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Abstract
Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug 
treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease 
state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a 
novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine mono-
therapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of 
elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach 
to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A 
basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of 
chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. 
Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been 
explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal 
antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel 
and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast 
cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the 
hurdles associated with conventional chemotherapy.

Keywords Breast cancer · Nanomedicine monotherapy · Lipid-based nanoparticle-mediated combination therapy · Small 
interfering RNA · Monoclonal antibodies · Combination index · Synergism effect
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EPR  Enhanced permeation and 
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EGCG   Epigallocatechin
ER  Estrogen positive receptor
FITC  Fluorescein5 

(6)-isothiocyanate
FDA  Food and Drug 

Administration
AuNPs  Gold nanoparticles
HER2  Human epidermal growth 

factor receptor 2
MTX  Methotrexate
MTX-CUR-NPs  Methotrexate and curcumin-

loaded PLGA nanoparticles
mAbs  Monoclonal antibodies
PP  MPEG-PLGA
mPEG-PLGA-SS (PP-SS-DTX/VRP)   MPE G-P LGA 

-SS -do cet axe 
l-v erapamil 
nanomicelles

MDR  Multidrug resistance
MRPs  Multiple drug resistance 

proteins
NLCs  Nanostructured lipid carriers
PTX  Paclitaxel
PTX/EGCG liposomes  Paclitaxel and epigallocat-

echin liposomes
Pgp  P-glycoprotein
PR  Progesterone positive 

receptor
MSNs-ChS@PQ  QC and PTX-loaded 

mesoporous silica ChS 
nanoparticles

QC  Quercetin
RH123  Rhodamine123
SEM  Scanning electron 

microscopy
siRNAs  Small interfering RNAs
SLNs  Solid lipid nanoparticles
TPGS  Tocopheryl polyethylene 

glycol succinate
TNBC  Triple-negative breast cancer
VRP  Verapamil

Introduction

With becoming the major cause of mortality and mor-
bidity among women [1], breast cancer has become the 
most commonly diagnosed [2, 3] and prevalent type of 
cancer in women worldwide [1]. Among 30% of the total 
cancer cases (878,980 cancer cases), invasive breast 
cancer constituted about 266,120 cases in 2018 out of 
which approximately 40,920 cases were considered to 
be fatal by the American Cancer Society in 2018 [2]. 

Furthermore, every year nearly 1.5 million breast cancer 
cases are reported globally [4]. By resulting in 350,000 
new breast cancer cases and 130,000 deaths per annum, 
it has become the most commonly diagnosed type of 
cancer in European women. Additionally, women over 
50 years of age are reported to have the majority of breast 
cancer cases, developing the risk of breast cancer fatal-
ity with every 1 in 77 women by their 85th birthday [5]. 
Although astounding research and treatment have been 
carried out for managing this disastrous disease, 30% of 
the patients diagnosed with primary-stage breast cancer 
go on to develop metastatic breast cancer that has a 5-year 
survival rate of less than 30%. Thus, novel therapeutic 
strategies that lead to unprecedented results in breast can-
cer management are needed to be explored [6]. Therefore, 
management and treatment of breast cancer have become 
an issue of major concern.

