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Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women. Chemo-, immune- and photothermal therapies 
are employed to manage BC. However, the tumor microenvironment (TME) prevents free drugs and nanocarriers (NCs) from 
entering the tumor premises. Formulation scientists rely on enhanced permeation and retention (EPR) to extravasate NCs 
in the TME. However, recent research has demonstrated the inconsistent nature of EPR among different patients and tumor 
types. In addition, angiogenesis, high intra-tumor fluid pressure, desmoplasia, and high cell and extracellular matrix density 
resist the accumulation of NCs in the TME. In this review, we discuss TME normalization as an approach to improve the 
penetration of drugs and NCSs in the tumor premises. Strategies such as normalization of tumor vessels, reversal of hypoxia, 
alleviation of high intra-tumor pressure, and infiltration of lymphocytes for the reversal of therapy failure have been discussed 
in this manuscript. Strategies to promote the infiltration of anticancer immune cells in the TME after vascular normalization 
have been discussed. Studies strategizing time points to administer TME-normalizing agents are highlighted. Mechanistic 
pathways controlling the angiogenesis and normalization processes are discussed along with the studies. This review will 
provide greater tumor-targeting insights to the formulation scientists.
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VCAM  Vascular Cell Adhesion Molecule
SRCIN1  SRC Kinase Signaling Inhibitor 1
PTX  Paclitaxel
BMP-9  Bone Morphogenetic Protein-9
ALK1  (Activin Receptor-Like Kinase 1)
EGFR  Epithelial Growth Factor Receptor
MDSC  Myeloid-derived Suppressor cells
HIF-1α  Hypoxia-Inducible Factor
TLS  Tertiary Lymphoid Structures
PT  Photodynamic Therapy

Introduction

Breast cancer (BC) is the most commonly diagnosed cancer 
among women. A total of 2,230,000 diagnoses and 685,000 
deaths were reported in the year 2020. Chemotherapy has 
been employed to shrink or manage the tumor pre-surgery 
and promote tumor-free survival post-surgical ablation of 
breast tumors. Conventional chemotherapy suffers from 
toxic effects such as cytotoxicity at non-tumor sites, low 
blood count, hair loss, nausea and vomiting, etc. [1]. The 
advent of nanocarriers (NCs) has eased the delivery of 
hydrophobic chemotherapeutic agents. For example, albu-
min-bound paclitaxel (Abraxane®) has been able to promote 
tumor-free survival and decrease side effects in breast can-
cer patients. Despite the boom in the NC-based research for 
tumor drug delivery, the clinical translation is poor. Various 
factors such as short systemic half-life, poor tumor penetra-
tion, high tumor interstitial pressure, macrophage entrap-
ment, and poor tumor extravasation have been implicated 
in the same [2, 3].

The development of fresh blood vessels from the prevailing 
blood vessels in an uncontrolled fashion is called angiogen-
esis. A tumor is characterized by hyperplasia and an increase 
in metabolism. To meet the high nutrition demands of the 
tumor cells, angiogenesis is required to meet the increased 
nutrition requirements of the tumor cells [4]. Pro-angiogenic 
signaling results in uncontrolled growth of new blood ves-
sels which enhances the micro-vessel density of the tumor [5]. 
Rapid pro-angiogenic signaling leads to the development of 
anomalous blood vessels with excessive branching, bulging, 
defective basement membrane, blind ends, excessive fenes-
trations, ineffective pericyte coverage, and discontinuous epi-
thelial layer [6]. The tips of the projections are responsible 
for creating intercellular openings in the blood vessel. These 
openings are responsible for the leaky tumor vasculature. 
Moreover, these vessels may demonstrate uneven and multi-
layered epithelia [7]. Such vessel characteristics lead to poor 
blood perfusion and hypoxia in the Tumor microenvironment 
(TME) [6]. The TME is a complex environment that consists 
not only of cancerous cells but stromal cells and extracellu-
lar matrix, too. Cancer cells manipulate this environment to 

promote cell growth, for metastasis, to prevent itself against 
immune action. The presence of pores in the tumor epithe-
lium leads to “Enhanced permeation and Retention” (EPR) 
of plasma proteins such as albumin and nanocarriers in the 
TME. The EPR effect causes an increase in the infiltration of 
nano-sized carriers in the tumor microenvironment, while the 
lack of lymphatic drainage leads to the retention of infiltered 
NCs in the tumor [8].

The hypoxic microenvironment leads to the selection of 
robust, aggressive, and invasive cancer subpopulations, and 
hampers the anti-tumor action of immune cells [9]. Hypoxic 
cells secrete vascular endothelial growth factor A (VEGFA) 
which binds to the VEGF receptor 2 (VEGFR2) on the local 
endothelial cells (ECs) and promote their proliferation [10].

The tumor vessels developed due to pro-angiogenesis sign-
aling are hypo-perfused and leaky (Fig. 1). These vessels, in 
combination with poor lymphatic flow, are responsible for gen-
erating hypoxia, acidosis, and high intra-tumor pressure [11]. 
The loss of nutrient supply further potentiates angiogenesis, 
pushing the TME into a never-ending loop of non-productive 
angiogenesis. The hostile environment inside the tumor forces 
the tumor cells to metastasize and disseminate to other organs 
[12]. NCs, owing to their nano-range particle size, have been 
hypothesized to penetrate tumors through these pores. How-
ever, studies have shown that NCs cannot permeate through 
more than two layers of cells. Desmoplasia and high intratu-
mor pressure prevent the accumulation of NCs in the TME. 
In addition, the diffusion of drugs in TME is restricted by the 
presence of extracellular matrix.

The desmoplastic microenvironment of solid tumors, espe-
cially breast tumors, adds to the poor permeation of drugs and 
NCs in the TME premises. Higher than normal concentrations 
of extracellular matrix and cancer cells increase the density of 
the TME. Thus, the permeation of drugs and NCs is limited 
to areas in close proximity to blood vessels [13]. In addition, 
dense TME blocks the blood vessels by physical pressure. The 
blocking of vessels further exaggerates the poor nourishment 
inside the TME.

