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to change the functionality of nanocarriers and, mainly, 
improve their capacity to overcome biological barriers and 
the ir biodistribution.
The roots of PEGylation can be traced back to the 1970s when 
researchers first explored the conjugation of PEG to proteins. 
Davis’s team is among the early pioneers who investigated 
the potential of PEGylation to modify proteins, improv-
ing their pharmacokinetics and enhancing their therapeutic 
properties [1]. In the 1990s, the FDA approval of Adagen® 
(pegademase bovine), a PEGylated protein therapeutic for 
the treatment of severe combined immunodeficiency disease 
(SCID), showcased the clinical potential of PEGylation. This 
milestone highlighted the ability of PEGylation to improve 
the pharmacokinetics and efficacy of protein-based drugs, 
paving the way for future developments in the field.
The application of PEGylation in drug delivery carriers 
emerged as a promising strategy to overcome challenges 
associated with rapid clearance and poor biodistribution. 
By conjugating PEG to liposomes, nanoparticles, and other 
carriers, researchers could enhance their stability, prolong 
circulation time, and improve targeting capabilities. The 
early work on PEGylated liposomes that paved the way 
for Doxil’s clinical trials in the 1980s primarily involved 
researchers associated with Sequus Pharmaceuticals, the 
company responsible for the development of Doxil. One 
of the key figures involved in this early research was Dr. 
Alberto Gabizon, who conducted pivotal preclinical studies 

Introduction

The development of surface-engineered drug delivery carri-
ers has been a significant focus in pharmaceutical research, 
aiming to improve drug efficacy, minimize side effects, and 
enhance patient compliance. Among the various strate-
gies employed, PEGylation has emerged as a cornerstone 
technique in the field. This note delves into the fascinating 
history of PEGylation, tracing its origins, milestones, and 
impact on drug delivery carriers. In the context of this note 
the concept of PEGylation refers to the functionalization 
of drug nanocarriers with the objective of modifying their 
functionality. Although a number of polyethylene oxide sur-
factants have been classically used in pharmaceutical tech-
nology we will avoid their description while focusing on 
the PEGylation of lipids, polymers and proteins as a way 
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Abstract
This note aims to inspire through providing a personal view of the development and potential Drug Delivery Nanocarriers 
functionalized with polythyleneglycol (PEG). This polymer has been used extensively in Pharmaceutical Technology in 
a variety of compositions, including polyethylene oxide (PEO)-based surfactants. However, the concept of PEGylation, 
which started in the 70’s, differs from the functionality of a surfactant, already discloses in the 50’s. Here, we strictly 
adhere to the biological functionality of PEGylated nanocarriers intended to have a reduced interaction with proteins and, 
therefore, modify their biodistribution as well as facilitate their diffusion across mucus and other biological barriers. We 
analyze how this concept has evolved over the years and the benefit obtained so far in terms of marketed nanomedicines 
and provide the readers with a prospect view of the topic.
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demonstrating a correlation of liposome circulation time 
with enhanced cancer drug delivery and efficacy [2], and 
the first-in-man clinical study demonstrating the pharmaco-
logic advantage of PEGylated liposomal doxorubicin over 
free doxorubicin [3]. Additionally, Dr. Yechezkel Barenholz 
expertise in liposome biophysics and drug delivery played 
a crucial role in the formulation of PEGylated liposomes by 
optimizing the loading method of doxorubicin [4].
In recent decades, PEGylation has continued to evolve with 
advancements, among which we want to highlight the con-
tribution of PEGylation to modify the biodistribution of 
nanocarriers, and diffusion across mucus and tissues. Fig-
ure 1 illustrates some significant events.
Looking ahead, the field of PEGylation holds promise for 
addressing unmet medical needs and advancing therapeu-
tic interventions. With ongoing research and technological 
advancements, PEGylation is poised to remain a corner-
stone technique in pharmaceutical development, shaping 
the future of medicine.

