are sensitive to initial conditions. As shown in Zenil (2010), they are both highly
sensitive to initial conditions and present phase transitions which dramatically change
their qualitative behaviour when starting from different initial configurations. This
means that rules like R122 and R89 can be used to transmit information through a
system, from the input to the output.

Values of C for the subclass of CA referred to as ECA (the simplest one-
dimensional closest neighbourhood) were calculated and published in Zenil (2010),
and a further investigation of the relation between this transition coefficient and the
computational capabilities of certain known (Turing) universal machines has been
undertaken in Zenil (2012a). We will refrain from exact evaluations of C to avoid
distracting the reader with numerical approximations that may detract from our par-
ticular goal in this paper. The aim here is to propose a behavioural definition of
computation based on this measure rather than to evaluate specific values that have
already been calculated in Zenil (2012a).

This transition coefficient will be used to dynamically define computation based
on the degree of programmability of a system. The advantage of using the transition
coefficient C is that it is indifferent to the internal states, formalism or architecture of
a computer or computing model; it does not even specify whether a machine has to
be quantum, digital or analogue, or what its maximal computational power should be.
It is only based on the behaviour of the system in question. It allows us to minimally
characterise the concept of computation on the basis of behaviour alone. And in doing
so, it allows us to gauge the efficiency of the reaction to external stimuli and the
transfer of information by noting the rate at which C changes. In Zenil (2012c), we
discuss this “efficiency” property of C in more detail.

Let us denote as a C-computer a system with programmability coefficient C cap-
turing the capability of the system to transfer information from its input towards its
output. Under this notation, ECA R255 (Fig. 1) is a 0-computer, that is a computer
unable to carry out any operation because it cannot transfer any information from
the input to the output (another way to say this is that R255 does not compute); oth-
ers may compute even if it can be proven to only compute a small subset of the
Turing computable functions (see e.g. Fig. 2). ECA R255 cannot by any means be
programmed to perform any task, despite the input. This allows us to answer (in the
negative) Chalmers’ challenging question (Chalmers 1996) prompted by Putnam’s
objection: “Does a Rock Implement Every Finite-State Automaton?”. It clearly does
not under this definition and is in clear contradiction with claims that “objects
compute themselves” (Lloyd 2006) (an objection having to do with scale will be
addressed later). The sense of what is required if something is not to be a computer
can be captured with the following definition:

Definition 1 A 0-computer is not a computer in any intuitive sense because it is not
capable of carrying out any calculation.
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Fig. 1 ECA R255 (equivalent by colour inversion to R0; R255 is used here for visual convenience) is
stuck, unable to perform any computation—it does not react to any external stimulus. This is an illustration
of a C-computer for C close (or equal) to zero (Zenil 2010). The picture shows a series of evolutions for
12 random inputs, with the cellular automaton rule depicted at the top

It may be misleading to call a system that does not compute a 0-computer, but it
is crucial to this approach to convey the way in which a system is ruled not to be
a computer, viz. because its coefficient C = 0, the main point of this paper being
to distinguish what computation is from what it is not, by means of this alternative
“behavioural” definition.

A system capable of (Turing) universal computation (see Fig. 3) would therefore
have a non-zero C limit value. C also captures some of the universal computational
efficiency of the computer in that it has the advantage of capturing not only whether
it is capable of reacting to the input and transferring information through its evo-
lution but also the rate at which it does so. So C is an index of both capability in
principle and ability in practice. A non-zero C means that there is a way to codify a
program to make the system behave (efficiently) in one fashion or another, i.e. to be
programmable. Something that is not programmable cannot therefore be taken to be
a computer.