Breast cancer on the molecular level can usually be cat-
egorized into luminal A and B, human epidermal growth 
factor receptor 2 (HER2), triple-negative breast cancer 
(TNBC), and estrogen (ER) and progesterone (PR) posi-
tive receptor subtypes [7], out of which the HER2, ER, 
and PR positive cancers consist of overexpression of these 
receptors on the cancer cell membrane whereas TNBC 
displays an absence of HER2, ER, and PR receptors [2]. 
Breast cancer similar to other conventional treatment 
modalities is also treated via radiotherapy, surgery, and 
chemotherapy with the main aim of exterminating the 
cancerous cells thereby extending the patient’s survival 
rate. However, despite the developments, these standard 
treatments continue to face major hurdles due to the recur-
rence of the tumor and the development of drug resistance 
by metastatic as well as advanced tumors. For instance, 
in case of recurrences and cancer metastases to obscured 
organs such as the liver, bone, and lung, surgery by con-
ventional treatment modalities is ineffective. On the other 
hand, conventional cytotoxic agents are being used before 
or after the surgical treatment so as to disrupt the cell cycle 
and division of the cancerous cells. Moreover, the use of 
radiotherapy implies the interference with the division of 
tumor cells by the introduction of intense energy waves 
ultimately resulting in the elimination as well as shrink-
age of the tumor cell mass. Although the rate of survival 
of cancer patients could be increased by the dynamic and 
compelling radiotherapy and chemotherapy techniques but 
at the same time these lead to the development of severe 
acute as well as prolonged adverse effects on the crucial 
organs of the body [8–10]. Moreover, the current single 
chemotherapeutic agents that are used for the treatment of 
cancer act by targeting the various pathways involved in 
the deadly disease and often result in the development of 
multi-drug resistance upon their repetitive administration. 
A further difficulty in treating the deadly cancer disease 
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by single drug chemotherapy is pinned on various other 
reasons that include accessibility of the cytotoxic agents 
in an insubstantial manner to the tumor cell mass thereby 
necessitating the administration of high drug dose conse-
quently leading to nonspecific targeting and serious tox-
icity [11]. Over the past few decades, an elevation in the 
adoption of combination therapies has been witnessed for 
circumventing the challenges associated with the deliv-
ery of single conventional chemotherapeutics [12]. In a 
much broader sense, combination therapy refers to the 
simultaneous co-administration of two or more cytotoxic 
agents or amalgamation of chemotherapy, immunother-
apy, radiotherapy, and hormone therapy. But among these 
two, the approach of delivering two or multiple cytotoxic 
agents simultaneously is regarded as the most common 
and effective clinical treatment modality in terms of can-
cer management [11, 13]. The mutational changes that are 
required by the cancer cells for their cancer cell adapta-
tion are curbed by the approach of combination therapy. 
Apart from this, it also promotes target selectivity and 
therapeutic efficacy by invoking synergism between the 
combined drugs. Indeed, it is worth mentioning that differ-
ent chemotherapeutics vary in their biodistribution, phar-
macokinetics, and membrane transport properties further 
making it complicated for the dose optimization of the 
scheduling of drugs. Moreover, the side effects profile 
increases due to the simultaneous combination of multiple 
drugs [14]. However, to date, oncologists prefer adminis-
tering the multiple anticancer agents freely and not in their 
encapsulated form often limiting the possible beneficial 
effects that one can possibly attain from the combinations 
of various other drugs. This is because the physicochemi-
cal, as well as pharmacokinetic aspects of different classes 
of cytotoxic agents, hinder their co-administration with 
each other [15]. Therefore, one such promising approach 
of using multiple cytotoxic agents for the management 
of cancer is with nanoparticles [16]. With the advent of 
nanoparticle-mediated combination therapy, multiple cyto-
toxic agents possessing different physicochemical as well 
as pharmacological properties were able to be delivered 
via their successful encapsulation in a single nanoparticle 
[16–18]. This is because the diverse biodistribution, phar-
macokinetics, and stability of drugs get normalized upon 
their encapsulation in nanoparticle due to the controlled 
drug release offered by them which otherwise possess con-
trasting pharmacological responses [19]. Additionally, the 
optimum synergistic ratio of both drugs till their deliv-
ery to the target cancerous cells is being maintained by 
the single nanocarriers [16–18]. Apart from this, it offers 
various other potential advantages that include augmented 
therapeutic efficacy, reduced development of drug resist-
ance, concurred pharmacokinetic profile, improved patient 

compliance, decreased cases of side effects, and explicit 
control of individual doses.

The present review, therefore, focuses on the recent 
progress in the nanomedicine-mediated combination 
approaches for breast cancer management with an empha-
sis on various sections that will provide an overview of the 
co-delivery of synthetic-synthetic chemotherapeutic agents, 
co-delivery of herbal-synthetic chemotherapeutic agents, 
co-delivery of herbal-herbal chemotherapeutic agents, and 
lastly co-delivery of anticancer agents with siRNAs and 
co-delivery of chemotherapeutics with monoclonal antibod-
ies (mAbs) is highlighted for managing the heterogeneous 
breast cancer. Furthermore, the perspective of future scope 
has also been discussed.