In this review, we have discussed the mechanism of angio-
genesis in tumors and the impact of angiogenesis on the flow 
of fluid. We have discussed the effect of excessive extracellular 
matrix deposition and stiffness on drug perfusion and NC per-
meation. The various factors impacting the accumulation of 
therapeutic moieties and the efficacy of immune therapies are 
discussed. Studies discussing the positive effects of normal-
izing the blood vessels and TME have been discussed.
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Mechanisms of angiogenesis and potential 
therapeutic targets

Angiogenesis is a prerequisite for the development of both 
primary tumors and metastatic tumors from the circulating 
tumor clusters [14]. Folkman and co-workers reported that 
the malignant cells could not form a solid tumor without 
vascularization for obvious nourishment [15]. Angiogenesis 
can take place by various methods. Sprouting angiogenesis 
is the development of fresh blood vessels from preexistent 
vessels. Such vascularization is stimulated by growth factors 
such as VEGF [16]. Intussusceptive angiogenesis or split-
ting angiogenesis is the splitting of a pre-existing vessel into 
two daughter vessels by the formation of transvascular pil-
lars. This process takes place in both normal physiological 
functions such as wound healing and pathological conditions 
such as cancer and fibrosis. Factors responsible for intus-
susceptive angiogenesis comprise platelet-derived growth 
factor B (PDGFB), angiopoietin, Eph receptors, and ephrins 
[17]. Another method wherein tumor cells mimic ECs to 
form blood vessels is known as vasculogenic mimicry. 
Vasculogenic mimicry has been linked to poor prognosis 
in malignant cancers. Vasculogenesis is the vascularization 
process that mimics the vascularization process witnessed 
during embryo development. It creates new blood vessels 
from endothelial progenitors [18]. Approximately 30 growth 
factors, mainly VEGF secreted by the TME, are responsible 
for the creation of new blood vessels [19]. The origin of the 
new ECs has been an area of uncertainty. It has always been 
assumed that the new ECs and pericytes originate from the 

neighboring blood vessels [11]. A study on 1238 BC patients 
showed that 24% of breast tumors demonstrated vasculo-
genic mimicry. This phenomenon was positively associated 
with tumor size > 2 cm, lymph node metastasis, and low 
overall survival [20].

VEGFA transforms ECs into migratory tip cells which 
degrade the connective tissues to develop space for move-
ment [21]. Tip cells are present at the tip of the growing 
vessels to initiate sprouting and guide the following endothe-
lial cells for the successful development of new vessels. Tip 
cells are motile, invasive, and have filopodia, which react 
to the growth factors and other regulators [22]. The sign-
aling molecules such as angiopoietin-2 and delta ligand-
like 4 (DLL4) are crucial for transforming ECs [23]. The 
ECs that follow tip cells are called the stalk cells, and they 
contribute by proliferation and maintenance of functional 
and structural aspects of the new vessel [24]. The NOTCH 
pathway regulates the tip/stalk cell conversion. The stimula-
tion of VEGFR2 by VEGF up-regulates the NOTCH ligand 
DLL4. DLL4 binds to the NOTCH1 in the neighboring ECs 
to release the NOTCH1 intracellular domain (NCID). NCID 
is responsible for reducing neuropilin-1, vegfr2 and vegfr3 
expression and simultaneously up-regulating the vegfr1 
expression in the ECs [25]. JAGGED1 mediated signal-
ing prevents the NOTCH1 signaling in the tip cells. It pre-
vents DLL4 produced in the stalk cells from stimulating the 
NOTCH1 in the tip cells and maintaining phenotype differ-
ences between tip and stalk cells [26].

The hypoxia created by irregular vasculature in the 
first place is mainly responsible for promoting molecular 

Fig. 1  (A) Represents the state of vessels in the tumor post-angiogen-
esis. The vessels in the tumor are tortuous and irregular. (B) Shows 
the restoration of the normal vascular system in the normalization 

window post-treatment. (C) Represents the effects of vascular nor-
malization on the intensity of intra-tumor hypoxia, intratumor inter-
stitial pressure, and drug perfusion in the tumor
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signaling for angiogenesis. The prolyl hydroxylase domain 
(PHD) substrates reduce the hydroxylation of HIFα in 
the hypoxic environment. The HIFα is central in various 
molecular signaling pathways triggering metastasis, angio-
genesis, and therapy resistance. HIFα binds to HIFβ to 
form a dimer, which further binds to hypoxia response ele-
ments [27]. Tumor cells also secrete pro-angiogenic fac-
tors such as VEGF [28], and TGFβ3 [29], further bending 
the balance in favor of increased angiogenesis. These fac-
tors are responsible for increased proliferation, migration, 
and adhesion in endothelial cells, which increases tube 
formation (Fig. 2) [30].

Linc-RNAs such as linc-OIP5 have been recently 
reported to be an upstream target of YAP1/NOTCH/JAG1 
signaling axes. These signaling axes are important for the 
proliferation, migration, and tube formation of HUVEC 
cells. BC cells over-express linc-OIP5, YAP1 transcription 
co-activator, and JAG1 protein. Knockdown of these pro-
teins inhibited the tube-formation ability of the co-cultured 
HUVEC cells [31]. Hence, we conclude that the inflamma-
tory mediators and chemokines play a significant part in 
angiogenesis and in the continuation of the invasion and 
migration. Epithelial-to-mesenchymal transition inhibitors 
and invasion inhibitors such as TGF-β inhibitors, COX-2 
inhibitors, Wnt/β-catenin inhibitors, and YAP/TAZ inhibi-
tors should be explored to inhibit the overall metastatic 
event in mammary tumors.

Tumor vessel‑mediated hindrance to drug 
and nanocarrier‑based therapies

Chemotherapy or carrier-mediated chemotherapy is effective 
when it can be perfused through the maximum volume of 
BC tumors [32]. Conditions such as high intra-tumor pres-
sure and stiff TME make it difficult for the therapeutic entity 
(TE) to perfuse homogeneously [33]. The altered vasculature 
and stiff TME increase intra-tumor pressure, which restricts 
the diffusion and flow of plasma and, ultimately, TEs in the 
TME [34].

High hydraulic conductivity due to the leaky nature of 
tumor vessels leads to an overflow of plasma into the TME 
and other blood traversing colloid particles such as albumin 
and nano-carrier systems [35]. This leads to a rise in intra-
tumor pressure. High inflow and unavailability of lymphatic 
drainage cease the plasma flow in the tumor [36]. TEs travel 
via convection currents of flowing plasma over large dis-
tances. The stagnant fluid reservoir inside the tumor prevents 
homogeneous delivery of high molecular weight drugs and 
nano-carriers. Low molecular weight TEs still travel over 
shorter distances via diffusion; while high molecular weight 
TEs and carriers struggle to make any distance from vessels 
[34].

The tumor also shows aberrant microvascular structures 
with high tortuosity, which reduces blood flow significantly. 
In contrast to healthy tissues, the vessel diameters do not 
decrease with increased vessel branch order. This leads to a 
loss of relationship between vessel diameters and blood flow 

Fig. 2  TME-associated factors promoting angiogenesis and its effects on tumor drug penetration and immunosuppression
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[37]. Furthermore, the inability to remove waste materials 
from TME due to the absence of a functional lymphatic sys-
tem increases fluid viscosity [38]. This prevents the diffusion 
of low molecular weight drugs over short distances in TME.

The role of TME in hindering the NCs‑based 
therapies

Breast tumors are characterized by a high density of extra-
cellular matrix (ECM) [13]. ECM such as hyaluronic acid 
and collagen, surround BC cell colonies inside tumors to 
provide structural support. ECM prevents the transportation 
of TEs by being a mechanical barrier to diffusion and con-
vection [39]. It increases the distance that TEs have to cover 
to reach target cells. Further, the binding of drugs to ECM 
reduces the concentration of the free drug. Furthermore, 
dense ECM mechanically compresses the vessels in TME 
[40]. The hyperplasia continuously increases the population 
of cells in the tumor, which further adds to compressive 
stress on vessels, leading to the partial or complete collapse 
of the flow system [41]. The sum total of all the pathological 
processes discussed in this section is reduced drug flow and 
increased fluid pressure along with other tumor-associated 
pathological conditions, mainly hypoxia and immune sup-
pression [42].

