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Abstract
Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolution-
izing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface 
area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. 
Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capac-
ity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight 
their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious 
diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and 
enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and 
regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic 
payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements 
enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and 
targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring 
NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues 
for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease 
applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical 
implementation, ushering in a new era of precision medicine and improved patient care.
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Dox	� Doxorubicin
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NPs	� Nanoparticles
MTX	� Methotrexate

Highlights
• Nanogels enable precise drug delivery to specific cells or tissues, 

minimizing side effects and enhancing therapeutic outcomes.
• A 3-D network of crosslinked polymeric nanogel allows efficient 

encapsulation of diverse drug types, promoting flexibility in 
treatment approaches for various diseases.

• Nanogels offer controlled release kinetics, ensuring a sustained 
and prolonged therapeutic effect, improving patient compliance, 
and reducing the need for frequent dosing.

• Nanogels are often biocompatible and can be engineered to be 
biodegradable, reducing potential toxicity concerns and allowing 
for safe elimination from the body.

• Nanogels enhance drug stability, protecting the encapsulated 
drugs from degradation, leading to improved shelf life and 
effectiveness in diverse medical applications.
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Introduction

The nanoparticle (NP) technology is rapidly advancing, 
offering innovative and effective treatments for various 
medical conditions such as cancer, inflammation, cardio-
vascular diseases, psoriasis, diabetes, bone regeneration, 
gene therapy etc. These nanoparticles (NPs) are designed 
to overcome challenges like poor selectivity, known target-
ing sites, and side effects on various body tissues. They 
also address the limitations of micron-size particles, 
including surface area, site specificity, retention at the tar-
geting site, swelling behaviour, drug loading, and release 
behaviour. Nanogels (NGs) type of NPs have garnered sig-
nificant attention over the past 20 years due to their bio-
compatibility, biodegradability, versatility, and safety from 
leakage [1–5]. In addition to in-vitro and in-vivo tests, 
other methods like ex-vivo and in-silico testing are used 
to validate drug delivery systems [6]. With the wide range 
of nanosized materials involved in nanotechnology-devel-
oped drug delivery systems, each material exhibits unique 
properties dependent on its nano-size. These properties 
allow for enhanced intracellular drug delivery, subcellular 
targeting, and the capability to access previously inacces-
sible body areas [7].

NGs are typically 3-dimensional submicron-sized 
networks of hydrophilic polymers developed by chemi-
cal or physical cross-linking that exhibit the full range of 
characteristics of both NPs and hydrogels (HGs). Ionic 
interactions, hydrogen bonds, electrostatic interactions, 
and hydrophobic interactions are the main types of physi-
cal cross-linking [8, 9]. While some studies have shown 
that NGs as large as 1,000 nm are reasonable, others have 
found that those as small as 200 nm are ideal for use in 
the medical field [10]. NGs may absorb a considerable 
amount of water. NG cross-linking network may be used 
as a grid to contain the internal fluid system, while the 
absorbed water is used as a filtration medium for cargo 
diffusion. NGs with an unsuitable zeta potential help avoid 
immune phagocytosis and may resist the adsorption of 
negatively charged proteins [2, 11]. Considering their 
high-level performance in extending blood circulation 
and boosting healing effectiveness, several drug carriers, 
including liposomes, polymer vesicles, and micelles, have 
drawn broad interest in studying controlled drug delivery 
[12–14].

NGs have been extensively researched for integrating 
and releasing actions of bioactive substances such as pro-
teins, vitamins, and drugs [15], DNA, antigens, oligonu-
cleotides, genes, as well as inorganic molecules such as 
quantum dots, silver NPs, magnetic NPs [16]. NGs may 
be delivered using one of two methods: passive targeting 
or active targeting. In the case of passive targeting, the 

size, swelling, surface charge, and various physicochemi-
cal attributes of the NGs reveal drug release. Active tar-
gets involve conjugating NGs with particular scaffolds that 
selectively identify and bind with some over-expressed 
receptors at the target areas, like in tumours. This process 
causes conjugated NGs to accumulate at the target site 
[17], attaining more than 98% loading efficiency. Since 
NGs are HGs, their capacity to resemble tissue is another 
distinctive quality that distinguishes them because of the 
significant water content and the bio-compatible ingredi-
ents utilized. Such gel topically has a calming effect that 
is highly helpful in treating conditions like wounds [18].

Drug delivery system

Developing effective treatments and tackling disorders is a 
significant challenge for formulation nowadays. The existing 
drugs and active molecules are often effective mechanisms 
for treating specific disorders, but their efficacy is sometimes 
severely constrained by challenges in their delivery. To bring 
drugs and active molecules to the target sites where they will 
have the most incredible pharmacological effects, a process 
known as a drug delivery system has been developed [19]. 
One of these systems' significant benefits is the ability to 
regulate the rate, timing, and target site of a drug's delivery 
to a patient [20]. NPs are essential in drug delivery as well-
synthesized nanocarriers can meet high drug-loading levels 
and regulate drug release [21]. Their nanostructures and 
functions may increase delivery processes such as selectiv-
ity, decreasing toxicity and side effects. Polymeric NPs are 
essential in this context since their structure provides good 
bio-compatibility and biodegradability and can be readily 
functionalized [22]. Furthermore, while dealing with suita-
bly functionalized polymer chains, it is reasonable to modify 
factors such as mechanical qualities, composition, or degra-
dation rate. In the interest of completeness, these formula-
tions are expensive, restricting their use in clinical practice.

Controlled and targeted drug delivery system

Compared to traditional formulations, controlled and spe-
cifically designed drug delivery systems are intended to 
produce significant benefits. They are optimizing the drug 
release from the delivery system since the rate and duration 
of the procedure dramatically affect the therapy's efficacy 
[23]. Controlled drug delivery systems (CDDS) should avoid 
restrictions on drug concentration within the targeted thera-
peutic range. Actuality, the drug release profile of traditional 
drug delivery techniques, is characterized by a rapid decline 
below the lowest effective concentration, followed by an 
increase to a peak concentration over the maximum safe con-
centration. A correctly constructed CDDS ensures the drug's 
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blood concentration profile stays within these limits [24]. 
However, controlled drug release is not enough if it fails to 
take place in the tissues that we wish to address; a targeted 
drug delivery system (TDDS) is a different approach that 
can preferentially access a specific target area, emphasiz-
ing therapeutic benefits and minimizing undesirable effects 
produced by the drug's interaction with various body tissues 
[25]. TDDS and CDDS provide the potential to utilize a 
smaller dose of the drug compared to conventional thera-
pies, and the carrier's structure may keep the drug in-vivo, 
preventing early deprivation or quick breakdown [26].