Nanotechnology in breast cancer

Marred by numerous limitations, namely, non-specificity, 
high systemic toxicity, and poor pharmacokinetics, conven-
tional chemotherapies are inadequate in curbing breast can-
cer disease effectively [20]. Nanomedicine refers to the fab-
rication of nanoscale assemblies employed for the detection, 
prevention, and treatment of ailments via their successful 
application in the field of medicine [21], which has assisted 
in reduced toxicity, effective chemotherapy [20], and has 
extensively revolutionized the paradigms of cancer treat-
ment [22]. In comparison with conventional chemotherapies, 
nanotechnology results in several promising benefits such 
as protecting the drug from the harsh internal environments 
both chemical and biological consequently causing its less 
degradation during its transportation, along with enhanced 
targeting and biocompatibility which ultimately results in 
the generation of less toxic effects, and aids in delivering 
an enhanced dose of chemotherapeutic drugs to the mass of 
tumor cells [23, 24]. Nanotechnology is an emerging inte-
grative research field uniting biology, chemistry, medicine, 
and engineering that addresses the demands of diagnosing 
and treating cancers [25]. Its implementation for breast 
cancer treatment has rendered chemotherapy more efficient 
and successful [26]. Nanotechnology and nanoparticle-medi-
ated drug delivery due to their overarching benefits such 
as increased loading, low toxicity, increased stability, high 
specificity and efficacy, and enhanced tolerability of the 
nanoparticles are considered as promising treatment options 
for the management of cancer in comparison to conven-
tional chemotherapeutics. Furthermore, these drug-loaded 
nanoparticles can efficiently be targeted to breast cancer 
lesions via active and passive targeting [27]. Additionally, 
the astounding advantages of the nanoparticles do not only 
lie in their potential to be created in small sizes but also due 
to their ability to form a diverse range of materials, namely, 
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solid lipid nanoparticles (SLNs), and liposomes from lipids, 
polymeric nanoparticles from polymers, gold nanoparticles 
from inorganic materials, and so on. Among the different 
nanoparticles mentioned here, micelles, liposomes, SLNs, 
polymeric, and gold nanoparticles are widely used in the 
treatment of breast cancer [2]. Although the fabrication of 
nanoparticles is a cumbersome process but it may prove to 
be of great importance for the successful treatment of vari-
ous cancers [28].

Nanomedicinal combination therapy: 
an efficient approach

Amelioration of heterogeneous breast cancer has become an 
enormous challenge owing to the development of chemore-
sistance that is a consequence of over-dramatic expression 
of multidrug resistance (MDR), disturbance in the apopto-
sis pathway, and cancer stem cells (CSCs) production [29, 
30]. But among all, MDR is allocated as the primary cul-
prit causing the unresponsiveness of the aggressive tumor 
cells thereby leading to resistance and ultimate failure of the 
whole chemotherapy. The major MDR efflux transporters, 
namely, multiple drug resistance proteins (MRPs), breast 
cancer resistance protein (BCRP), and P-glycoprotein (Pgp), 
lead to the efflux of drugs from the tumor cells and subse-
quently reduce their internal accumulation in the tumor vas-
culature [30]. Additionally, as evident by the clinical trials, 
conventional chemotherapy often leads to the overexpression 
of MDR transporters worsening the treatment modality even 
more [31–33].

Nanomedicine encompasses the utilization of nanotech-
nology for purposes such as diagnosis, prevention, and 
treatment of several pathological conditions through the 
application of nanosized devices. In addition to this, nano-
medicine displays its potential in various other aspects, 
namely, drug delivery, in vitro and in vivo diagnostics, 
imaging, drug therapies, and so on [21]. Nevertheless, 
despite many advancements such as providing controlled 
release of the medicament, surface modification for active 
targeting, and resulting in reduced toxicity, still clini-
cally monotherapy nanomedicines have failed to enhance 
the antitumor activity of the chemotherapeutic agents. 
Myocet, an FDA-approved non-PEGylated doxorubicin 
(DOX) liposomal formulation, was not able to enhance 
the anticancerous activity against metastatic breast cancer, 
Kaposi’s sarcoma, and multiple myeloma. However, it was 
successful in lowering the side effects, namely, nausea, 
alopecia, depression of bone marrow, and cardiomyopathy 
subsequently increasing a few others like dermatologic 
toxicity and palmar-plantar erythrodysesthesia [34]. It was 
also reported that Myocet when tested against free DOX 