Moreover, stiff ECM has positively correlated with inva-
sion, migration, and poor overall survival in BC patients 
owing to the activation of Yes-associated protein (YAP) and 
transcriptional coactivator with PDZ-binding motif (TAZ) 
[43]Therefore, pre-treatment with pharmacological agents 
with the ability to disintegrate the components of ECM, such 
as hyaluronic acid and proteins, will promote drug accumu-
lation in the tumors and prevent BC cell invasion. However, 
degrading the ECM may prove to be a dual-edged sword 
as it is necessary to move cancer cell clusters across TME 
and adjacent tissues. Such clusters are responsible for the 
release of circulating tumor cell clusters with high metastatic 
potential. Thus, exhaustive studies are a prerequisite for the 
successful clinical translation of such therapeutic strategies.

The role of tumor vessels and TME 
in immunosuppression

Immunotherapy has gained popularity in the management 
of metastatic disease over the last 10 years [44]. How-
ever, these therapies fail in a large population of patients 
mainly due to the “tolerogenic” or immunogenically 
“cold” tumors. Immunosuppressive TME demonstrates 
intrinsic low sensitivity towards immunotherapies due to 
low infiltration rates of the immune cells, mainly cyto-
toxic CD8 + T-cells, natural killer cells, and macrophages, 

and the presence of a high ratio of immunosuppressive 
myeloid-derived cells [45]. Other factors, such as the 
up-regulation of programmed cell death protein-1 (PD-
1) [46] and cytotoxic T-lymphocyte-associated protein 4 
(CTLA-4) [47], prevent the survival and multiplication 
of immune cells in the TME. Various strategies such as 
immune checkpoint inhibition [48], immunotherapies 
[49], and vaccines [50] are used to promote immune 
action against tumors. For triple-negative breast cancer 
(TNBC) tumors, the response rate for anti-PD-1 immuno-
therapy lies between a meager 5.2 – 18.5% [51]. Hence, it 
is high time to develop a strategy to sensitize BC cells to 
immunotherapy.

Faulty vessels affect the proliferation, survival, infiltra-
tion, and functioning of immune cells in TME. Lack of 
blood perfusion in the TME results in hypoxia, acidosis, 
and decreased entry of drugs and immune cells [52]. It leads 
to the prevention of natural immune response against tumors 
and failure of immunotherapy. Poor perfusion checks the 
penetration of cytotoxic T cells in the TME [53]. Hypoxia 
is associated with preventing immune cell infiltration from 
the vascular system to the TME and decreasing the cytotoxic 
potential of immune effector cells. Hypoxic TME is also 
responsible for the up-regulation of immune checkpoints and 
the transformation of macrophages from immune-respon-
sive (M1) to immunosuppressive (M2) [54]. Hypoxic TME 
tends to infiltrate and recruit immunosuppressive regulatory 
T cells (Tregs) and myeloid-derived suppressor cells [55]. 
Additionally, VEGF inhibits antigen presentation, and den-
dritic cell maturation and triggers pro-apoptotic signaling 
in T-cells via FAS ligand (FASL) expression [56]. Tumor 
vasculature is characterized by the absence of intercellular 
cell adhesion molecule (ICAM) and vascular cell adhesion 
molecule (VCAM), which causes poor infiltration of leuko-
cytes (Table 1) [57].

Along with hypo-perfused vessels, the stiff nature of 
breast TME prevents the penetration of immune cells in the 
TME. The mechanical forces due to uninhibited growth of 
tumor cells and dense ECM in confined space compress the 
vessels; which further complicates the admission of immune 
cells into the TME. Furthermore, a hypoxic microenviron-
ment renders immune-resistant phenotypes to the BC cells 
[34].

Thus, along with chemotherapy-based drug delivery, 
the natural anti-tumor action of the host suffers due to dire 
changes in the TME. The normalization of such tumor-
specific changes can provide anti-tumor therapeutic capa-
bilities. Normalizing tumor vasculature can prevent the loss 
of nutrients and oxygen homeostasis, thus promoting the 
proliferation and functioning of immune cells. Normalizing 
the tumor microenvironment by decreasing the connective 
tissues can reduce the tumor density and, thus, promote the 
infiltration of immune cells.
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Vascular and TME normalization 
as a strategy to alleviate chemotherapy 
failures

Normalization of tumor vessels to improve 
chemotherapy

The thought of vascular normalization was introduced by 
Dr. Rakesh Kumar Jain and his research group [85]. The 
excessive pruning of tumor vessels in traditional anti-angi-
ogenesis treatments leads to an aggravation of the hostile 
environment in TME [86]. The loss of nutrients and gas 
translocation aggravate the hypoxic and acidic environment 
in the TME. This triggers the advent of chemo-resistance, 
radio-resistance, and photodynamic therapy resistance in the 
tumor cells [87, 88]. Several studies have reported that the 
anti-angiogenesis treatment initially improved the penetra-
tion of therapeutics in the TME. The continuation of anti-
angiogenesis therapy led to resistance to various therapies. 
The initial improvement in the tumor flow was credited to 
normalizing the tumor vasculature by eliminating the imma-
ture vessels [89]. The elimination of the immature tumor 

vessels repairs the structural and functional faults of the 
tumor vessels; thus improving [90]. Normalization restores 
the functions and structure of the tumor-associated blood 
vessels, which prevents metastasis [91], hypoxia [92], and 
therapy resistance [87, 93].

The restoration of the balance between pro-angiogenic 
and anti-angiogenic signaling holds the key to normaliz-
ing the faulty vessels in the TME. Anti-VEGF antibodies 
are also known to hold a normalization window before the 
complete pruning of the tumor vessels [89]. This window is 
associated with the pruning of immature vessels and curing 
the defects in the fundamental vessels via uniform pericyte 
covering [94].