One can also see that things that seemed to behave like computers but were
not called computers can indeed be considered computers under this approach.
Mathematical functions, for example, can be considered C-computers for some C

determined by the domain of the function. That a function can be considered a com-
puter does not controvert the theory wherein a computer is defined in terms of a
function and a domain, and a function in terms of an algorithm having the input as
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Fig. 2 ECA R4 is a kind of program filter that only transfers bits in isolation (i.e. when its neighbours are
both white). It is clear that one can perform some very simple computations with this automaton. However,
one could not, for example, implement a typical logic gate based on its particular behaviour. It clearly
cannot carry out (Turing) universal computation

its arguments and the output as its function evaluation. The calculation of a func-
tion, however, seems to require a carrier. Usually, that carrier is a piece of paper and
a pencil wielded by a human being, but it can also be a physical computer. Can the
simple description of the function be considered a computer or a C-computer? I think
it should not be. Something static should not be considered to have a behaviour,
and I think this can be captured by C. To evaluate C, one needs to actually run a
program; otherwise, it remains unevaluated (whether it is visible to the observer is
the legitimate objection we already mentioned in Section 1 and further discussed in
Zenil (2012c)). Can we not (in principle) think of computations that do not calculate
functions? Yes, and this is what this behavioural approach to computation is about.
There is no need of representation or even definition of the objects of computation;
it is how a system seems to behave which leads us to attribute to it some degree
of computation.

This makes for a clear distinction between, for example, a vision of the universe as
a mathematical structure and a vision of the universe as a computer. While the latter
may account for the physical carrier, implying that the computation is being carried
out by the universe itself, it does not seem clear how a mathematical structure can
come equipped with the carrier on which it should be executed, unless it becomes a
computer program and therefore a computer.
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Fig. 3 ECA R110 is efficient at carrying information through persistent local structures to the output,
reacting to external stimuli. Its Ct

n value for sensible choices of t and n (Zenil 2010) is compatible with the
fact that it has been proven that R110 is capable of universal computation for a particular semi-periodic
initial configuration (Wolfram 2002; Cook 2004)

Another example of using a two-dimensional cellular automaton is given in Zenil
(2012d), showing that Conway’s Game of Life (GoL) indeed has a large enough C

value, which is in agreement with the idea that C captures the programmability of a
system (knowing that as we do that, GoL is capable of Turing universal computation).

3.3 Reversibility, 0-Computers and Conservation Laws

In Margolus (1984), Margolus asserts that reversible cellular automata can actually
be used as computer models embodying discrete analogues of classical notions in
physics, such as space, time, locality and microscopic reversibility. He suggests that
one way to show that a given rule can exhibit complicated behaviour (and eventually
universality) is to show (as has been done with the Game of Life (Berlekamp et al.
1982) and R110 (Cook 2004; Wolfram 2002)) that “in the corresponding ‘world’ it is
possible to have computers” starting these automata with the appropriate initial states,
with digits acting as signals moving about and interacting with each other to, for
example, implement a logical gate for digital computation. Wolfram reinforces this
vision by suggesting, through his Principle of Computational Equivalence, that it is
indeed the case that non-trivial behaviours inevitably lead to universal computation.
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This does not mean that a system must necessarily be bijective (hence reversible)
in its input/output mapping in order to be universal. But it is actually reversible CA
with high entropy (number of possible states) which will tend to show the greatest
behavioural richness and therefore be considered the best candidates for being clas-
sified as computers. In other words, the greater the richness a system is capable of,
the greater the C coefficient it will have. A reversible CA (RCA) has the property
that starting it from a random state is like starting from a maximum entropy state
in a thermodynamical system, because the RCA is not allowed to get simpler in its
evolution; the only way to get simpler is to collapse the number of states, making it
irreversible. Entropy in a randomly initiated RCA can only increase, but if it reaches
maximum entropy, it cannot get any more complicated, and so nothing much hap-
pens. This is also captured by C, in that the RCA always look the same and is immune
to evolutionary changes, presenting homogeneous local entropy everywhere.