in phase III clinical trials failed in meaningfully enhanc-
ing the anti-tumor effects against metastatic breast cancer 
despite reducing the congestive heart failure and cardiac 
arrest incidences. Apart from this, there exist several 
other monotherapy nanomedicines that fail in generating 
an enhanced response rate in clinical trials, despite being 
demonstrating efficacious results in animal models in pre-
clinical trials over the conventional chemotherapy [34]. 
Whereas it has been reported that co-delivery of drugs 
aids in augmenting the overall treatment efficacy in com-
parison to single delivery in patients of cancer [35–37], 
the improved therapeutic efficacy of the multiple drugs 
at ideal synergistic ratio [38, 39], additionally combina-
tion therapy reduces the severe adverse effects associated 
with single drugs, minimizes the standard doses of chemo-
therapeutic agents [40], results in synergistic action that 
further helps in hampering the development of resistance 
in tumor cells [41]. Also, combinational chemotherapy 
has been regarded as the most common approach in the 
management of advanced breast cancer [42]. Moreover, 
nanoengineering allows for the simultaneous and efficient 
delivery of multiple agents safely encapsulated and sepa-
rated from each other without getting exposed to external 
factors [14]. In accordance with this, delivering multiple 
agents via nanotechnology offers several unique advan-
tages such as providing controlled drug release, improved 
serum stability, increased systemic circulation, enhanced 
carrier capacity, and encapsulation of multiple agents for 
combinatorial delivery [43]. Moreover, the co-delivery 
of drugs via nanoparticles aids in accomplishing the “3R 
approach” of drug delivery that stresses the delivery of 
drugs at the right place in the right dose at the right time 
which can be ascribed to the successful accumulation of 
nanoparticles in the tumor cells that further facilitates the 
achievement of similar bio-fate along with simultaneous 
execution of the therapeutic efficacies of both the drugs 
at an optimum combined ratio [40]. Till now, scientists 
have stressed on active and passive targeting of cancer 
nanomedicines that fail to deliver the drugs at the right 
place, additionally, unsuccessful clinical trials and R&D 
research have further prompted the researchers to recon-
sider the fact that tumor-targeted drug delivery has always 
been the focal point of nanomedicine [44] and thus their 
focus has now been shifting from targeted tumor therapy 
to combinational nanomedicine that exhibits the attractive 
advantage of multiple co-delivery of drugs. Nanocarriers 
help in the prediction of the ideal combinatory dose ratio 
that is a critical parameter for obtaining strong therapeutic 
action, the co-encapsulated agents at the right combina-
tion ratio, when delivered to cancerous cells, aids in the 
delivery of therapeutics at the right place thereby provid-
ing synergistic action [40].
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Combination index in combinatorial nanomedicine

Combination of multiple drugs in nanocarriers can be 
achieved by various strategies that include free drug + nano 
form, nano form + nano form, and co-encapsulation of 
both the drugs in a single nanocarrier for a combination 
of two drugs. The first two strategies result in the sequen-
tial release of the drugs whereas the third one delivers 
the drugs simultaneously. It further aids in increased con-
centration of the multiple administered drug in the intra-
cellular milieu due to the temporal and spatial controlled 
release of the drugs. Subsequently, providing a potent and 
coordinated synergistic effect against the cancerous cells 
and finally resulting in the most effective coordinated drug 
delivery at cellular levels among the three [39]. Various 
in vitro as well as in vivo studies conducted in this regard 
have shown the potential benefits of co-delivery of drugs 
in the same nanocarrier. An early proof of concept study 
by Shuhendler et al. depicted the significant enhanced 
anticancer action on human breast cancer cells, MDA-
MB-435/LCC6 by the anticancer agents’ DOX and mito-
mycin both co-loaded in polymer lipid hybrid nanoparti-
cles rather than the individual nano-drug combinations 
indicating at the improved drug synergy and amplified 
antitumor efficacy [45]. Although mostly combinatorial 
nanomedicine studies are performed for yielding syner-
gistic actions, but this may not be the case always and 
they sometimes result in additive or antagonistic effects 
depending upon their therapeutic regimen and the design 
of the study. Numerous studies have suggested that the 
drug-to-drug ratio and schedule of administration of the 
drug are the governing factors behind the synergism effect 
generation [45–50]. The combination theorem given by 
Chou Talay gives a quantitative definition for attributing 
any effect as antagonistic, additive, or synergistic based 
on the values of the combination index (CI), according to 
which CI > 1, CI < 1, and CI = 1 depict antagonism, syner-
gism, and additive effects, respectively [51, 52]. Neverthe-
less, co-loading two different drugs with diverse properties 
are cumbersome and challenging procedure attributing to 
their solubility profiles, polarity, and stability, henceforth 
one should be careful in choosing the combination of 
drugs for their probable co-encapsulation in nanosystems 
since any change leads to reformulating them for prevent-
ing any undesirable effects [39].