Systemic delivery of chemotherapies during the nor-
malization window increases the entry of drugs into the 
tumor increasing its efficacy. As the oxygen saturation lev-
els in tumors improve and most of the anti-tumor thera-
pies kill tumor cells via an increase in the concentration 
of oxygen radicals, the normalization window improves 
the effectiveness of the cytotoxic therapies [93, 95]. The 
transient nature of normalization can be attributed to fur-
ther pruning of major tumor vessels or activation of other 

Table 1  Various mechanisms of immunosuppression in immunosuppressive tumors

Leukocytes Immune suppression mediators Mechanism References

Macrophages, T cells, B cells Prostaglandin E2 Downregulation of Th-1 associated cytokines, 
Interleukin-10 expression and Th-2 cytokine 
expression

[58, 59]

Macrophages, neutrophils, natural killer cells TGF-β Macrophage conversion to tumor-associated 
macrophage, reduced Interleukin-2 and Inter-
feron γ expression

[60–64]

CD + T cells and natural killer cells NKG2D downregulation thereby suppression of 
antitumor surveillance

[65–67]

Cytotoxic T lymphocytes and dendritic cells Crosslinking of Fc receptors of IgG with TGF-β 
resulting in immune suppression

[68, 69]

CD8 + T cells, dendritic cells, natural killer cells Interleukin-10 Inhibition of Interferon γ secretion and activa-
tion of cytotoxic T lymphocytes, downregula-
tion of MHC class I

[70–72]

Macrophage Colony stimulating factor Promote MHC class II activation, inhibition of 
dendritic cell development and differentiation, 
and promote tumor cell escape

[73, 74]

T cells CCL-2 and CCL-5 CCL2 diminished the ability of T cells to pro-
duce IFNγ. CCL5 inhibited tumor-specific T 
cell responses by impairing TCR capping and 
the ability of T cells to produce IFNγ follow-
ing CD3 stimulation

[75–77]

T cells, B cells, Natural killer cells ROS and NOS TAM inhibits the proliferation of T and B cells 
by reduced adhesion molecule expression, 
inhibits interferon γ release, leukocyte recruit-
ment, and impaired natural killer and T cell 
activation

[78–81]

Cytotoxic T lymphocytes, macrophages, and 
natural killer cells

H2O2 H2O2 suppresses CTL and NK cells and mac-
rophages from tumor-draining lymph nodes of 
gastric cancer patients with advanced disease 
induced apoptosis of autologous T cells

[82–84]
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pro-angiogenic axes. Thus, tracking the normalization 
process is critical in delivering the chemo- or immune-
therapeutics [96].

Yu and co-workers delivered endostar, a derivative of 
endostatin (endogenous angiogenesis inhibitor) to 4-T1 
mammary tumor-bearing mice to study the molecular 
mechanism of normalization. Studies demonstrated the 
normalization capabilities of endostar. 2-D gel electro-
phoresis and mass spectrometry analysis demonstrated up-
regulation of SRC kinase signaling inhibitor 1 (SRCIN1) 
protein in the normalized TME. Immunoblotting stud-
ies revealed that the SRCIN1 bound and regulated SRC 
activation to normalize the mammary tumor normaliza-
tion. The co-delivery of endostar and doxorubicin led to 
increased tumor volume shrinkage (34%) and decreased 
metastatic nodule formation (29%) in comparison to the 
control group [97].

Normalization of TME

The breast tumors are generally characterized by immuno-
suppressive TME. Immunosuppressive tumor microenviron-
ment demonstrates a low response rate to immunotherapeu-
tics. It is credited to the inability of immune cells such as 
T cells, natural killer cells, and macrophages to enter, acti-
vate, and multiply in the TME. TME normalization mainly 
involves a reduction in the density of the cell population 
in the TME to alleviate the mechanical compression of the 
vascular system (Fig. 3) [98]. Decreasing the ECM in and 
around the tumor (desmoplastic tumors) further improves 
the drug and immune cell penetration inside the otherwise 
immunosuppressive tumor environment [99]. Metronomic 
chemotherapy has been able to lower the cancer cells and, 
hence, density in the TME [100]. Other strategies, such as 
anti-ECM therapies, have recently been tested to normalize 
the TME [99]. The knockout of biglycan in E0771 tumor-
bearing mice demonstrated normalization by inhibition of 
pro-angiogenetic TNF-α/ANG-2 signaling. The mammary 
tumors also demonstrated a decrease in lung metastasis and 
desmoplasia. An improvement in the immune microenviron-
ment with increased cytotoxic CD8 + T-cell infiltration was 
witnessed [101].

In this subsection, we conclude that the atypical and 
hostile conditions in the TME and tumor-blood vessels are 
mainly responsible for the failure of anti-tumor therapies. 
Meanwhile, restoration of normal physiological conditions 
improved the efficacy of various therapies discussed above. 
However, the potential challenge is to gauge when to stop the 
normalization therapy once appropriate vascular and ECM 
conditions are attained. Hence, extensive preclinical and 
clinical studies must identify the correct anti-angiogenesis 
dosage regimens.

Impact of vessel normalization in BC 
management

Strategies mainly focus on developing a normalization 
window for increased perfusion of anticancer drugs in the 
TME. Early anti-VEGF therapies focused on the inhibition 
of angiogenesis and pruning of already existing vessels to 
starve tumors [102]. Bevacizumab, an anti-VEGF antibody 
showed promise against BC in pre-clinical studies [103]. 
Bevacizumab also demonstrated excellent capabilities to 
improve the structural integrity of blood vessels by increas-
ing pericyte coverage in BC patients [104]. Motivating clini-
cal results in metastatic BC patients led to approval for com-
mercialization by the FDA in 2008 [105]. Alone, anti-VEGF 
therapies could not eradicate the tumor in the clinical setup. 
Vessel pruning led to excessive hypoxia due to the rarefac-
tion of microvessels and further metastasis into neighboring 

Fig. 3  (A) depicts the vascular compression in the breast tumors due 
to the high density of cancer cells and ECM. The presence of ECM 
also limits the perfusion of therapeutic entities and carriers in the 
tumor. (B) Pictorially represents the effect of mechanotherapeutics 
in the normalization of breast tumors. Reduction in cancer cells and 
ECM density restore the normal shape of the vessels. It also alleviates 
high intra-tumor interstitial pressure leading to improvement in drug 
perfusion
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and distant tissues and therapy resistance. This led to the 
withdrawal of FDA approval for the commercialization of 
bevacizumab [106]. However, the anti-angiogenesis thera-
pies were effective only in combination with chemothera-
pies; hence, the concept of vascular normalization came 
into the light [104]. The establishment of dosage regimen 
of anti-angiogenic drugs to achieve persistent normalization 
is the need of the hour.

Such response was replicated in a phase 2 trial in TNBC 
patients. A single dose of bevacizumab has been reported 
to improve the infiltration of cytotoxic CD8 + T-cells, 
CD4 + T-helper cells, and mature dendritic cells in TNBC 
tumors. They also reported the down-regulation of ANG2 
in TNBC tumors, which led to the better structural integrity 
of tumor vessels and normalization of vessels. A single dose 
of bevacizumab improved the population of mature dendritic 
cells in the TNBC tumors [107]. However, continuous use of 
anti-angiogenesis agents still demonstrates negative results. 
Thus, the combinations of pre-treatment of anti-angiogen-
esis antibodies and anti-cancer therapies should be studied 
comprehensively.

A comparative study between sunitinib and bevacizumab 
was done in a recent clinical trial on 62 HER2-negative BC 
patients. Sunitinib demonstrated a better vascular normali-
zation index than bevacizumab (p < 0.001). Sunitinib also 
showed a better response against lymphangiogenesis. Thus, 
it is a potential agent to alleviate the problem of high pres-
sure and fluid plugging in mammary tumors [108]. The com-
bination of two agents can be used to reduce the intra-tumor 
plugging.