NGs

NGs are promising for therapeutics, diagnostics, macromol-
ecules, and other applications. NGs, primarily hydrophilic 
and with a large capacity for guest molecules, are highly bio-
compatible and have significant benefits over other nanoma-
terials for biomedical applications. Due to their distinctive 
characteristics, including stimuli-responsive behaviour, soft-
ness, and swelling, NGs shield the cargo from deterioration 
and removal and actively engage in the delivery process to 
create a regulated, triggered reaction at the target region. 
[27]. NGs offered merits are as follows:

•	 High water content makes materials more bio-compati-
ble, which causes them to behave like actual tissue and 
elicit favourable immune reactions.

•	 Nanocarriers are biodegradable, making them non-toxic.
•	 Drug loading capacity is high.
•	 Controlling drug release by adjusting crosslinking densi-

ties [28].

•	 Resist entrapment by the reticuloendothelial system 
quickly [29].

•	 Tiny size makes them better at permeating biological 
membranes.

•	 Drugs and charged solutes that are both hydrophilic and 
hydrophobic may be included (Fig. 1) [30].

•	 Superior transport qualities [31].

Limitations of NGs  NGs provide many benefits but have spe-
cific vital points that sometimes prevent their application. 
The limits of NGs are listed below:

(a)	 The solvent and surfactants must be removed entirely 
using expensive methods.

(b)	 There may be residual residues of monomers or sur-
factants, which might be hazardous.

(c)	 Variation in manufacturing, whereby the usual qualities 
of NGs are only attainable within a specific range of 
dimensions [32].

Types of NGs  A cross-linked HG particle with a polymer 
basis known as an NG is sub-micron-sized [2]. NGs are 
highly customizable in size, shape, surface functionalization, 
and degradation processes and may be natural, synthetic, or 
a combination [33]. Based on the kind of crosslinking, reac-
tivity to external stimuli (including pH, temperature, light, 
ionic concentration, etc.), and production techniques, NGs 
may be classified into several types (Fig. 2).

Polymers used for NGs  Hydrophilic polymers, which 
typically absorb abundant water within their crosslinked 

Fig. 1   Macroscopic and micro-
scopic view of NGs. The figure 
was developed using BioRender 
(www.​biore​nder.​com) (accessed 
5 October 2023)

http://www.biorender.com
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frameworks, are the key components of NGs. These NGs are 
distinguished by their biological inertness and water sorp-
tion capabilities, which cause them to expand up to 1000 
times in water, according to the 3D structure of the polymers 
utilized in their manufacturing (Fig. 3).

Surface functionalization of NGs for delivery of drugs  Drug 
and biological molecule entrapment is possible using NGs. 
As a result, they may be used extensively in transporting 
genes and proteins. Both passive and active drug target-
ing are possible by adjusting the particle size and surface 

Fig. 2   Different types of NGs

Fig. 3   Different nature of poly-
mers used to design to develop 
NGs
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characteristics to prevent fast clearance by phagocytic cells. 
Controlled and prolonged drug is delivered at the desired 
site, increasing therapeutic effectiveness and minimizing 
side effects [34]. Due to their small volume, NPs can pen-
etrate tissues, even the smallest capillaries, via paracellular 
or transcellular routes. NGs offer a significant drug-load 
capacity, a low floating density, and a high degree of stabil-
ity during dispersion in aqueous mediums (Fig. 4). In com-
parison to other NPs, particularly in terms of drug loading, 
NGs show potential as suitable nanomedicine carriers [35].

NGs: Drug incorporation techniques  Due to their incred-
ible ability to target a wide variety of organs, NGs have 
been widely accepted in nanotechnology, resulting in dual 
nature: (a) As an HG system, which boosts their ability to 
load drugs, and (b) a system with nanoparticulate that ena-
bles them to reach deeper organs and tissues.

Incorporation of drugs inside the NGs may be achieved 
by numerous methods (Fig. 5), including-

•	 Biological agents can covalently conjugate either dur-
ing or after the development of NGs. Develop nanosized 
HGs (Table 2), mutated enzymes can copolymerize using 
acrylamide for inverse micro-emulsion and diluted water-
based solutions. [36, 37].

•	 Drug molecules are physically trapped inside NGs. Pro-
teins have been included in cholesterol-modified pullulan 
NGs, and small interfering RNAs (siRNAs) have been 
incorporated into hyaluronic acid (HA) NGs using this 
approach [38, 39].

•	 Drug loading through passive/diffusion, for instance, NPs 
and dexamethasone, can be separately introduced within 
the dextran lysozyme NGs via diffusion, and the NGs are 
agitated in excessive drug or NP solutions. Generally, the 
drug loading produced by these methods is small, often 
less than 10% by weight [40–42].

Potential applications of NGs in the treatment of various 
diseases

NGs have gained significant attention from research groups 
worldwide. These structures have been developed to treat 
various pathologies, including cancer, spinal cord injury, 
ischemic stroke, cardiovascular diseases, wound healing, 
bone regeneration, psoriasis, inflammation, etc. They have 
also been used for delivering anaesthetic drugs. In the fol-
lowing sections, we will analyze the different pathologies in 
which NGs have been applied and tested. We will provide 
examples and references to highlight the importance of these 
formulations in nanomedicine.

NG in CNS‑related diseases  Numerous drugs are used to treat 
CNS-related diseases and other brain disorders. Still, their 
low bioavailability in such organs, owing to the inadequate 
permeability of the blood–brain barrier (BBB), has perma-
nently restricted their capacity to enter the brain [43, 44]. A 
more effective nano-system might lead to better therapy for 
diseases associated with the brain (Table 1). However, many 
current methods of brain targeting in nanotechnology involve 
improving drug access to the brain. Drug bioavailability has 

Fig. 4   Coating strategies of surface functionalization of NGs for selective targeting the cells. The figure was developed using BioRender (www.​
biore​nder.​com) (accessed 14 October 2023)

http://www.biorender.com
http://www.biorender.com
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constantly been significantly enhanced by polymeric NPs, 
some of which can cross BBB [45]. The incorporation of 
NGs is an efficient nanoparticulate technology for effective 
brain-targeted therapy. Methotrexate (MTX), an anticancer 
drug, has been developed as a NG and is an extensively used 
chemotherapeutic drug with a vital role in malignancies and 
autoimmune disease treatment. MTX was added to the NG 
system to increase BBB permeability, and polysorbate was 
used to functionalize the surface [46, 47].