RCA is interesting because they allow information to propagate, and in some
sense, they can be thought of as perfect computers; indeed, it is exactly the sense
that matters to us. If one starts an RCA from a non-uniformly random initial state,
the RCA evolves, but because it cannot get simpler than its initial condition (for the
same reason given for the random state), it can only get more complicated, producing
a computational history that is reversible and can only lead to an increase in entropy.
The RCA, however, is only reshaping the message that it got at the beginning in the
form of an initial configuration, and so the amount of information in the RCA evolu-
tion remains the same, which makes it a perfect example of a system with increasing
entropy but consistent complexity over time. The algorithmic complexity of the RCA
is the same because one can track the RCA back to the original information content
represented by its initial configuration. So the state of the CA at any time always car-
ries the same information content. In non-reversible CA, however, information can be
lost, and even though the algorithmic complexity of the evolution of a CA is always
the same, one cannot recover it a posteriori from any later state. In reversible CA,
entropy, like information content, may increase or decrease over time. As Margolus
himself states, it is one thing to know that a gas was in one corner at a given state, and
in another to return the gas from its expanded condition to its original position. It may
thus seem that RCA in Wolfram’s class III may all be chaotic, but Wolfram (1984)
offers examples of one-dimensional reversible cellular automata exhibiting three
types of behaviour of local structures as they propagate in space.

In nature-like computation, conservation laws are important because the physical
carrier on which a computation will be performed is governed by physical conserva-
tion laws (laws that conserve physical invariants such as mass, energy, momentum,
etc.). In RCA, there are cases where the simplest locally computable invariants are
cells whose values never change, and which are analogous to nature-like conservation
laws. That is, laws such that for any given property, the physical state of the sys-
tem does not change as the system evolves. The simplest RCA capable of doing this
is those that ignore their neighbouring cells and only look to the central one, repro-
ducing it identically. One may have doubts about calling these computers because
there is no transformation of information whatsoever, with the system just letting
pass through it anything that it is fed. Even worse, there are systems that may look
as if they are computing the identity function while in fact performing a series of
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intermediate transformations which lead to the same output a few steps later (again
prompting the objection that their performance is relative to the observer). From
the behavioural perspective based on the transition coefficient, under the qualitative
definition, the two would be behaving differently if they delivered their richness at
different rates, even if they produced the same output. This discussion helps us not
only to see how close these computational systems are to physical phenomena and
to purely behavioural descriptions but also to address some potential concerns raised
by the qualitative approach proposed herein. If things could be worse for information
processing, given that classical mechanics prescribes determinism in the macroscopic
universe, one can extend these worries to the entire world, but this is a subject for a
different, though related, discussion.

4 Behavioural Equivalence

We can then define a system performing computation simply based on its behaviour,
as follows:

Definition 2 A system U computes if Ct
n(U) > 0 for some t, n > 0.

Meaning that U can be programmed. Whether U can compute only a subset of
computable functions or all of them will depend not only on C but also on the details
of U that escape the behavioural definition. Yet it is clear that if U is Turing univer-
sal, Ct

n(U) > 0. This definition accords with a much broader sense of nature and
physics-like computation as used in, for example, modern models of physics (to men-
tion but a few examples, Fredkin 1992; Wheeler 1990; Wolfram 2002; Deutsch 1998;
Lloyd 2002) and natural computation. One can see that there are systems that are not
computers under this definition—simple ones are R0 and R255 ECA (see Fig. 1).
As we know, the equivalence of computations is ultimately undecidable. Even in
practice, it can only be approached and partially answered, given that the transition
coefficient on which the qualitative definition of computation is based is limited by
finite resources (reflected by the finite values of t and n), providing only an approx-
imate indication of the behavioural programmability of a system, and for t possibly
an asymptotic behaviour (no convergence is guaranteed though).

If two systems have about the same Ct
n for fixed n and t however, it means that

they react to changes at about the same rate. So it may not only capture the property
of transferring information, but if information is transferred, it captures the rate at
which it does so. Hence, by varying n and t , one can also possibly soundly define
rates of convergence of C. Some of this is also discussed in Zenil (2012c).