Combination with synthetic breast cancer agent

Several preclinical studies have been conducted for assessing 
the potential of various chemotherapeutic agents belonging 
to different classes encapsulated in multi-drug nanoparti-
cle formulations for breast cancer management [53]. In a 
recently conducted study by Guo et al. [54], the efficacy of 

co-delivered docetaxel (DTX) and verapamil (VRP) against 
MDR in breast cancer MCF-7 and MCF-7/ADR cells was 
evaluated by designing mPEG-PLGA-SS (PP-SS-DTX/
VRP) nano-micelles utilizing the film dispersion-probe 
ultrasonic method. Here, reduction sensitive mPEG-PLGA-
SS-DTX conjugate was used for loading VRP. The fabri-
cated mPEG-PLGA-SS-DTX/VRP micelles exhibited high 
drug loading capacity and DTX and VRP resulted in a sus-
tained reduction sensitive release process while the in vitro 
cytotoxicity assay conducted in MCF-7 as well as in MCF-7/
ADR cells revealed dose and time-dependent cytotoxicity, 
wherein higher cytotoxic action was displayed by both the 
micelles, i.e., PP-SS-DTX and PP-SS-DTX/VRP in com-
parison to DTX free solution. Nonetheless, the highest cyto-
toxic action was exhibited by PP-SS-DTX/VRP micelles. 
Moreover, the in vitro cellular uptake studies performed in 
MCF-7 and MCF-7/ADR cells confirmed the higher inter-
nalization of both the micelles in the cells in comparison to 
Rhodamine123 (RH123) fluorescent molecule which com-
plied with the results obtained from the flow cytometry. 
Furthermore, an increase in apoptosis in both cell lines was 
exhibited by the PP-SS-DTX/VRP micelles in contrast to 
free DTX solution and PP-SS-DTX micelles.

Apart from this, the oral bioavailability of DTX was 
found to be augmented when administered in PP-SS-DTX 
micelles as confirmed by its 20.96-fold higher AUC in com-
parison with the DTX solution in male Wistar rats which 
indicated at the enhanced antitumor efficacy due to higher 
accumulation of drug and residence time in vivo. Thus, the 
study suggested a substantial increase in the antitumor activ-
ity of DTX and reversal of MDR with improved pharmacoki-
netic parameters. However, it still lacks acute toxicity and 
biodistribution studies, which would have been immensely 
effective in assessing the safety of the formulating micelles 
and their action on each vital organ (Fig. 1) [54].

In yet another interesting study performed by Elzoghby 
et al. multi-reservoir nanoformulation comprising of phos-
pholipid shells entrapping protamine, nanocapsules were 
constructed loaded with both letrozole and celecoxib that 
showed enhanced increased anti-cancerous action both 
in vitro and in vivo [55]. Table 1 summarizes some of the 
recent combinatorial nanomedicine studies conducted with 
different synthetic chemotherapeutics. Nevertheless, the 
severe risks associated with the simultaneous delivery of 
chemotherapeutics cannot be overlooked and hence scien-
tists are inclining more toward the newly emerging concept 
of traditional herbs administration that is recently gain-
ing more attention due to their natural origin [56]. Also, 
the anticipated risk of combining an herb with a chemo-
therapeutic agent is substantially less [57] in breast cancer 
patients, since the patients of breast cancer are ardent users 
of complementary and alternative medicine (CAM) ther-
apy accompanied by prostate and melanoma cancer [58]. 
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These complications may be circumvented by combining 
these agents with herbal/naturally derived agents instead as 
described in the next section.