PEGylation to modify biodistribution and 
fate of nanocarriers

Through spatial and temporal controlled drug delivery, 
injectable nanocarriers have the potential to revolutionize 
disease treatment. Specifically, localizing the release of 
potent but toxic drugs only at therapeutic sites can lower 
the overall systemic dose and mitigate damage related to 
free drugs. Temporally controlling drug release also helps in 
decreasing unwanted side effects. However, to realize these 
desired benefits, nanocarriers must remain in the blood-
stream long enough to reach or recognize their therapeutic 
site of action. Effective biodistribution and drug delivery 
pose challenges as nanocarriers encounter both physical and 
biological barriers, including stability issues due to shear 
forces, protein adsorption, and eventual rapid clearance.
In the early 1980s, it was observed that once adminis-
tered in the bloodstream, nanoparticles tend to be rapidly 
covered with opsonins, such as complement proteins and 

Fig. 2  Illustration of the 
parameters that determine the 
muco-penetrating properties 
of nanoparticles, highlighting 
the PEG coating density, PEG 
molecular weight and particle 
size. Brain diffusion image of the 
distribution of non-PEGylated 
NPs (PBAE-CN) and PEGylated-
NPs (PBAE-BPN) in the 
glioma-bearing rat. DAPI (blue) 
represents cell nuclei and yellow 
indicates co-localization of NPs 
[15]. Ileum diffusion image of 
PEGylated NPs with increasing 
PEG molecular weights [naked 
(A-B), 2 kDa (C-D), 6 kDa (E-F) 
and 10 kDa (G-H)] and their dis-
tributions within the mucosa by 
fluorescence microscopy. Ileum 
mucosa distributions except for 
A, stomach mucosa [16]. Figures 
have been created with BioRen-
der.com

 

Fig. 1  Illustration of some sig-
nificant events and milestones in 
PEGylated nanocarriers
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immunoglobulins, triggering their recognition and subse-
quent removal from circulation by the reticuloendothelial 
system [5]. Consequently, nanocarriers accumulate primar-
ily in the liver and spleen within minutes after administra-
tion. Since then, scientists worldwide have made efforts to 
engineer the surface of nanocarriers with “stealth” coatings, 
PEG-based being the most widely employed.
Pioneering studies in the 1990s with PEG- and adriam-
ycin-conjugated micelles in Kataoka’s team [6] showed 
an efficient suppression of tumor growth and increased 
survival. Also in the 1990s, seminal studies in Langer’s 
laboratory resulted in the development of biodegradable 
PLGA nanoparticles coated with PEG brushes resulting 
from di-or multiblock amphiphilic copolymers PEG-
PLGA and PEG3-PLGA [7, 8]. PEGylated nanocarriers 
circulate for hours in the bloodstream rather than minutes 
[9]. Key factors influencing the fate of PEGylated nano-
carriers include PEG surface density and molar mass [10]. 
For instance, a dense PEG brush with distances between 
terminally attached PEG chains of less than 2 nm proved 
most effective in avoiding protein adsorption and recogni-
tion by macrophages [11]. Additionally, PEG chains with 
molar masses higher than 2 KDa were necessary to ensure 
effective protection. These findings were consistent with 
theoretical calculation in the team of Pr. Gilles de Gennes 
[12]. Various methods were deployed to characterize PEG 
coatings on different types of nanocarriers, including 
visual demonstrations of the protein-rejecting capabilities 
of PEGylated nanoparticles [13].
Considerable effort has been dedicated to coupling target-
ing ligands onto the surface of “stealth” nanocarriers. Typi-
cally, ligands such as antibodies, peptides, integrin ligands, 
glucose, transferrin, and folic acid are coupled at the end of 
the PEG chain [9]. However, there exists a delicate balance 
between residence time in circulation and cellular uptake. 
The “stealth” PEG corona may indeed hinder interactions 
with targeted cells. One example to circumvent this drawback 
are nanocarriers with labile PEG coronas: in the tumor micro-
environment, the PEG coating detaches, exposing a cell-pen-
etrating peptide [14]. Such systems can adapt properties to 
optimize delivery based on the current barrier they encounter.