NG significantly boosted the capacity and efficiency of 
drug loading. The in-vitro experiments confirm the NPs' 
suitability for brain administration. A study found that even 
though the drug plasma concentration decreased due to 
intravenous administration, the drug crossed the BBB and 
safely entered the brain slowly and controlled. It demon-
strates that the drug was absorbed gradually and without 
risks into the brain. Compared with free drugs, MTX con-
centrations in the brain were considerably more significant 
in both kinds of NGs (surface-modified and untreated NGs). 
Results indicated that using drug-loaded NGs increased 
MTX concentration in the brain by 10–15 times, presenting 
a promising future for NGs used for brain delivery. Oligonu-
cleotides (ODN) have also been developed as NG to target 
CNS against neurodegenerative diseases. Research demon-
strated that NG formulations with ODN successfully crossed 
the BBB. When transferrin or insulin is added to the NG's 

surface, the effectiveness of the transport is significantly 
improved to the target. Compared to free ODN, the concen-
tration of phosphorothioate ODN rose onefold inside the 
brain after 1 h of intravenous NG injection while decreasing 
twofold in the spleen and liver [48–50]. Another researcher 
developed cisplatin-loaded NGs coupled over monoclonal 
antibody conjugates to mark exceedingly expressed con-
nexin 43 (Cx43), a tumour-specific membrane protein, and 
BSAT1, an anion transporter specific to the brain in human 
glioblastoma, the most aggressive and common brain disor-
der in the world. The cisplatin-loaded NG formulation for 
treating gliomas showed higher efficacy, and the survival 
rate of rats was increased for around 27 days compared to 
the control group [51].

NG in cancer  Cancer is a chronic illness that includes around 
277 forms of cancer pathology [52]. Several treatments have 
been available, including radiation, surgeries, and targeted 
therapies [53, 54]. Several teams of researchers are keen on 
NGs since they offer an opportunity for specific delivery of 
drugs for cancer therapy (Fig. 6). Specific formulations and 
surface functionalization using particular ligands may be 
helpful strategies to selectively target malignant cells within 
the body and give non-invasive treatments [55]. NGs have 
the potential to cure diseases such as breast cancer. In this 
work, the researchers produced dextrin NG encapsulated 

Fig. 5   Various techniques used 
to prepare NGs
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by Plerixafor and supplied with Dox (Table 1) [56–58]. 
They coupled with the PLG-g-m polyethene glycol (PEG)/
combretatatinA4 nano-formulations using azobenzene and 
cyclodextrin attached to polyglutamic acid (PGA)-graft-
PEG methyl ether NG revealed a tumour reduction rate of 
68.7%, that was increased to 91.7%. NGs based on choles-
terol are a significant and actively researched method for 
treating cancer. This study created IL-12-loaded pullulan 
(CHP)-based NGs that include cholesterol [59].

In-vivo experiments showed that this technique may slow 
down fibrosarcoma development. In separate research, vas-
cular endothelial growth factor (VEGF)-specific siRNA was 
administered via cholesterol-endowed cycloamylose through 
spermine NG, and the ability to inhibit neo-vascularization 
and proliferation of renal cell carcinoma [60]. Hyaluronic 
acid is a significant polymer incorporated to produce 
NGs to treat cancer. Contesting it, researchers developed 
a cisplatin-crosslinked hyaluronic acid (HA) NG compris-
ing Dox [61]. Dox and cisplatin had a synergistic effect, 
increasing the biological activity while decreasing toxicity, 
resulting in favourable outcomes during in-vivo tests. The 
identical polymer produced a zein NG, including curcumin, 
crosslinking using HA, which was efficient towards a CT26 
tumour model (Table 1) [62]. As a result, the scenarios pro-
vided do not represent the formulae that may be employed. 
The reduction-responsive polypeptide NG containing Dox 
demonstrate encouraging in-vivo results due to its excep-
tional security and cancer-inhibitory  properties [63]. 
Researchers also developed pullulan NGs featuring simi-
lar characteristics [64]. In this approach, two independent 
pullulan NGs for administering Dox were formed with two 

distinct cross-linking agents, leading to tumour suppression 
(83.37%) in-vivo studies utilizing an ortho ester-modified 
Pluronic copolymer (acid-labile) as the crosslinking media-
tor. Another investigation looked into another NG composi-
tion [65]. Researchers developed a lactobionic acid-modified 
soy-protein NG to deliver Dox. In-vivo investigations dem-
onstrated that this combination facilitated tumor targeting 
and treatment efficacy. The potential to alter the composi-
tion of NGs for selective drug release activities is an attrac-
tive feature. In this context, transferrin-modified poly-sul-
famide NGs enabling Dox loading were developed [66]. 
In-vivo studies presented that the formulation had tumour-
targeting attributes, which could improve cancer treatment. 
This investigation used a different approach. In this instance, 
they synthesize an irinotecan-loaded gelatin NG membrane 
with platelets embedded. The prepared NGs decrease in-vivo 
cancer cell growth, reducing side effects [67].

However, hepatic cancer (HCC) is thought to be the third 
leading cancer-related cause of death worldwide [68–72]. 
Among the most often used chemotherapeutic drugs for the 
treatment of liver carcinoma is doxorubicin (Dox), [73]. 
However, it requires an effective therapy potential because 
of its decreased effectiveness as a consequence of its severe 
toxicity. Additionally, Dox has a history of being rapidly 
metabolized into inactive derivatives, which further reduces 
its effectiveness. A composite biodegradable NG that are 
pH-sensitive for local injectable administration was syn-
thesized to counteract the harmful effects of Dox, such as 
cardiotoxicity and the present issues with HCC [74]. The 
NG system target tumour tissues due to the enhanced perme-
ability and retention (EPR) effects. It releases drugs through 
pH-controlled hydrolysis in endosomes and lysosomes 

Fig. 6   Fate of NGs to act on 
cancer using endocytosis. The 
figure was developed using 
BioRender (www.​biore​nder.​
com) (accessed 1 November 
2023)

http://www.biorender.com
http://www.biorender.com
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through the endocytic route (Table 1). This results in more 
precise drug delivery with fewer side effects and enhanced 
effectiveness in cancer treatment. Chitin-poly L-lactic acid 
composite NGs (CNGs) successfully included Dox, with 
86% entrapment efficiency. At an acidic pH, chitin-PLA 
and Dox-chitin-PLA CNGs resulted in more enlargement 
and drug release. Additionally, these NGs demonstrated no 
haemolysis of RBCs, demonstrating the systemic route's 
safety. In-vitro  tests have demonstrated improved cyto-
toxicity employing pH-sensitive NGs, which deliver the 
drug with low pH, specifically where the tumour occurs 
without producing adverse effects via systemic drug distri-
bution [75].

Nano formulations with appropriate surface charge and 
size offer a vast opportunity for cytotoxic drugs to target 
specific regions owing to their superior biological membrane 
permeability. Concerning the topical distribution of drugs 
through small gels, NGs among contemporary Nano for-
mulations are gaining attention. Chitin NG of 5-fluorouracil 
(5-FU) is a skin cancer drug thus far produced. The study's 
findings led to the effective loading of 90% of the drug in the 
NG, which had a higher capacity for swell and drug release 
at an acidic pH. Although introducing 5-FU to the NG didn't 
enhance its penetration for various reasons, it might increase 
the gel's retention period for the deepest layers of skin (up 
to 5 times) and is advantageous since the therapy's targets, 
melanocytes, are found in deeper layers [76].