Combination of the synthetic agent with the herbal 
chemotherapeutic agent

New arenas have been opened since the implication of natu-
ral compounds in the anticancer field mainly due to their 
chemical and structural variability [71–74]. From the year 
1981 to 2010, approximately 50% of the anti-tumor drugs 
approved by the US FDA were natural agents [75] with more 
than hundreds of the naturally originated compounds being 
evaluated in clinical trials or are either employed for clinical 
application [76, 77]. The different aspects exhibited by can-
cerous cells such as metastasis, viability, and proliferation 
are often downregulated and inhibited by the multi-target 
capability of the natural compounds [56] which are known 
to act via several mechanisms the most common of which 
include induction of apoptosis thereby causing the death of 
cancerous cells [78].

As suggested by a recent survey, around 80% of the 
women suffering from disastrous breast cancer utilize alter-
native/complementary medication rather than conventional 
chemotherapeutic agents. Among them herbal medicines 
represent one of the most widely used alternative sources 
of medicine by women around the globe for alleviating the 

heterogeneous breast cancer [79]. In addition to this, numer-
ous studies conducted in the past have shown unraveling 
interest in natural agents as being acting as potent chemo-
sensitizers and ultimately as saviors. Chemosensitizing the 
resilient aggressive tumor cells to traditional anticancer 
drugs by successfully combining them with non-toxic herbal 
agents to hinder the development of chemoresistance, limit 
the side effects and offsite toxicity as well as enhance their 
cytotoxic efficiency has emerged as an innovative and novel 
strategic approach [80]. These agents act as chemosensi-
tizers, chemopreventive agents as well as chemotherapeu-
tic agents, thereby displaying their versatile nature in the 
management of cancer. Phytochemicals, identified till now 
and further categorized into flavonoids, phenolics, steroids, 
carotenoids, alkaloids, quinones, and terpenoids, have been 
reported to act as chemosensitive, chemopreventive, and 
anticancer agents [80, 81]. To mention but a few, curcumin 
(CUR) when administered along with the chemotherapeu-
tic drug cisplatin made the tumor cells more sensitive to 
both the drugs along with downregulating the expression of 
FEN1 as demonstrated by in vitro and in vivo studies [82]. 
Potentiation of the antiangiogenic effect of DOX, etoposide, 
gemcitabine, and 5-fluorouracil by resveratrol in addition to 
causing chemosensitive activity in breast cancer cells toward 
DOX by downregulating the expression of HSP27 [80]. 
Simultaneous delivery of tamoxifen with the metabolite of 
ginsenosides, namely, 20S-protopanaxadiol, demonstrated 

Fig. 1  A Cell viability study of PP-SS-DTX-VRP and PP-SS-DTX 
compared to free DTX in MCF-7 and MCF-7/ADR cells (*, p < 0.01 
PP-SS-DTX micelle compared with free DTX; #: p < 0.01 PP-SS-DTX/
VRP micelle compared with free DTX; + : p < 0.01 PP-SS-DTX/VRP 
micelle compared with the PP-SS-DTX micelle; mean ± SD, n = 4). B 
Images of cellular uptake in MCF-7 and MCF-7/ADR cells and C flow 

cytometry in MCF-7 and MCF-7/ADR cells of (a) free RH123, (b) PP-
SS-DTX/RH123 micelles, (c) PP-SS-DTX/(VRP + RH123) micelles, 
and (d) blank cells. Reproduced with permission from reference [56]. 
DTX docetaxel, PP-SS-DTX mPEG-PLGA-SS-docetaxel nanomicelles, 
PP-SS-DTX-VRP nanomicelles mPEG-PLGA-SS-docetaxel-verapamil 
nanomicelles, RH123 Rhodamine123 copyright Elsevier 2017