Clearly, under this definition, behaviour space is less dense than algorithm and
program space, because there may be different programs implementing different
algorithms but generating the same behaviour. So one can only define two behaviour-
ally equivalent systems as follows:

Definition 3 A system U and U ′ are computationally equivalent in behavioural
terms if Cn

t (U) = Cn
t (U

′) for any t and n.
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Simple examples of a behavioural computational class are C-computers for
C = 0, i.e. they cannot be programmed, and are behaviourally equivalent. Under
Definitions 1 and 2, systems that are identified as 0-computers do not compute, as
they are not capable of being programmed.

Experience tells us that something that behaves in a certain way will continue
doing so, and we have empirically established as much in Zenil et al. (2012). This
can be justified by algorithmic probability, because the longer we observe a com-
puting system, the smaller the chance that its behaviour will change radically. So
even though one cannot guarantee a behaviour ad infinitum, algorithmic probabil-
ity may provide the stability required to make reliable generalisations. Thus, one
can arrive at a weak Definition 4 by allowing C(U) to be close enough to C(U ′) as
follows:

Definition 4 A system U and U ′ are c-computationally equivalent if |C(U) −
C(U ′)| < c.

It is worth stressing that two systems (or computers) are not the same in any other
sense if they have the same coefficient C. C is a measure of sensitivity (which I
understand as the amenability of a system to being programmed); it cannot on its
own indicate whether two computers compute the same function and is therefore
a different measure than those available from traditional computability and formal
semantics. It can tell when two computers diverge in their behaviour, because for two
computers to be the same, a necessary but not sufficient condition is that they must
both have the same transition coefficient (or differ by a desired C), which would
mean that they have the same capability of reacting to external stimuli and trans-
mit information at about the same rate. Because C itself depends on two parameters
(n and t), this also means that C can only make comparisons between two systems
for fixed t and n (the same runtime and the same number of input configurations). So
two C-computers are behaviourally equivalent if they have the same C.

For the same reason that one cannot tell whether a machine will halt for a
given input, one cannot decide whether two computers compute the same function,
but one can relate nature-like computation and abstract computation by means of
Turing machines as follows: for every C-computer U , there exists a program P

behaviourally equivalent to U , that is with transition coefficient C(U) = C(P ) inde-
pendent of n and t , because there exists a universal Turing machine T capable of re-
producing the exact behaviour of U .

It is also worth noting that this behavioural definition is cumulative (but not addi-
tive), in the sense that a C-computer can be embedded in the workings of another
C′-computer for C �= C′ (such as in the server room example). If the C′-computer
does not impose any behavioural restriction on the C-computer, then clearly C′ ≥ C,
given that the new computer will be capable of at least C-computation. This is the
sense in which one may see R255 as a program in the context of a C-computer
with C �= 0 capable of running R255. If the C-computer is, for example, a uni-
versal computer, R255 would be a program but cannot by itself be a computer. The
C-computers behaviourally equivalent to R255 would then be all those for which
C = 0.
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5 What Kind of C-Computer Might the Universe Be?

The question of whether a server room containing many racks of servers is in itself
a computer in any interesting sense seems to depend on the observer’s role. If one
wished to apply C to a server room, it would be legitimate to do so and to consider
the room as the set of the C-computers that it contains. Whether doing so is useful
or not is another question, but I think that it is not only useful but that it is also
common to consider server rooms as assets that can be commercialised as computers
by themselves (computing black boxes for the final users) without getting into the
details of the contents of the room and selling its added computing power (this is not
very different to farm computing or even current approaches to computation such as
multicore systems).