Mollard and co-workers reported an ideal regimen for the 
combination of bevacizumab and paclitaxel (PTX). They 
found that pre-treatment with bevacizumab demonstrated 
better results than co-administration of the antibody along 
with PTX. Studies in the orthotopic MDA-MB-231luc+ BC 
mouse model demonstrated that pre-treatment with bevaci-
zumab (3 days before PTX administration) showed improved 
tumor suppression activity with 48% more reduction in 
tumor size in comparison to concomitant drug administra-
tion (p < 0.05) [109]. In a clinical study on 8 patients with 
BC-induced refractory brain metastasis, single dose of beva-
cizumab induced normalization within 1 h of administration. 
However, peak normalization was achieved after 24 h of 
the dose administration [110]. Another phase 2 clinical trial 
reported that neoadjuvant bevacizumab therapy promoted 
pathological complete response in 52% of patients with 
TNBC. However, estrogen receptor-positive tumors did not 
demonstrate significant improvement. The authors reported 
decreased interstitial fluid pressure and homogenous peri-
cyte covering around tumor vasculature [111]. Hence, the 
aforementioned clinical studies conclude that the pre-treat-
ment of the anti-angiogenesis agent is important to induce 
normalization in the TME.

Among newer strategies bone morphogenetic protein-9 
(BMP9)/activin receptor-like kinase 1 (ALK1) signaling 
axes have been explored. BMP9 is a cytokine belonging 
to the TGFβ superfamily of proteins. The BMP signaling 
occurs via smad1, 4, 8 in contrast to smad2, 3 pathway in 
TGFβ signaling. The BMP9 cytokine is encoded by the 
GDF2 gene [112]. BMP9 is a vascular quiescence factor 
inhibiting the movement and proliferation of ECs [113]. 
A recent study on the GDF2 knock-out orthotopic mice 
model of metastatic BC (E0771 cell line) showed vascula-
ture normalization and reduction of lung metastases [114].

Chen and co-workers administered erlotinib (50 mg/
kg), an epidermal growth factor receptor (EGFR) inhibitor, 
orally to attain vascular normalization in the subcutaneous 
BC mice model at days 0, 2, 4, and 6 prior to treatment 
of PTX-loaded NPs (13 mg/kg) at 4, 6, 8 and 10 days. 
The treatment led to better uptake of PTX-loaded NPs in 
the TME. Erlotinib also reduced intra-tumor fluid pres-
sure and hypoxia which transformed tolerogenic TME into 
immune-supportive. The transformed TME improved the 
retention and efficacy of the anti-PDL1 antibody. Thus, 
vascular normalization improved both chemo- and immune 
therapies [115].

Vessel‑normalization‑induced improvement 
in immunotherapeutic potential

Recently, Mirando and co-workers reported that a novel 
peptide AXT201 demonstrated vasculature normalization 
in the TNBC mice model by potent inhibitory effects on 
VEGF signaling. The peptide demonstrated various pos-
itive alterations in BC TME such as an increase in the 
population of infiltrating cytotoxic CD8 + T-cells and an 
increase in the expression of interferon. Lower populations 
of Tregs and myeloid-derived suppressor cells, along with 
down-regulation of PD-L1, were also observed, therefore 
improving the tumor’s susceptibility to the body’s immune 
system [116].

Li and co-workers reported that the low-dose anti-
VEGFR2 antibody (DC101) normalized tumor vessels, 
which led to the infiltration of cytotoxic CD8 + T-cells in 
the TME at a rapid rate and promoted the secretion of oste-
opontin (OST). OST sensitized the BC cells to anti-PD-1 
therapy (SHR-1210) by promoting PD-L1 expression on 
tumor cells via the TGFβ pathway. This strategy showed 
improved anti-PD-1 immune therapy results in TNBC 
patients. Therapy-induced higher OST and TGFβ levels 
correlated with better therapy results [117]. Melaiu et al. 
reviewed the improvement in the therapeutic potential of 
immune checkpoint inhibitors when co-administered with 
tumor vessel normalizing agents [118].
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The use of PI3K inhibitors as vessel‑normalizing 
agents

Kim et  al. employed PI3K inhibitors to normalize the 
tumors. BEZ235 and HS-173 alleviated hypoxia and pro-
moted BC cell death in the mice models. Microscopic stud-
ies revealed improved morphology with a regular and flat 
monolayer of ECs in the tumor vessels. Further, an increase 
in ECs maturity, pericyte coverage, junctions, and thickness 
of the basement membrane was observed. Tissue histology 
revealed a decrease in vascular density, tortuosity, and ves-
sel diameter, leading to an improvement in blood flow in the 
tumor. Mechanistic studies revealed that the PI3K inhibitors 
orchestrated anti-angiogenic signaling via NOTCH signal-
ing. HS-173 even inhibited the migration of BC cells to the 
lungs [119].

Anti‑apelin therapy prevents metastasis associated 
with traditional anti‑angiogenic therapy in BC

Apelin is an adipokine, mainly released by the adipose tis-
sues. It binds to the g-protein-coupled apelin receptor (APJ) 
expressed by endothelial cells and vascular smooth mus-
cle cells [120]. High apelin expressions in the BC murine 
model (MMTV-Neut) had been positively correlated with 
poor prognosis [121]. Combining anti-apelin therapy with 
traditional anti-angiogenic kinase inhibitors (sunitinib) has 
led to a decrease in the BC growth and normalization of 
tumor vessels [90, 121]. Uribesalgo and co-workers reported 
that high apelin expression in the BC led to a higher risk 
of metastasis. They found that inhibition of apelin reduced 
tumor growth, angiogenesis, and infiltration of immuno-sup-
pressive myeloid cells into the TME. The inhibition of ape-
lin also prevented the resistance to receptor tyrosine kinase 
inhibitors and prevented hypoxia as well as metastasis [122].

Effect of physical exercise on vascular normalization 
in BC cancer

Jones and co-workers observed the normalization of BC 
vasculature in exercising animals. The sedentary group did 
not show any improvement in the tumor vasculature. Mean-
while, no significant difference in the tumor size was noticed 
between the two groups. However, HIF-1 levels were over-
regulated in the exercising groups [123]. Later, Schadler and 
co-workers reported that the mechanical stimuli exerted on 
ECs due to physical work improve vascular integrity. Mecha-
nistic pathways studies demonstrated that the activation of 
calcineurin-NFAT-TSP1 signaling in ECs was responsible 
for vascular remodeling. The authors achieved better pene-
tration of chemotherapeutic drugs into the mammary tumors 
with a moderate exercise routine in mice models [124]. Prac-
tically, it may not be feasible to get advanced-stage cancer 

patients to exercise. However, calcineurin-NFAT-TSP1 axes 
must be explored to find new therapeutic targets.