2745Drug Delivery and Translational Research (2023) 13:2739–2766 

1 3

Ta
bl

e 
1 

 C
om

bi
na

tio
n 

of
 sy

nt
he

tic
 a

ge
nt

s i
n 

br
ea

st 
ca

nc
er

C
I 

co
m

bi
na

tio
n 

in
de

x,
 D

TX
 d

oc
et

ax
el

, T
PG

S 
to

co
ph

er
yl

 p
ol

ye
th

yl
en

e 
gl

yc
ol

 s
uc

ci
na

te
, D

O
X 

do
xo

ru
bi

ci
n,

 V
RP

 v
er

ap
am

il,
 T

N
BC

 tr
ip

le
 n

eg
at

iv
e 

br
ea

st 
ca

nc
er

, (
m

PE
G

2K
-P

C
L4

K-
PG

A1
K

) 
m

et
ho

xy
-p

ol
y(

et
hy

le
ne

 g
ly

co
l) 2

 K
-p

ol
y(

ε-
ca

pr
ol

ac
to

ne
) 4

 K
-p

ol
y(

gl
ut

am
ic

 a
ci

d)
1 

K
, P

LG
A-

PE
G

-P
LG

A 
po

ly
(la

ct
ic

-c
o-

gl
yc

ol
ic

 a
ci

d)
-p

ol
y(

et
hy

le
ne

 g
ly

co
l)-

PL
G

A

C
on

ve
nt

io
na

l a
nt

ic
an

ce
r 

ag
en

t 
em

pl
oy

ed
 fo

r 
co

m
bi

na
tio

n
Ty

pe
 o

f n
an

of
or

m
ul

at
io

n
Ty

pe
 o

f c
el

l l
in

es
/m

od
el

 fo
r 

br
ea

st
 c

an
ce

r
Fi

nd
in

gs
R

ef
.

Ex
em

es
ta

ne
 a

nd
 m

et
ho

tre
xa

te
 

(M
TX

)
La

ct
of

er
rin

 ta
rg

et
ed

 c
ub

os
om

es
In

 v
itr

o 
(M

C
F-

7)
Po

te
nt

 sy
ne

rg
ist

ic
 e

ffe
ct

 w
ith

 0
.2

42
 C

I, 
re

du
ct

io
n 

in
 d

os
e 

in
de

x,
 e

nh
an

ce
d 

ce
llu

la
r u

pt
ak

e
[5

9]

G
em

ci
ta

bi
ne

 a
nd

 g
ad

ol
in

iu
m

 
(m

ag
ne

tic
 re

so
na

nc
e 

im
ag

in
g 

ag
en

t)

Se
lf-

as
se

m
bl

ed
 n

an
op

ar
tic

le
s

In
 v

itr
o 

(M
D

A
-M

B
-2

31
)

In
 v

iv
o 

(x
en

og
ra

ft 
m

od
el

 o
f m

ic
e 

w
ith

 M
D

A
-

M
B

-2
31

)

En
ha

nc
ed

 im
ag

in
g 

of
 tu

m
or

s i
n 

vi
vo

 d
ue

 to
 st

ro
ng

 T
1 

sig
na

l 
an

d 
im

pr
ov

ed
 re

te
nt

io
n 

tim
e, 

en
ha

nc
ed

 su
pp

re
ss

io
n 

of
 

in
 v

iv
o 

tu
m

or
 d

ue
 to

 h
ig

h 
dr

ug
 lo

ad
in

g

[6
0]

G
em

ci
ta

bi
ne

 a
nd

 D
TX

C
at

io
ni

c 
lip

os
om

e 
na

no
co

m
pl

ex
es

In
 v

itr
o 

(M
D

A
-M

B
-2

31
)

Effi
ci

en
t t

ar
ge

tin
g 

of
 C

D
44

 re
ce

pt
or

s, 
sy

ne
rg

is
m

 a
ct

iv
ity

 
in

 c
yt

ot
ox

ic
ity

, a
po

pt
os

is
, w

ou
nd

 h
ea

lin
g 

in
hi

bi
tio

n,
 

C
D

A
, d

CK
 re

m
od

el
in

g,
 in

cr
ea

se
d 

S 
ph

as
e 

ar
re

st,
 

re
m

ar
ka

bl
e 

ac
cu

m
ul

at
io

n 
in

 tu
m

or
 fo

ci
, e

nh
an

ce
d 

an
tit

um
or

, a
nt

i-p
ro

lif
er

at
iv

e 
an

d 
ap

op
to

tic
 a

ct
iv

ity

[6
1]