Unconventional computers may also be considered C-computers. When one turns
on a lamp, the lamp is programmed to do something, in this case to turn on. Even if
trivial, it reacts to the input by producing light as the outcome. One can see how the
programmability notion here is slightly different to the traditional concept because
a lamp is a specific-purpose device which cannot be reprogrammed from the tradi-
tional point of view, but from this point of view, the input changes the behaviour of
the system and hence has a programmability degree, even if very limited. But even
if the lamp can be considered to react to external stimuli, the space of its initial con-
figurations is finite and small (only two possible initial configurations); hence, the
slope of the differences of the behavioural evolution in time and therefore its Cn

t are
very close to 0 for any n and t . If one wants to rule out lamps or fridges as computing
devices, one would only need to define a threshold for which beyond that threshold
a system can be said to compute, while under the threshold it would be discarded. A
fridge can be seen as cooling objects that are introduced into it, the output being the
cooling—after an interval—of the objects in question. That both a lamp and a fridge
can be viewed as C-computers with small C, given that they have limited programma-
bility (to perform a single, specific task), should not be surprising, at least not in light
of the definition of a C-computer nor should it deprive the notion of computation of
meaning, as it has been the purpose of this paper to offer a grading system for com-
putation precisely in order to provide meaning to such claims, with the advantage
that one can now ask whether a lamp or a fridge is or is not a computer with-
out trivialising either the question or the answer. Under the behavioural definition
advanced herein, they are very limited computing systems only if one wants to keep a
threshold of computing very low, as long as it is stated that they are limited in scope
by the objective value of C.

One can think of the laws of physics, for example, of gravitation, as carrying out
some sort of computation, with the degree of programmability (we are not discussing
here whether the model for the physical law corresponds to the real world, which is
a different matter) of such a system limited to performing a particular task, in the
case of gravitation pulling objects toward each other and keeping them in their grav-
itational trajectory. Classical mechanics guarantees that the system is deterministic,
even if that does not mean one can predict its workings given any specific parame-
ters (e.g. three bodies). There is no fundamental reason, however, for following the
approach described herein when assessing whether a system can compute based on
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its degree of programmability. Still, the fact that one can coarse grain what computa-
tion may mean by way of the parameter C, and guarantee that there are both systems
with maximal C, and C = 0 for systems that can be programmed to do something,
and others that cannot be programmed at all and show no reaction to any external
stimulus (e.g. see Fig. 1), imbues this approach and its definition of computers and
computation with sense, particularly in the context of nature-like computation as pro-
posed by some of the aforementioned authors. There are also C-computers for small
values of C, meaning that the system can hardly be programmed because it does not
transfer information efficiently enough (this may be the case, for example, with R30;
see Fig. 4).

This is also related to the recurrent question of whether the universe can be said
to compute. In some sense, it does, for we know there are C-computers in it capable
of universal computation, but we do not really know whether the universe (e.g. as
represented by its physical laws) constrains C, a limit broad enough to encompass
every possible C-computer for a maximal C contained in the physical universe. The
universe as a whole can be seen and treated in this context as a computer, as it is a
C-computer for maximal C, given that it contains all possible C-computers. There
is, however, a legitimate strong objection to this view which is discussed in Zenil
(2012c), given that it is difficult to apply the behavioural measure to a system for

Fig. 4 Despite the simplicity of the description of ECA R30, the behaviour of R30 is always random
looking (albeit the leftmost evolution which shows some regularities) even for simple and structured initial
conditions. The overall qualitative behaviour of R30 remains unchanged disregarding the initial condition.
An open question is whether this rule is “too hot” to be programmed and used to compute (see Martinez
et al. 2012)
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which “external stimuli” is not well defined, vis-à-vis the universe, without falling
into a contradiction, because any external stimuli are part of the universe. Even if
the objection holds, we are not particularly interested in addressing the question of
whether the universe is a computer. However, it may be only noted that this objection
is again related to the question of the role of the observer and its place.