Novel strategies to normalize the tumor 
microenvironment for better BC 
management

Mechano‑therapeutics to normalize TME

Breast tumors demonstrate anomalous mechanical forces 
acting on the cancer cells owing to the factors such as high 
interstitial fluid pressure, dense ECM, etc. Such mechanical 
factors have been reported to promote tumorigenic pathways. 
Mechanical strain can result in the activation of embryonic 
developmental biochemical pathways. High interstitial fluid 
pressure promotes hypoxia that ultimately leads to metasta-
sis. Stiff tumor tissues promote cell multiplication rate, epi-
thelial-to-mesenchymal transition, and cell invasion [125]. 
Thus, strategies aimed at normalizing the extreme mechan-
ical conditions in TME can be useful in treating tumors. 
Martin et al. demonstrated the delivery of dexamethasone 
relieved the intra-tumor fluid pressure, stiffness, and solid 
stress upon the tumor vasculature. Therapy achieved a lower 
density of hyaluronic acid in the TME, which relieved the 
pressure and stiffness. Normalization of vasculature was also 
noticed. Cumulative normalization effects led to an increase 
in the infiltration of nanostructures with diameters of 13 
and 32 nm inside the tumor. Dexamethasone improved the 
accumulation of cisplatin-loaded micelles (diameter 30 nm) 
into the primary BC tumors and secondary lung metastasis 
in the mice model [126].

Panagi and co-workers repurposed FDA-approved anti-
fibrotic and anti-histaminic agent TGFβ inhibitor tranilast 
for normalizing the tumor vessels. The co-delivery of tra-
nilast and Doxil reduced the concentration of extracellular 
matrix, thus reducing the mechanical pressure on tumor 
vessels and alleviating the intratumoral high pressure. Fur-
ther, the TGFβ inhibitor improved the structural integrity 
of vessels by improving the pericyte coverage around ves-
sels, which reduced the plasma plugging in the TME. An 
increase in the recruitment of anticancer lymphocytes was 
achieved. The activity of immunostimulatory M1 mac-
rophages was significantly improved, leading to improved 
efficacy in anti-PD-L1 and anti-CTLA4 therapies. Thus, 
tranilast improved the immune environment in mammary 
tumors, and this technique improved the positioning of 
Doxil in the TME [127]. Mpekris and co-authors also 
achieved similar results in TNBC lung metastases. The 
mechano-therapeutic tranilast was able to decompress the 
lung metastases blood vessels by alleviating intra-tumor 
pressure and ultimately alleviating hypoxia. The TGFβ 
inhibitor improved the perfusion of Doxil and immune 
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checkpoint inhibitors. The alleviation of immunosuppres-
sive TME and improvement in the kinetics of therapies 
re-sensitized the lung metastases to the immuno- and 
chemotherapy [128].

The delivery of the above-mentioned mechanotherapeu-
tics achieved a common goal of relieving the intra-tumor 
pressure and improving the accumulation of NCs and 
immune cells in the TME. The use of neoadjuvant chemo-
therapy may have demonstrated promising results, but the 
authors do not support the use of low-concentration chemo-
therapy pre-treatment, as it may lead to the emergence of 
multidrug resistance in the cancer cells.

The use of anti‑HER2 trastuzumab 
as a normalization agent in HER2 + BC cells

A study reported that trastuzumab treatment in the 
HER2 + murine BC model demonstrated perfusion and per-
meability of the drug in the TME. The authors credited this 
improvement to the killing of the HER2 + tumor cells which 
led to the decrease in the cell density in TME. The decrease 
in cell density freed up space, which decreased interstitial 
fluid pressure and relieved space for diffusion and convec-
tion of fluid (and drugs). On day 4 after antibody treatment, 
an increase in the expression of α–SMA was reported; 
indicating an increase in pericyte cells covering the tumor 
vessels. Hence, due to all these corrections in pathological 
HER2 + BC TME, the intensity of doxorubicin treatment 
was improved [129].

Oxygen microbubbles to achieve normalization 
in the tumor

Ho and co-workers employed oxygen microbubbles with 
ultrasound to deliver oxygen gas locally inside mammary 
tumors. Continuous use of conventional anti-angiogenic 
therapeutic moieties leads to vessel pruning, which wors-
ens the intra-tumor hypoxic environment. Hypoxia increases 
the hypoxia-inducible factor (HIF-1α) levels in the tumor, 
leading to increased angiogenesis and metastasis [130]. The 
authors normalized up to 8 days after a single treatment with 
oxygen microbubbles. The treatment blocked the HIF-1α/
VEGF pathway to restore normalization in tumor vessels. 
The pericyte coverage increased with up to a four-fold 
increase in the doxorubicin accumulation in the BC TME 
[131]. Low oxygen levels lead to lower levels of therapy-
induced ROS, which leads to the development of resist-
ance against various therapies, especially photodynamic 
therapy. A coupling of oxygen microbubbles therapy along 
with chemo- and photodynamic therapies can demonstrate 
excellent results.

Potential strategy to achieve immune environment 
makeover in immune‑suppressive BC

Wang et al. studied the effects of neoadjuvant chemotherapy 
on the infiltration of lymphocytes and vascular normaliza-
tion in 75 BC patients. They concluded that the patients 
with complete remission demonstrated higher infiltration 
of cytotoxic T-cells after neoadjuvant chemotherapy. The 
number of immunosuppressive FOXP3 + Tregs was reduced 
in the mammary tumor after neoadjuvant therapy. Tumor-
free survival in patients was found to be better in patients 
with lower FOXP3 + Treg accumulation in the TME. The 
vascular pericyte coverage and cytotoxic T cell levels were 
higher in the primary tumors rather than in the metastatic 
lymph nodes [132].

Recent studies on vascular normalization have been found 
to significantly improve the immune microenvironment in 
the tumor. The normalization of tumor vasculature has been 
associated with developing tertiary lymphoid structures 
(TLS) in the TME. TLS is the ectopic lymphoid organs, 
which mimic secondary lymphoid structures in structure, 
cell population diversity, and functions. The difference 
between secondary lymphoid organs and TLS is the devel-
opment of TLS in non-lymphoid tissues [133]. TLS does 
not develop prenatally or in a normal physiological environ-
ment but in pathologically inflamed locations such as tumors 
[134]. The presence of TLSs in a mammary tumor is associ-
ated with a positive prognosis [135]. However, the spatial 
position of TLS significantly defines its functions. Intra-
invasive margin TLSs have been exploited for lymphocyte 
infiltration and priming for tumor-specific antigen response 
[136]. Matured TLSs are enriched in B-cells, T-cells, den-
dritic cells, and high endothelial venules [137]. The prim-
ing and infiltration of cytotoxic T-cells are associated with 
poor tumor immunotherapy and patient outcomes. TLS can 
be used to raise anti-tumor immunity by infiltrating naive 
lymphocytes in the TME via high endothelial venules and 
priming them against tumors [138]. A recent study demon-
strated the ability of TNFS14, an inflammatory cytokine, to 
normalize the tumor vasculature at lower concentrations and 
the formation of intra-tumor TLSs at higher concentrations 
(2–20 ng/mL) by binding to lymphotoxin-β-receptor. The 
generation of TLSs in TME improved the infiltration of lym-
phocytes to reverse the tolerogenic TME [139]. Thus, such 
cytokines or other therapeutic moieties must be employed 
along with immunotherapies for better management of BC.