PEGylation to improve difussion across 
mucosal barriers

Our laboratory was the first to demonstrate that PEGylation 
of nanocarriers may enhance their diffusion across muco-
sal surfaces. It was in the late 1980s when we established 
that PEGylation played a crucial role in the transport of a 
protein antigen (tetanus toxoid) encapsulated in PLA-PEG 
nanocarriers across the nasal mucosa [17]. Subsequently, 

we identified that both, the size and PEG coating density, 
were pivotal factors influencing the transport of PLA-PEG 
nanoparticles across the nasal mucosa [18]. This was sub-
stantially corroborated by several authors (Fig. 2).
Building upon this early work, several groups investigated 
the significance of PEGylation in enabling nanoparticles 
to overcome other mucosal barriers, such as the intesti-
nal barrier. In particular, we observed that, following oral 
administration, PLA-PEG exhibited an enhanced stability 
in digestive fluids and an improved access of the antigen to 
the blood and lymphatic circulation [19]. Similarly, other 
authors, among them Irache and colleagues, revealed that 
coating poly(anhydride) NPs with PEG produced nanocar-
riers with mucus-permeating properties, influenced by both, 
the molecular weight and surface density of PEG. However, 
it was noted that above a certain PEG density, the mucus-
permeating properties were reduced, possibly due to a less 
flexible coating which could get entangled with the macro-
gol chains [16].
In the early 2000s, our laboratory also explored the impact 
of PEGylation on the interaction of nanocarriers with the 
ocular mucosa [20]. Confocal laser scanning microscopy 
images suggested that PEG coating facilitated the transport 
of nanocarriers across the entire epithelium, while chitosan 
coating favored their retention in the superficial layers of 
the epithelium. Furthermore, investigations by Hanes and 
colleagues into the movements of polystyrene NPs of vari-
ous sizes and surface chemistries in fresh bovine vitreous 
revealed that PEG-coated NPs exhibited uniform rapid dif-
fusion, with similar findings corroborated using cationic 
PEI-based DNA NPs [21].
Seminal studies conducted in Hanes’ lab further under-
scored the importance of PEGylation in facilitating diffusion 
of large polymeric nanoparticles in human cervical (CV) 
mucus and shielding nanoparticles from mucin interactions 
[22, 23]. Similar behavior was observed for poly(sebacic 
acid)-PEG NPs and polystyrene-PEG NPs, suggesting their 
potential for drug delivery to the lungs, particularly in the 
context of cystic fibrosis [24, 25].

PEGylation to improve access and difussion 
across the brain

There is extensive work in the field of PEGylated nanocarri-
ers for drug delivery to the brain. Here, we will simply high-
light seminal work that, from our perspective, has opened 
the scope of their functionality. For example, Couvreur 
and his colleagues pioneered work on the performance of 
PEGylated polycyanoacrylate nanoparticles in crossing the 
blood-brain barrier (BBB). They hypothesized that passive 
diffusion across the compromised barrier and macrophage 
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exceptions (refer to Table  1 for a non-exclusive list) [32, 
33]. Particularly noteworthy is the emergence of PEGylated 
lipid nanoparticles (LNPs) for RNA delivery, notably in 
mRNA vaccines, representing a significant milestone. The 
clinical success of these vaccines not only underscores the 
potential of PEGylated nanocarriers but also paves the way 
for their broader clinical application, especially in mRNA 
therapeutics. Furthermore, the successful large-scale pro-
duction, distribution, and administration of billions of doses 
of PEGylated NPs underscore their potential utility on a 
global scale.
The behavior of intramuscularly injected mRNA vaccines 
provides valuable insights into the role of PEG in enhanc-
ing diffusion. However, a critical area necessitating further 
investigation concerns the interaction of nanocarriers with 
proteins and other biological components within the human 
body. While it has been presumed that PEGylation mitigates 
such interactions, empirical evidence suggests that factors 
such as PEG detachment and the affinity of PEGylated 
nanocarriers for specific proteins require nuanced consid-
eration. Consequently, additional fundamental research 
is warranted to elucidate optimal strategies for leveraging 
PEGylated biomaterials to their fullest potential. It is our 
contention that the forthcoming years will witness the emer-
gence of novel PEGylated nanocarriers, fostering advance-
ments in therapeutic modalities, particularly those centered 
on biological drugs.
Therefore, PEGylation represents a prominent strategy in 
pharmaceutical technology, offering considerable poten-
tial for enhancing the performance of drug nanocarriers 
within biological systems. Despite its widespread adop-
tion, the translation of PEGylated nanomedicine candi-
dates into clinical applications has encountered certain 
challenges. Notably, immunogenicity has emerged as 
an issue in recent years, as evidenced by reported cases 
of PEG-related allergic reactions linked to the Pfizer/
BioNTech BNT162b2 and Moderna mRNA-1273 vac-
cines. However, it is crucial to acknowledge that while 
such reactions warrant regulatory attention, they are not 
exclusive to PEG and are shared by various excipients. 
Consequently, while deserving of scrutiny, these events 
do not justify the exclusion of PEG from formulation 
technologies. Indeed, a myriad of surfactants and bio-
materials containing PEG derivatives are already estab-
lished within the market. Additional challenges are 
associated with the chemical conjugation of PEG to vari-
ous nanocarriers and the potential for their unexpected 
detachment following in vivo administration Inhibition 
of acute complement responses towards bolus-injected 
nanoparticles using targeted short-circulating regulatory 
proteins [34].