5.1 The Question of Scale

So far, the object of this behavioural approach to computation has been to provide a
reasonable framework for assertions connecting the notion of computation to nature,
and how nature may or may not compute, in light of current uses of the term “com-
pute”. Lloyd (2002), for example, claims that since the universe is computing itself,
things in the universe would therefore also be computing themselves. Think of the
example of a still physical object (e.g. a desk or a sheet of paper). These objects
would hardly compute anything at their macroscopic level, say an addition between
any two numbers, yet they may be constituted at a molecular or atomic scale of parti-
cles capable of carrying out all sorts of computations, which, unlike the objects, may
be programmed, either as part of another system or in themselves. It is clear then that
the span of behaviour at that scale is greater than at the scale of the object itself. But
does it make sense to say that something computes itself? (Lloyd 2002). It may or it
may not.

In the real world, things are constituted by smaller elements unless they are ele-
mentary particles. One therefore has to study the behaviour of a system at a given
scale and not at all possible scales; otherwise, the question becomes meaningless, as
elements of a physical object are molecules and ultimately atoms and particles that
have their own behaviour, about which too the question about computation can be
asked. This means that a C-computer may have a low or null C at some scale but
contain C′-computers with C′ > C at another scale (for which the original object
is no longer the same as a whole). A setup in which C

′ ≤ C is actually common at
some scale for any computational device. For example, a digital computer is made
of simpler components, each of which at some macroscopic level but independently
of the interconnected computer is of lower behavioural richness and may qualify for
a C of lower value. In other words, the behavioural definition is not additive in the
sense that a C-computer can contain or be contained in another C′-computer such
that C �= C′.

Can R255, for example, be thought of as computing itself as it evolves? Under
the qualitative definition, even if R255 is computing itself, it cannot be programmed,
and so is a 0-computer under our approach, a computer not capable of computation
and therefore hardly a computer at all. On the other hand, R255 does not present
any problem of scale as it represents itself at all scales. A table, however, is made
of smaller components to which may be assigned some specific task, and one may
even consider reprogramming the matter of which it is made, in the manner epit-
omised in the subfield of programmable matter. In which case, one may say that
the table is computing itself, since it could be computing something else out of its
atoms. So the definition of a C-computer is scale dependent and its implementa-
tion in the real world is subtle, yet at the abstract level, it seems to correspond to
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an interesting and well-delineated definition of computation based on its behavioural
capabilities.

One can see that there are some strong parallelisms between this account and
the concern of scale with what Floridi has named Levels of Abstraction (Floridi
2008) in that an information agent (the observer) accesses a physical or conceptual
environment, the system, to determine whether it does compute or not. As with Levels
of Abstraction, behavioural computational degrees as defined herein are not neces-
sarily hierarchical but they are comparable and they may act as interfaces mediating
between the epistemic relation of the observer and the observed.

In the physical world, under this qualitative approach, things may compute or not
depending on the scale (or Level of Abstraction) at which they are studied. To say
that a table computes only makes sense at the scale of the table, and as a C-computer,
it should have a very limited C, that is a very limited behaviour given that it can
hardly be programmed to do something else. Other possible objections are addressed
in Zenil (2012c).

6 Concluding Remarks

I have proposed a novel qualitative notion of computation based on the sensitivity
of a system to external stimuli connected to a concept of programmability, a notion
I have called nature-like computation, that provides a behavioural interpretation of
computation (and of computers). This is consonant with current lines of technology
for programming molecules and cells to compute. See for example Ausländer et al.
(2012). In some sense, this can be seen as reprogramming a cell to do certain tasks
that it was not supposed to be able to do in the natural course of things. In a way,
this is what we have done with digital computers too, building machines out of nat-
ural matter to make them do calculations for us. Everything revolves around a single
concept, that of programmability, which I have suggested can be captured by a mea-
sure of behaviour rather than by syntactic or even semantic approaches, given that the
former requires descriptions of inner workings, even though we may not even fully
understand the machinery of a cell, while the latter requires an interpretation of com-
putation. The behavioural approach, however, is agnostic on most of these counts,
being concerned only with the qualitative behaviour of a system, with its ability to
transfer information upon being stimulated. The concept also helps to make sense of
current uses of computation in the context of natural phenomena.
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