Moreover, hyperthermia is an abnormal elevation in 
body temperature or overheating [77]. Whole-body hyper-
thermia (WBH) and hyperthermic perfusion treatments, 
such as hyperthermic isolated limb perfusion (HILP) and 
hyperthermic peritoneal perfusion (HPP), differ from local/
interstitial and regional hyperthermia [78]. Clinical investi-
gations on people with locally advanced malignancies sup-
ported the application of regional and local hyperthermia 
[79]. These studies found a remarkable association between 
administered doses and outcomes. In phase II investigations, 
regional and local hyperthermia were used in addition to 
chemotherapy and radio-chemotherapy. The findings suggest 
that hyperthermia has many therapeutic benefits [80]. The 
initial heat-activated formulation of a liposomal carrier for 
drugs to be used in human clinical trials is also thermosensi-
tive liposomal Dox (Table 1) [81]. One of the most popular 
antineoplastic drugs used in the treatment of human cancer 
is Dox [82]. The study conducted by the researchers involved 
the synthesis of a dual pH and temperature-sensitive PNA 
NG, which was used to deliver drugs. Under normal condi-
tions, the PNA NG was hydrophilic (Table 1).

However, upon heating through its LCST (lower critical 
solution temperature), the NG undergoes a phase transition 
influenced by pH value. Because of the pH difference across 
cancer and normal tissues, tumour cells could preferentially 
absorb Dox-PNA NGs. Consequently, such NGs might 

deliver chemotherapeutic drugs directly to tumour cells, 
increasing cellular internalization during region hyperther-
mia therapies. Dox was covalently linked to PNA through an 
acid-labile bond to form NGs. The association was robust at 
extracellular and physiological pH, but it cleaved to release 
the drug when it came into contact with moderately acidic 
conditions in tumour cell endosomes. The approach could 
lessen the adverse impacts of anti-cancer drugs while boost-
ing their ability to target tumour cells. Dox-PNA NGs may 
significantly enhance the combination treatment of hyper-
thermia and chemotherapy [83].

NG in spinal cord injury  A spinal cord injury (SCI) consti-
tutes a devastating CNS disorder that can come from both 
traumatic and non-traumatic occurrences [84]. The 'pri-
mary injury' involves immediate neurological impairment 
to the spinal cord, and the 'secondary injury' is marked by 
a sequence of biochemical and inflammatory responses. In 
the present instance, the most essential aspect of the sec-
ond stage is inflammation, which is intensively studied 
to develop an efficient therapeutic candidate for reducing 
it. The two polymer-based vehicles for drug delivery devel-
oped for the treatment of SCI are NGs and NPs. The capac-
ity to penetrate the CNS's intrinsic barrier and selectively 
address its cells is essential in all conditions. In a recent 
study, rolipram ( an anti-inflammatory drug) was put into a 
PEG and PEI-NGs coated with amines (Table 1) [85]. In-
vivo studies indicated that formulations might specifically 
target the astrocytes and restore motor functions in animal 
models in the initial stages of spinal cord injuries despite 
lowering the pro-inflammatory events triggered by the acti-
vation of astrocytes.

Similarly, a researcher developed poly lactic-co-glycolic 
acid (PLGA) microspheres carrying paclitaxel and minocy-
cline hydrochloride introduced to alginate HG [86]. In-vivo 
examinations on rats with dual-drug regimens demonstrated 
that it successfully decreased inflammatory responses after 
seven days of treatment, scar tissue development, and neu-
ronal regeneration after four weeks. In a study, the researcher 
developed a new and significant approach involving poly-
meric NPs [87]. They employed poly-caprolactone-based 
NPs loaded with minocycline to target microglia in their 
investigation. By regulating specific microglial cells, 
the acute therapy of the NGs in a mouse model with SCI 
reduced the pro-inflammatory responses while maintaining 
pro-regenerative surroundings for up to 10 week’s post-
injury. SCI was also treated with minocycline. This study 
developed a sialic acid-PEG-PLGA co-polymer that specifi-
cally targets E-selectin and can assemble itself into micelle 
formulation [88]. In-vivo experiments revealed that these 
micelles could be assembled in SCI sites in mice, lowering 
the extent of the lesions and enhancing axon and myelin sur-
vival. The scientist also used polymeric NPs carrying IRF5 



	 Drug Delivery and Translational Research

siRNA, which were delivered into the wounds of SCI mice 
[89]. Introducing these NPs altered the anti-inflammatory 
reaction in the wound by minimizing M1 macrophages while 
boosting the amount of M2 macrophages. Many conditions, 
other than SCI, can influence the CNS. Thus, NGs can help 
treat them successfully. Brain tumours, such as glioblastoma, 
represent an excellent illustration, as they may be highly 
aggressive and threatening to human life [90]. NGs have the 
potential to deliver immunotherapy onto glioblastoma cells 
in an efficient manner. They can be done by consistently 
developing thermo-reversible PEG-chitosan HGs designed 
to release T-lymphocytes [91]. These HGs have a solid capa-
bility to kill glioblastoma cells and are an essential tool for 
targeted immunotherapy [92].

NG in ischemic stroke  Ischemic stroke can be treated through 
thrombolytic treatment, which includes drugs including 
streptokinase, urokinase, anistreplase, and tissue plasmi-
nogen activator [93, 94]. Respondent NGs, such as pH-
sensitive NGs, may be beneficial for developing urokinase 
delivery and are considered a practical approach in stroke 
management. In one instance, researchers developed pH-
sensitive PEG-urokinase NGs (Table 1) [95]. When the pH 
drops owing to microcirculatory clots, which typically cause 
an oxygen deficit in this sickness, the NG releases urokinase. 
In-vivo studies found that urokinase was introduced one 
hour after cerebral artery congestion, minimizing ischemia 
damage by preserving the BBB, strengthening ischaemic 
brain tissues, suppressing apoptosis, and minimizing neu-
rotoxicity. Another investigation [96] discovered that using 
the same formulation outside the conventional thrombolysis 
interval produced encouraging outcomes for in-vivo assess-
ment in a second study. In this research, the loaded NGs 
protected the BBB and decreased stimulate-neurotoxicity 
among rats with chronic middle cerebral occlusion. Another 
study developed a hollow NG carrying urokinase (made by 
combining chitosan glycol and aldehyde-capped PEG) for 
delivering urokinase under ultrasonic diagnosis conditions 
[97]. In-vivo investigations revealed that this formulation 
might prolong urokinase circulation time. The formulation 
provided urokinase more rapidly, increasing clot thromboly-
sis, and was responsive to diagnostic ultrasonography. The 
present study suggested by in-vivo tests that similar urok-
inase-loaded hollow NGs might mitigate severe ischemic 
stroke by enhancing urokinase's thrombolysis consequences, 
maintaining the BBB's integrity, preventing adverse brain 
haemorrhage and death of animals after one week of admin-
istration [98].