uptake in inflammatory lesions underlie the mechanisms of 
such particles’ penetration [26]. In another study, the same 
authors found that the prolonged circulation of nanopar-
ticles in plasma facilitated their preferential accumulation 
within the tumor, attributed to diffusion/convection-medi-
ated extravasation across the compromised BBB [27]. In 
another example, chitosan nanospheres conjugated with 
PEG bearing the OX26 monoclonal antibody, with an affin-
ity for the transferrin receptor, were reported to diffuse into 
the brain interstitium [28].
Hanes’ Laboratory has also lead the examination of the 
effect of PEGylation on the diffusion of nanoparticles 
across the brain. Densely PEG-coated PS NPs, as large 
as 114  nm, could rapidly penetrate ex vivo human and 
rat brain tissue. The formation of PEG coatings in the 
“brush” mode was reported to facilitate diffusion across 
the brain [29]. PLGA-PEG NPs (69 nm) rapidly diffused 
in brain tumor tissue, while uncoated PLGA NPs (88 nm) 
were adhesively immobilized. The enhanced diffusion 
was translated into an improved efficacy in a rat model 
of malignant glioma [30]. In a different work it was also 
shown that DNA-loaded PBAE-PEG (5 K) NPs diffused 
rapidly in fresh tissues and achieved widespread trans-
gene expression in vivo, in an orthotopic rat brain tumor 
model [15]. Similarly, PEG(5 K)-poly(aspartic acid) NPs 
diffused significantly faster than uncoated NPs in both 
healthy and tumor-bearing brain tissues. These ex vivo 
studies were consistent with the in vivo distribution, 
where the volume of distribution of PEG(5 K)-NPs was 
29-fold higher than that of uncoated NPs when admin-
istered by convection-enhanced delivery (intracranial 
administration) [31].

In summary, the surface modification of nanocarriers 
with PEG chains has consistently shown to enhance diffu-
sion across biological surfaces, including mucus-associated 
barriers and tissues, particularly the brain. It is essential to 
carefully modulate the molecular weight and surface den-
sity of PEG, considering factors such as particle size and the 
specific biological barrier being targeted.

PEGylated nanomedicines in the market and 
prospect view

As elaborated in this Inspirational Note, the application 
of PEGylation has garnered significant attention due to its 
capacity to extend circulation time and facilitate the transport 
of nanocarriers across biological barriers. While its impact 
on drug/enzyme conjugation is well-documented within 
the pharmaceutical industry, the utilization of PEGylated 
nanocarriers remains somewhat limited, albeit with notable 
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