The STING pathway is known for its role in linking 
innate immunity to adaptive immunity. It has been studied to 
induce immune responses against tumors [140]. Yang et al. 
reported that endothelial levels of STING are positively cor-
related with increased infiltration of cytotoxic T-cells in BC 
patients [141]. STING activation with RR-CDA or cGAMP 
normalized the blood vessels in the TME BC mice models. 
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The normalization effects were carried out via up-regula-
tion of vessel stabilizing genes such as Pdgfrb, Angpt1, and 
Col4a. STING activation orchestrated TME normalization 
via type-1 interferon signaling [142]. The co-administration 
of STING agonists along with VEGFR2 blockade and anti-
immune checkpoint inhibitor therapies led to an increase in 
the immune-therapy potential and re-sensitization of immu-
notherapy-resistant mammary tumors [143].

Nano‑scale carrier‑based strategies to attain 
normalization in breast TME

The last decade has witnessed a boom in the use of NCs 
for the delivery of anticancer drugs. Different nanosystems, 
such as nanoemulsion [144], nanoparticles [145]liposomes 
[146], polymeric micelles [147], dendrimers [148], etc., 
have been used as nanocarriers for BC therapy. Nanocarriers 
demonstrate various advantages such as increased surface 
area, high surface-to-volume ratio, increased avidity, particle 
size tunability, surface functionalization, and site-specificity 
over conventional delivery systems [149, 150]. Entrapment 
of drugs in such systems leads to desired pharmacokinetic 
changes, increased stability of sensitive drugs such as pro-
teins, and site-specific drug release [151, 152]. The ability of 
surface functionalization has enabled us to specifically target 
a wide range of cancer cells among various cancer subtypes 
[153, 154]. Thus, researchers over time have employed nano-
carriers to deliver normalizing agents to the tumor vessels 
and microenvironment. However, entrapment of synthetic 
NCs by the macrophages in the liver and spleen shortens 
their plasma half-life [155].

Photodynamic therapy (PT) has gained substantial 
attention as a cancer treatment in the past decade. Char-
acteristics such as economic, efficacy, safety, and syn-
ergism with other therapies make PT ideal for BC man-
agement [156]. However, the lack of  O2 in hypoxic TME 
makes tumors resistant to PT [157]. Xu et al. developed 
mesoporous polydopamine-based NPs for the co-delivery 
of photosensitizer indocyanine green (ICG) and PFKFB3 
kinase inhibitor 3-(3-pyridyl)-1-(4-pyridinyl)-2-propen-1-
one (3PO). 3PO functions by inhibiting the VEGF-induced 
internalization of vascular endothelial cadherin. The inhi-
bition of cadherin internalization leads to structural nor-
malization of the tumor vessels, leading to a reduction of 
hypoxia in the TME. The NPs were surface-functionalized 
with sialic acid for selective binding to the E-selectins 
over-expressed on the tumor endothelial cells. The tremen-
dous properties of polydopamine nanoparticles such as 
biocompatibility, pH-responsive drug release, high surface 
functionalization potential, photothermal conversion effi-
ciency, and biodegradability made them ideal carriers. The 
designed NPs demonstrated a combination of activities 

including vascular normalization, PT, and photothermal 
therapy. The sialic acid confirmed the local accumula-
tion of NPs in the angiogenic vessels. Initially, the NPs 
showed cytotoxicity due to the combination of PT and 
photothermal therapy. As the PT went on, the consumption 
of  O2 gas aggravated the hypoxic conditions leading to 
the over-expression of VEGF in the mammary tumor. The 
controlled release of 3PO prevented the VEGF-mediated 
internalization of vascular endothelial cadherin. This led 
to the normalization of tumor vessels and the prevention 
of tumor metastasis [158].

Another research group developed anionic liposomes to 
normalize tumor vessels and hypoxic TME. They entrapped 
hydrophobic chemotherapeutic drug topotecan in the hydro-
phobic bilayers of the liposomes, with photosensitizer ICG 
in the hydrophilic core. Cationic normalizing agent erlotinib 
was adsorbed on the anionic liposomal surface. The prepared 
system was able to normalize the tumor vessels and con-
trolled the release of topotecan ensuring the killing of BC 
cells. Along with the cytotoxic action, topotecan ensured 
down-regulation of HIF-1α, further promoting vascular nor-
malization for longer periods. The prolonged normalization 
of vasculature ensured the perfusion of  O2, thus, resistance 
against PT was prevented [159].

Zoledronate is known for its anti-tumor properties, which 
inhibit angiogenesis. It decreased the plasma levels of VEGF 
in patients with bone metastasis [160]. However, its low 
plasma half-life of 15 min and intrinsic nature to accumulate 
in bones make untargeted delivery unsuccessful [161, 162]. 
Cai et al. developed actively targeted cationic liposomes to 
improve the specific availability of zoledronate to target BC 
vasculature. They surface-functionalized the liposomes with 
alanine-proline-arginine-proline-glycine (APRPG) peptides 
to target VEGFR-1 expressed by the ECs in tumor vascula-
ture. The anti-angiogenic drug was successfully accumulated 
in tumor vasculature to achieve normalization. The intra-
tumor fluid pressure was successfully decreased, leading to 
increased diffusion of cisplatin to deep cancer tissues. The 
formulation was able to decrease the HIF1-α levels, increase 
thrombospondin levels, and decrease the migration, viabil-
ity, and tube formation ability of HUVEC cells [163].

NogoB receptor regulates the epithelial-to-mesenchy-
mal transition, angiogenesis, and vascular development in 
the TME [164]. Wang et al. developed acid environment-
responsive, charge-switchable polymeric nanostructures 
for the delivery of siRNA against NogoB receptors. The 
nanostructures were prepared by functionalizing 2,3-dime-
thyl maleic acid on the surface of micelles formed by the 
block copolymer of PLGA and poly (ethyleneimine). The 
prepared nanostructure remained negatively charged in the 
physiological pH while converting to the positive charge in 
the acidic TME, thus, releasing siRNAs specifically in the 
tumor. Site-specific nucleic acid release inhibited the NogoB 
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receptors leading to inhibition of metastasis and normaliza-
tion of tumor vessels [165].

We conclude that the co-delivery of anti-angiogenesis 
agents, along with anticancer therapies such as PT or chemo-
therapy, was able to attain the normalization and increased 
nanocarrier accumulation in the TME. The use of nanocar-
riers enabled the researchers to target ligands such as sialic 
acid to the tumor-specific ECs and prevent side effects. As 
the majority of the anti-cancer drugs are hydrophobic in 
nature, the use of nanoparticles could improve the pharma-
cokinetics of the anti-cancer drugs.