NG in inflammation  MTX was initially developed as a folic 
acid antagonist in the 1940s. This drug primarily inhibits 
malignant cell proliferation by inhibiting the de novo pro-
duction of purines and pyrimidines. Because high doses of 

folinic acid and folic acid may counteract MTX's antipro-
liferative effects, it is clear that MTX is an antifolate drug. 
Cells take up MTX via a folate carrier and convert it to 
polyglutamate [99, 100]. MTX is a potent drug used for 
cancer [101], anti-inflammatory, and immunosuppressant 
treatments [102]. It has long-lasting metabolites called MTX 
polyglutamate that retain the parent compound's antifolate 
actions while altering the potency of inhibiting specific 
folate-dependent enzymes [103, 104]. A further investiga-
tion examined how sodium carbonate (Na2CO3) affected the 
transport of MTX within a NG in vitro and the modification 
of prostaglandin E2 (PGE2) synthesis in skin ex vivo. A NG 
containing MTX was administered to resected porcine epi-
dermal membranes. The introduction of saturated aqueous 
Na2CO3 boosted MTX flow while decreasing PGE2 synthe-
sis (Table 1). The findings suggest a unique mechanism in 
which temperature changes caused de-swelling and ejection 
of MTX in situ. At the same time, the addition of Na2CO3 
resulted in more solubilization and MTX release, lowering 
PGE2 production [105].

NG in gene therapy  Gene therapy  is a legitimate thera-
peutic option nowadays. However, the initial clinical tri-
als were discontinued due to serious adverse effects [106]. 
Two out of ten patients who underwent retroviral gene 
therapy for X-linked severe combination immunodefi-
ciency (X-SCID) developed T-cell leukaemia [107]. Indeed, 
among the most promising areas of gene therapy is RNA 
interference (RNAi), which employs siRNAs [108]. Anti-
sense RNA (asRNA) was initially utilized for gene silenc-
ing in rats, and this work found that long dsRNA triggered 
selective mRNA degradation in C. elegans. The sense and 
antisense strands within dsRNA produced up to tenfold qui-
eter than either strand alone, resulting in Post Transcrip-
tional Gene Silencing (PTGS). After RNAi was discovered 
in lower eukaryotes, biomedical researchers found it also 
occurs in mammalian cells [109–111]. A new method for 
delivering siRNA into cells has been developed using a plat-
form called cationic dendritic polyglycerol (dPG-PEI) NG 
(Table 1). This platform has demonstrated a similar transfec-
tion performance to the conventional 25 kDa branched poly-
ethyleneimine (PEI), significantly reducing cytotoxicity. The 
NG synthesis method employs a thiol-Michael nano-pre-
cipitation approach, allowing sensitive contents to be added 
directly during the NG synthesis. pH-sensitive benzacetal 
linkages in the NG network help to release the content. The 
cationic NG platform represents a ready-for-use transfection 
solution that may be administered directly to cells without 
requiring complex polyplex production techniques. The new 
platform ensures that polyplexes and their exact sizes are 
specified irrespective of the preparation technique [112].
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NG in cardiovascular diseases  These are  the significant 
causes of death globally [113]. It covers a variety of dis-
eases, including cerebrovascular, venous thromboembo-
lism, peripheral artery, congenital and coronary heart dis-
ease [114]. Various factors, like genetics, hypertension, 
diabetes, and obesity, can cause cardiovascular diseases. 
Several researchers are exploring using NGs to deliver drugs 
to treat these diseases (Fig. 7). Multiple approaches are 
available to treat hypertension. Still, a novel therapy option 
has been found that can also treat pneumococcal pneumo-
nia. The technique employs drug nanocarriers to provide 
an intranasal vaccine (Table 1) [115]. The novel therapy 
involves cationic-charged cholesteryl-pullulan NG bearing 
Pneumococcal surface-protein A (PspA) and Angiotensin 
1 Receptor (AT1R) from the pneumococcal surface. AT1R 
antagonists efficiently decrease blood pressure, exclud-
ing side effects in rat models. PspA can trigger immunity 
against Streptococcus pneumoniae. This novel therapy 
has the potential to alter the treatment of hypertension and 
pneumococcal pneumonia. In-vivo  studies have shown 
that immunization effectively avoids lethal pneumococ-
cal infections by lowering blood pressure. Another study 
presents a distinct approach to treating hypertension using 
NG compositions [116]. The researchers developed NG of 
amphiphilic Karaya gum with a 3.24 propyl group substitu-
tion to distribute Bosentan monohydrate inside the colon 
selectively. In-vivo studies demonstrated that the NG could 
effectively lower blood pressure for up to 10 h following 
delivery, with the most significant decrease occurring after 
8 h, reducing by approximately 31%. Besides hyperten-
sion, other potential cardiovascular disease treatments use 
NG-based drug delivery systems. This study developed an 

N-isopropylacrylamide-methyl methacrylate NGs to admin-
ister N, L-rhamnopyranosyl vincosamide and determine car-
dioprotective attributes. The study revealed that these NGs 
have intriguing cardioprotective capabilities [117]. In-vivo 
studies demonstrated that these structures could significantly 
reduce heart damage in the Dox-induced toxicity model. In 
further studies, researchers developed temperature-sensitive 
poly (N-isopropyl amine-co-acrylic acid) NGs containing 
cardiac stem cells of humans to treat myocardial infarction. 
These NGs were in-vivo against mouse and pig models, 
proving their capability to decrease scar size and maintain 
heart function without causing systemic inflammation [118].

NG in wound healing  The wound healing process consists 
of four phases: inflammation, proliferation, production of 
the extracellular matrix components, and remodelling [119, 
120]. This biological process involves various elements, 
including keratinocytes, platelets, immunological cells, 
fibroblasts, and microvascular cells [121]. Historically, vari-
ous compounds, especially those derived from plants with 
medicinal properties, have been utilized to accelerate wound 
healing [122]. Nanocarrier-based techniques, like NGs, have 
been extensively researched to enhance treatment effective-
ness and targeted delivery of active substances. During the 
process of wound healing, there is a possibility of infection. 
Researchers have developed chitosan-based NGs packed 
with an antibacterial drug called silver sulfadiazine to tackle 
this issue. These NGs were then compared to commercial 
formulations containing the same chemical (Table 1) [123]. 
The results of in-vivo experiments have shown that the NGs 
are an effective treatment for burn wounds. The concentra-
tion of silver sulfadiazine necessary to accomplish this effect 

Fig. 7   Schematic representation 
of treatment of cardiovascular 
disease (myocardial infection) 
using NGs. The figure was 
developed using BioRender 
(www.​biore​nder.​com) (accessed 
7 November 2023)

http://www.biorender.com
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is lesser than that of commercial formulations [124]. Their 
research created a lysine-based NG with the antiseptic/dis-
infectant chemical chlorhexidine diacetate. The loaded NGs 
were combined with HGs containing methacrylate methoxy 
PEG and aminoethyl methacrylate HA. In-vivo studies have 
shown that HGs containing loaded NGs possess strong anti-
bacterial capabilities, as no bacterial biofilm was detected.

Additionally, these HGs were observed to have a quick 
hemostasis outcome, hastening the healing process. 
Researchers have also explored alternative methods of 
controlling inflammation during wound healing. Scientists 
synthesized gellan-cholesterol NGs carrying baicalin, a fla-
vone often used to treat inflammatory conditions [125]. In-
vivo studies demonstrated that these NGs suppressed several 
inflammatory markers, such as TNF- and myeloperoxidase, 
more efficiently than marketed formulations and baicalin 
in phosphate buffer solution. Natural compounds, like cur-
cumin, have demonstrated remarkable wound-healing prop-
erties. In another study, researchers created NGs containing 
fish-scale collagen-HPMC to treat related diseases [126]. 
In-vivo, studies have shown that combining collagen with 
curcumin improves wound tightening and reduces irritation 
symptoms compared to alternative curcumin preparations. 
IL-2 is a different significant molecule in the healing process 
because of its positive effect on T-lymphocyte formation. 
The researchers designed a chitosan-based NG containing 
IL-2 [127], which provided exciting in-vivo results revealing 
a reduction in malondialdehyde, a lipid peroxidation bio-
logical indicator, and a rise in glutathione concentration. 
This renowned antioxidant had positive results towards 
wound recovery applications. In a different study, research-
ers developed heparin-modified pluronic NGs containing 
the VEGF195 and BFGF genes, stimulating wound site 
neovascularization [128]. In-vivo studies revealed that this 
composition effectively increased endothelial differentiation 
of cells and neovascularization.

NG in bone regeneration  Bone diseases constitute one 
of the most prevalent causes of disability globally. Frac-
tures, osteoporosis, and tumours are among the pathologies 
that cause bone diseases (Table 1) [129]. When bones are 
healthy, they may reestablish themselves without forming 
tissue with scars [130]. Fortunately, specialized treatments 
are frequently needed, like the application of bone alterna-
tives with osteoconductive and osteoinductive properties, 
as well as the utilization of cells such as mesenchymal stem 
cells (human),  growth factors including  bone morpho-
genic proteins (BMP), vascular endothelial growth factor 
(VEGF), fibroblast growth factor (FGF), platelets-derived 
growth factor (PDGF) [129]. In this instance, scientists 

have developed pullulan NGs containing cholesteryl and 
acryloyl [131]. Recombinant human FGF18, which is used 
to enhance the activity of low BMP2 doses, and recombi-
nant human BMP2 were produced using these frameworks 
to generate fast degradable HGs. In in-vivo studies, these 
formulations induced bone regeneration more efficiently 
than free BMP2 or a mixture of independent BMP2 and 
FGF18. The study showed an alternative method for using 
BMP2 to induce bone healing [132]. To deliver BMP2, the 
investigators combined polycaprolactone (PCL) with redox-
sensitive c-6A PEG-PCL NG (Table 1). This combination 
yields nanofibers with a core–shell configuration. In-vivo 
investigations revealed that the NGs controlled distribution 
of BMP2 might promote bone defect repair.

Similarly, in a different research p-(N-isopropylacryla-
mide-co-butyl methylacrylate), NGs were designed 
to develop moieties that function as carriers for delivering 
mesoporous bioactive surface. The findings (in-vivo) indi-
cate that the bioactive glass-loaded NG-based framework 
may aid in the repair of femur deformity in osteoporotic 
animals. The W9-peptide, a TNF-α and receptor activator 
of kappa beta antagonist, is a potent molecule that has the 
potential to accelerate bone regeneration. Scientists devel-
oped a CHP NG that delivers the W9 peptide [133]. Their 
research concluded that this framework might prevent the 
loss of bone in bone resorption models in-vivo. PGE2, a 
nonpeptide anabolic molecule, may also help with bone 
rebuilding. The substance's high dosage and short half-life 
lead to adverse effects. Researchers produced a CHP NG for 
PGE2 to address these issues [134]. In in-vivo assessments, 
PGE2 encouraged new bone development when paired with 
an HG sphere that cross-linked NGs.

NG in psoriasis  Psoriasis is a persistent, inflammatory skin 
disorder that affects 1–3% of the global population [135]. 
Because T cells in the epidermis and dermis are activated, it 
is an immunologically mediated illness [136]. Traditionally, 
various dosage forms of MTX, retinoids, and cyclosporin are 
used to treat psoriasis. Various NG preparations have been 
developed to distribute this type of medication effectively. 
In this work, scientists proposed a vital method to address 
this issue [137]. They formulate chitin-based NGs contain-
ing clobetasol (CLCNG) for skin application (Table 1). In 
their study, they compared the effectiveness of prepared 
NGs to commercial costate cream, and results suggested 
that CLC NG attained equal anti-psoriatic properties with 
reduced skin irritation, which made it a suitable choice for 
skin application.

Moreover, the same team developed an MTX-loaded 
chitin NG for topical use (Table 1) [138]. They achieved 
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an overall Psoriatic Area and Severity Index (PASI) reduc-
tion of 73.11–89.22% (depending on drug dose) using these 
NG formulations, which was greater than the ideal reduced 
percentage (73–75%) for taking into account them clini-
cally valuable, demonstrating anti-psoriatic property. They 
also compared their simplicity for use with a commercial 
MTX gel, which showed a lower PASI drop and no adverse 
induction. In a second experiment, they discovered that their 
MC NG outperformed traditional MTX oral tablets because 
of their lower toxicity induction [139]. Babchi oil, a natu-
rally existing essential oil with fewer adverse effects than 
other produced medications, is another helpful constitu-
ent in psoriasis treatment. Cyclodextrin-based NGs carry-
ing Babchi oil for application on the skin were developed to 
test their efficacy for psoriasis therapy by comparing their 
effectiveness to the native Babchi oil gel [140]. Their in-
vivo investigations revealed that these NG were effective 
against psoriasis without producing visible skin irritation, 
inflammation, or erythema. Earlier studies indicated that 
MiRNA-210 plays a crucial role in this type of disease. A 
high-density lipoprotein NG carrying miR-210 antisense 
was developed, and its efficiency in reducing inflammation 
comparable to psoriasis in mice was demonstrated in the 
study, indicating its potential use in topical treatments [141].