Obstacles towards bench to bedside 
translation

From the available literature, it is evident that the charac-
teristics of the tumor barrier pose hindrances towards nano-
particulate penetration and payload accumulation within the 

tumor site. Leaky tumor vasculature could result in non-
specific accumulation of nanocarriers, which could further 
hamper their anticancer potential. Vascular normalization 
could help accomplish adequate accumulation of nanocar-
riers within the TME and promote payload delivery within 
the deeper tumor tissues, which is absent in the conven-
tional EPR effect. The tricky part lies in the chronology of 
treatment to be administered to the patient in the real-time 
scenario. It is clear that a vascular normalizing agent is to be 
administered prior to the anticancer drug. However, its phar-
macokinetic and bio-distribution profile, onset and duration 
of action, potency, and accumulation at the active site, as 
well as its effect, must be studied in-depth for its successful 
translation. From a plethora of existing strategies (Table 2), 
the most appropriate strategy needs to be screened out, based 
on the pathophysiology and tumor progression at the site. 
This situation demands the amalgamation of expertise from 
oncologists, biopharmaceutical, and formulation scientists 
to design a dosage regimen to cater to the existing needs 

Table 2  Summary of different strategies

Strategy Mechanism Results References

Administration of endostar (Endosta-
tin derivative)

Up-regulation of SRC kinase signaling inhib-
itor 1 leading to normalization of vessels

Co-delivery of endostar and Doxorubicin 
increased tumor shrinkage by 34% in com-
parison to Doxorubicin alone

[97]

Single dose bevacizumab Normalization of tumor vessels Increased infiltration of CD8 + T cells, 
T-helper cells and mature dendritic cells

[107]

Sunitinib Normalization of tumor and lymph vessels Low tumor interstitial pressure [108]
Bevacizumab and Paclitaxel Normalization of tumor vessels 48% increase in tumor shrinkage [109]
Erlotinib and Paclitaxel Normalization of tumor vessels Increased uptake of PTX-loaded nanocar-

riers. Relieved interstitial fluid pressure 
and hypoxia. It converted the immunosup-
pressive tumor microenvironment into an 
immune-supportive one

[115]

Novel peptide AXT201 Inhibition of VEGF Increased infiltration of CD8 + T cells and 
increase in interferon levels

[116]

Low-dose anti-VEGFR2 antibody Inhibition of VEGF signalling and osteopon-
tin release

Infiltration of immune cells [117]

PI3K inhibitors BEZ235 and HS-173 PI3K inhibition and alleviation of hypoxia Improvement in the morphology of tumor 
vessels with an increase in pericyte cover-
age and increase in thickness of basement 
membrane,

[119]

Metronomic chemotherapy Low-dose chemotherapy lowers the cancer 
cell density in tumor

Decrease in interstitial fluid pressure [100]

Anti-extra cellular matrix therapy Reduction in the density of extracellular 
matrix

Decrease in desmoplasia [99]

Dexamethasone Relieved interstitial fluid pressure and tumor 
tissue stiffness

Increased penetration of nanocarriers in the 
tumor microenvironment

[125]

Tranilast TGFβ inhibition Decrease in the concentration of extracellular 
matrix. Increase in the penetration of Doxil 
in the tumor microenvironment

[126]

Trastuzumab Cytotoxic effect on HER2 + cancer cells Decrease in cell density. Improvement in 
drug perfusion through tumor

[128]

Oxygen microbubbles Inhibition of HIF1-α/VEGF pathway fourfold increase in doxorubicin concentra-
tion in tumors

[130]
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associated with vascular normalization. The site-specific 
action of vascular normalizing agents is another concern that 
could potentially be addressed by delivery experts. Addition-
ally, successful tumor-mimicking organoids and tumor-on-
a-chip model development play a key role in evaluating the 
strategy in situ, which could be translated in vivo. Fluores-
cent dye-labeled NCs can be utilized to check the improve-
ment in the penetration of nano-formulations in the tumor 
post-normalization therapy. Combined rigorous efforts from 
biopharmaceutical scientists, oncologists, and formulation 
experts could circumvent the barriers associated with the 
clinical translation.

Conclusion and future perspectives

The hostile vascular and tumor microenvironment leads to 
the failure of chemo- and immune therapies. We conclude 
that for better perfusion of therapeutic moieties inside the 
TME, angiogenesis, and high intra-tumor pressure are the 
main barriers. Various strategies, such as vascular normali-
zation, neoadjuvant chemotherapy, and anti-ECM agents, 
show promise. However, the design of dosing regimens plays 
an important role. Discussed studies have shown that the 
delivery of an anti-angiogenesis agent 1 to 3 days before 
chemo- or immunotherapy can normalize the TME and 
increase the accumulation of TE inside the tumor. However, 
extensive efforts are required for the clinical translation of 
such strategies. New formulations such as targeted nano-
carriers should be developed to specifically target immature 
tumor vessels. As targeted nano-carriers improve the phar-
macokinetic properties of the drugs, such formulations may 
help to attain rapid normalization.

Scientists all over the world rely on EPR for the accu-
mulation of nanocarriers inside the TME. However, EPR 
presents itself as a double-edged sword. On one side, it 
increases the infiltration of nanocarriers inside the TME; 
while on the other hand, it increases the intra-tumor pres-
sure. Reduction of ECM density increases the chemo- and 
immunotherapies by allowing the diffusion of drugs and 
infiltration of nano-carriers immune cells inside the TME. 
In our manuscript, we have discussed the advantages of co-
administering TGF inhibitors along with chemotherapeutic 
agents. Tranilast was able to show tumor normalization and 
reduction of ECM. However, decreasing the ECM density 
may aid in the metastatic escape of the tumor cells. Hence, 
critical evaluations are required to gauge the pros and cons 
while employing anti-ECM agents. However, TGF inhibitors 
are known for their anti-metastatic potential. Their role may 
prove to be central in designing the improved therapies for 
BC management.

The use of metronomic therapy should also be exten-
sively explored for the effective management of BC. As per 

reports, such therapies can reduce the number of cancer cells 
inside the tumor. However, the use of lower drug concentra-
tions may lead to the emergence of more aggressive tumors. 
Lower drug concentrations may lead to the emergence of 
resistant tumor cells, which will re-populate the tumor. Fur-
thermore, it may trigger extrinsic resistance pathways in the 
cancer cells, leading to the emergence of multi-drug resist-
ance in cancer cells.

Hence, normalization of the tumor makes BC cells more 
prone to chemotherapy, immune-therapy and photody-
namic therapies. The amalgamation of the said strategies 
along with nanomedicine and normalization principles and 
its clinical translation could help open novel avenues for 
researchers in cancer therapy. The transient nature of the 
normalization window is the stumbling block in achieving 
improved results. Strategies such as LIGHT, which may 
extend the normalization window, are needed at the hour.
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