NG in diabetes  MIT and Boston Children's Hospital 
researchers are developing a self-operating insulin delivery 
system utilizing a unique nanotech technique comprising 
just one NG injection stabilizing blood glucose levels for 
up to 10 days. Due to its glucose sensitivity, the NG can 
monitor glucose levels and release insulin as necessary. 
The MIT method uses NG of a combination of oppositely 
charged dextran NPs, which are attracted to one another 
electrostatically and help the gel maintain its mechanical 
consistency. The inner core of the NPs comprises glucose 
oxidase, modified dextran, and insulin. When exposed to 
high blood glucose levels, the enzyme transforms glucose 
into gluconic acid. The dextran spheres are broken down 
by the gluconic acid that has thus been generated, which 
also releases insulin, bringing the blood glucose level 
back to normal. Due to biocompatibility, Dextran and glu-
conic acid eventually disintegrate in the body [142, 143]. 
In recent years, a poly (4-vinylphenylboronic acid-co-2-
(dimethylamino) ethyl acrylate) [p(VPBADMAEA)] silver 
NP NG with insulin loading has been developed (Table 1). 
In the research, the polymer-bound Ag NPs were given the 
glucose-sensitive p(VPBADMAEA) shell, which caused the 
Ag NPs to react to glucose. The glucose-responsive polymer, 
p(VPBADMAEA), detects any variation in the concentration 
of glucose in the blood throughout a therapeutically mean-
ingful range (0–30 mM) and converts this variation into an 

optical signal that is recognized by the optically responsive 
silver core (10 ± 3 nm) [144].

Challenges and future perspective

NG drug delivery systems represent a promising frontier 
in medical science, addressing challenges in conventional 
drug administration. NG offers a unique platform for con-
trolled drug release, enhancing therapeutic efficacy while 
minimizing side effects. However, their widespread appli-
cation faces several challenges. One primary obstacle is 
the intricate design required to optimize drug encapsula-
tion and release kinetics. Achieving a balance between 
stability and responsiveness is critical to ensuring the NGs 
effectively deliver drugs to target sites.

Moreover, the potential toxicity of nanomaterials and 
their long-term effects on the body demand a thorough 
investigation and regulatory scrutiny. Another challenge 
involves the scalability of NG production. Developing 
cost-effective manufacturing processes that maintain con-
sistent quality poses a hurdle in translating these inno-
vations from the lab to large-scale clinical applications. 
Despite these challenges, the future perspective of NG 
drug delivery is highly promising. The versatility of NGs 
allows for tailored solutions to treat various diseases. In 
oncology, for instance, NGs can enhance the specificity 
of chemotherapy, redutreatcing damage to healthy tissues. 
Neurological diseases may benefit from targeted drug 
delivery across the BBB, improving treatment outcomes. 
Moreover, the advent of smart NGs, responsive to spe-
cific physiological cues, further amplifies their therapeutic 
potential [169, 170].

As research progresses, addressing challenges and refin-
ing NG technologies will propel them into mainstream 
medical practice, revolutionizing drug delivery and sig-
nificantly improving patient outcomes across a spectrum 
of diseases. The collaboration between researchers, clini-
cians, and regulatory bodies will be instrumental in real-
izing the full potential of NG drug delivery systems in the 
future of medicine [83, 171–175].

NG: Status of patents for treatment 
of various diseases and their marketed 
products

The status of NG contain therapeutic agents used for 
treatment of various diseases and marketed products are 
showed in Table 2 and 3 respectively.
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Table 2   Patents on NG used for treatment of various diseases

Patent No Date of publication Description/ outcome Refn(s)

US2015/0250899A1 Sep. 10, 2015 The invention aims to overcome cancer treatment resistance, enhance therapeutic efficacy, 
and minimize toxicity to healthy tissues

[176]

US2007/0224164 A1 Sep. 27, 2007 The present invention indicates degradable NG DDS. NG is made of PEG. This invention 
shows that a polymer complex with the cancer drug cisplatin forms core shell-type gels 
with sizes from 1 to 2000 nm

[177]

US10206885B2 Sep. 1, 2016 NG was formed to compress one or more tumour cells by encapsulating one or more epige-
netic drugs into NG base

[178]

US10,829,672B2 Nov.10, 2020 The water-dispersible or compatible NG are used as reactive additives in monomer and 
resin systems and 3D microgel polymer precursors in monomer-free water-based applica-
tions

[179]

US10,709,664 B2 Jul. 14, 2020 Nanolipogel is used as the core–shell of NPs, with a core polymer matrix that can contain 
host molecules within a liposomal shell that may be unilamellar or bilamellar, optionally 
cross-linked

[180]

US8242165B2 Aug. 14,2012 The invention relates to a pharmaceutical composition with NPs, such as glyceryl mono 
fatty acid ester, chitosan, and an anticancer drug

[181]

US 9.433,682 B2 Sep. 6, 2016 This invention delivers pharmaceutical composition to a cell using TPCG HG [182]
US11,261,226 B2 Mar. 1, 2022 A technique for effective and stable coupling of NPs to a T-cell surface while minimiz-

ing cellular internalization and enabling the extracellular drug delivery of cytokines and 
small compounds for various biological applications, including targeted immunotherapy

[183]

US10,434,192 B2 Oct. 8, 2019 The innovative formulations consist of several nano-sized solid particles and a gel-forming 
mechanism

[184]

US 9,694,085 B2 Jul. 4, 2017 Polysaccharide NPs have been cross-linked to poloxamers, polysaccharides, and poloxamer 
nano-colloids. NPs may be manufactured using various methods, like inverse mini-
emulsion polymerization technologies, which generate NGs with the correct shape, size, 
and consistency for controlled therapeutic drug administration, imaging, and theragnostic 
activities

[185]

EP 2 906 617 B1 Aug. 19, 2015 The current invention addresses some disadvantages by developing a HG that may be 
employed as a transporter for carrier-linked prodrugs, allowing the controlled and pro-
longed release of more giant drug molecules

[186]

US 9,763,968 B2 Sep. 19, 2017 Doxycycline or minocycline are cross-linkable polymer formulations that generate non-
toxic and biocompatible HGs in situ. Methods for applying HGs to the skin tissues of 
mammals that have encountered vesicant chemicals such as sulfur mustard (SM), nitro-
gen mustard (NM), or half mustard (2-chloroethyl ethyl sulfide (CEES)) are also given

[187]

AU2016305087B2 Aug. 3, 2018 The disclosed invention pertains to techniques and formulations, including cells with a 
non-internalizing receptor and NP surfaces treated with a ligand that binds to the non-
internalizing receptor

[188]

US2013/0131008A1 May 23, 2013 Lipophilic monophosphorylated analogues of gemcitabine are available, among other 
things. Additional NP compositions containing lipophilic monophosphorylated deriva-
tives of gemcitabine, pharmaceutical compositions thereof, and a method of treating 
cancer or viral infection in a subject in need, including administering a pharmaceutical 
composition, are also disclosed

[189]

US 9,364,545 B2 Jun. 14, 2016 The innovation generated thermosensitive injectable HGs made with HA, a polyethene 
oxide copolymer, and polypropylene oxide, with a gel formation temperature ranging 
from 30 to 37 °C. The invention's thermosensitive injectable HGs offer a possible medi-
cation delivery method to improve the medicine's therapeutic effectiveness

[190]

US10,729,659 B2 Aug. 4, 2020 Methods for inhibiting the proliferation of one or more tumour cells include contacting 
them with a composition containing one or more epigenetic drugs that inhibit one or 
more epigenetic mechanisms associated with the tumour cells, where one or more epige-
netic drugs are encapsulated in NGs

[191]

US 9,642.925 B2 May 9, 2017 The invention describes methods for producing derivatized and usable magnetic NP and 
ways for employing such NPs

[192]

US11,029,539 B2 Jun 8, 2021 The copolymer's leading polymer chains are hydrophilic and have polymerization degrees 
ranging from 10 to 10,000. This invention's water-soluble, crosslinked copolymers do 
not contain terminal substrate-associating segments. The copolymers can be integrated 
into the formulation used to make the article or come into contact with it after it has been 
formed

[193]
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Table 2   (continued)

Patent No Date of publication Description/ outcome Refn(s)

US10,502,867 B2 Dec. 10, 2019 The linear substrate associative segment links the block copolymer to a surface with at 
least one hydrophobic site, including silicone HG. The polymers can be integrated into 
the formulation that produces the silicone HG or come into contact with it after it has 
formed

[194]

US2020/0030244 A1 Jan. 30, 2020 Intravesical therapeutic drug delivery includes attaching a photoactive NG to the blad-
der's mucosal surfaces and administering cell-penetrating peptides. Photoactive NGs can 
combine when exposed to UV light, in-vitro and in-vivo, allowing for the regulated or 
extended release of drugs like antibiotics

[195]

Table 3   Marketed products of NG used for treatment of various diseases and their brand name

Brand name Drugs Use Cost (Quantity) Manufacturer Refn(s)

Oxalgin NG Diclofenac, Methyl Salicy-
late

Analgesic, anti-inflamma-
tory

139 Rs (30 g) Zydus Healthcare Ltd [196]

Adlalene NG Adapalene, Clindamycin Anti-acne, prevent from 
infection, prevent from 
blackheads on the skin

273 Rs (15 g) Zydus Healthcare Ltd [197]

Zeldinac NG Diclofenac, Linseed oil, 
Methyl salicylate

Reduced inflammation 58 Rs (30 g) Leeford Healthcare Limited [198]

Acnesol A NG Adapalene, Clindamycin Reduced oil production, 
anti-inflammatory, anti-
microbial, prevent from 
infection

175 Rs (15 g) Systopic Laboratories Pvt [199]

Zeldinac NG Clindamycin Antibiotic 204 Rs (15 g) Zydus Healthcare Ltd [200]
S-Shield NG SPF 30 +  Ethyl hexylmethoxy cin-

namate, Butyl meth-
oxydibenzoylmethane, 
Benzophenone-3

Reduction of oils from the 
skin, refreshing skin feel

604 Rs (50 g) Skinska Pharmaceutica 
Pvt Ltd

[201]

D F O NG Oleumlini, Diclofenac 
diethyl ammonium

Anti-inflammatory, anal-
gesic

119 Rs (30 g) Ozone Pharmaceuticals Ltd [202]

Silvercure NG Nanocrystalline silver Wounds and burns 213 Rs (50 g) Cipla Pharmaceuticals Ltd [203]
Uv-Aid NG Spf 30 +  Green tea extracts, Allan-

toin, Vitamin E, Glycerin
Protect from UV rays 

effects
280 Rs (50 g) Arlak Biotech Pvt Ltd [204]

Warflam NG Diclofenac, Capsaicin, 
Methyl salicylate, Metha-
nol, Linseed oil

Analgesic 109 Rs (30 g) Biosortia Healthcare Pvt 
Ltd

[205]

Turnup NG Diclofenac diethylamine, 
Linseed oil, Methyl 
salicylate, Menthol

Analgesic 120 Rs (30 g) Nasa Pharmaceutical [206]

Fasiclo 4X NG Diclofenac diethylamine Analgesic 101 Rs (30 g) Fascin Pharmaceuticals [207]
Acgel NG Clarithromycin Antibacterial 87 Rs (15 g) Rapross Pharmaceuticals 

Pvt Ltd
[208]

Skinlite Ever NG Hydroquinone, Tretinoin, 
Allantoin

Prevent from melasma 141 Rs (20 g) Zydus Cadila [209]

Nanomac Gel Nanocrystalline silvers Wound healing 51 Rs (10 g) Macleods Pharmaceuticals 
Pvt Ltd

[210]

Mega NG Silver nano particles Prevent from infection 807 Rs (200 g) Zuventus Healthcare Ltd [211]
Aveil with Heat Shield Gel 

SPF 50
Thermus themophilus 

ferment phenylbenzimida-
zole sulfonic acid

Prevent from UVA and 
UVB rays

742 Rs (50 ml) Shivoham Dermatology 
Pvt Ltd

[212]

Nan Cola 0.002% Gel Silver NP Prevent from infection 489 Rs (10 g) DD Pharmaceuticals Pvt. Ltd [213]
Instaplus Gel Silver NP Prevent from infection 187 Rs (50 g) Lupin Ltd [214]
S Gel Nanocrystalline silvers Wounds and burns and 

surgical wounds
129 Rs (25 g) Hetero Drugs Ltd [215]
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Conclusion

NGs, versatile nanoscale structures, exhibit immense 
potential in revolutionizing medical treatments across vari-
ous diseases. Their unique properties, such as high surface 
area and tunable drug release kinetics, make them prom-
ising candidates for targeted drug delivery. In oncology, 
NGs have shown remarkable efficacy by delivering chemo-
therapeutic agents directly to cancer cells, minimizing col-
lateral damage to healthy tissues. The application of NGs 
extends beyond oncology; they have successfully treated 
inflammatory diseases, tumours, liver disease, SCI, infec-
tions, cardiovascular diseases, hyperthermia, diabetes, and 
neurological diseases, and also in the biomedical field. 
Their adaptability allows customization to suit specific 
therapeutic needs, heralding a new era in precision medi-
cine. However, the journey from the laboratory to clinical 
implementation is fraught with challenges. One significant 
hurdle is ensuring the biocompatibility and safety of NGs. 
Ethical concerns surrounding the long-term impact of NGs 
on the human body necessitate thorough investigation.

Moreover, scalability and cost-effectiveness are addressed 
to make these innovations accessible on a global scale. The 
ongoing clinical trials involving NGs are crucial milestones 
to determining their real-world viability. Researchers are dil-
igently evaluating their performance, side effects, and thera-
peutic impact. Looking ahead, the future of NGs appears 
bright. Continued research and advancements in nanotech-
nology promise to overcome current challenges, fostering 
widespread adoption of NG-based therapies. NGs may be 
pivotal in this paradigm shift, offering precise and efficient 
strategies for many medical conditions.

In conclusion, NGs represent a groundbreaking inno-
vation with far-reaching implications for medical science. 
While challenges persist, ongoing clinical trials and a com-
mitment to rigorous research pave the way for a future where 
NGs become indispensable tools in the fight against various 
diseases, offering hope for more effective, targeted, and con-
trolled treatments.
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