G
em

ci
ta

bi
ne

 a
nd

 D
TX

Se
lf-

as
se

m
bl

ed
 a

lb
um

in
 n

an
op

ar
tic

le
s (

B
SA

 
co

va
le

nt
ly

 c
on

ju
ga

te
d 

w
ith

 a
na

rc
ad

ic
 a

ci
d 

an
d 

ge
m

ci
ta

bi
ne

)

In
 v

itr
o 

(M
C

F-
7 

an
d 

M
D

A
-M

B
-2

31
)

H
ig

h 
ap

op
to

si
s i

nd
ex

, n
o 

eff
ec

t o
n 

th
e 

R
B

C
s, 

re
du

ce
d 

ne
ph

ro
 a

nd
 h

ep
at

o 
to

xi
ci

ty
[6

2]

D
TX

 a
nd

 g
em

ci
ta

bi
ne

PE
G

yl
at

ed
 se

lf-
as

se
m

bl
ed

 st
ea

lth
 n

an
op

ar
tic

le
s

In
 v

itr
o 

(M
C

F-
7 

an
d 

M
D

A
-M

B
-2

31
)

In
cr

ea
se

d 
ce

llu
la

r u
pt

ak
e,

 h
ig

he
r f

or
m

at
io

n 
of

 ly
so

so
m

es
/

en
do

so
m

es
, i

nc
re

as
ed

 a
po

pt
os

is
 in

de
x,

 si
gn

ifi
ca

tio
n 

in
hi

bi
tio

n 
in

 tu
m

or
 g

ro
w

th
, r

ed
uc

tio
n 

in
 tu

m
or

 si
ze

[6
3]

D
TX

 a
nd

 sa
lin

om
yc

in
PL

G
A

/T
PG

S 
na

no
pa

rti
cl

es
In

 v
itr

o 
(M

C
F-

7,
 M

C
F-

7,
 M

S)
In

 v
iv

o 
(B

A
LB

/c
 n

ud
e 

m
ic

e 
w

ith
 M

C
F-

7 
ce

lls
)

M
ai

nt
en

an
ce

 o
f s

yn
er

gi
st

ic
 ra

tio
 fo

r 2
4 

h,
 e

nh
an

ce
d 

ci
rc

ul
at

io
n 

tim
e,

 e
nh

an
ce

d 
cy

to
to

xi
ci

ty
, e

ffe
ct

iv
e 

in
hi

bi
tio

n 
of

 c
an

ce
r s

te
m

 c
el

ls
 p

ro
lif

er
at

io
n

[6
4]

M
TX

 a
nd

 6
-m

er
ca

pt
op

ur
in

e
D

is
ul

fid
e-

ba
se

d 
PE

G
yl

at
ed

-n
an

og
el

s
In

 v
itr

o 
(M

C
F-

7)
En

ha
nc

ed
 c

yt
ot

ox
ic

ity
, c

irc
um

ve
nt

io
n 

of
 M

D
R

, h
ig

he
r 

ra
te

 o
f a

po
pt

os
is

, i
m

pr
ov

ed
 c

el
l i

nt
er

na
liz

at
io

n 
of

 th
e 

na
no

ge
l

[6
5]

Ta
m

ox
ife

n 
an

d 
im

at
in

ib
Li

po
so

m
es

 (t
em

pe
ra

tu
re

-s
en

si
tiv

e)
In

 v
itr

o 
(M

C
F-

7 
an

d 
M

D
A

-M
B

-2
31

)
H

ig
h 

en
ca

ps
ul

at
io

n 
effi

ci
en

cy
, e

ffe
ct

iv
e 

sy
ne

rg
ist

ic
 

ac
tio

n 
at

 lo
w

er
 c

on
ce

nt
ra

tio
n

[6
6]

D
O

X
 a

nd
 c

is
pl

at
in

H
ya

lu
ro

ni
c 

ac
id

–m
od

ifi
ed

 p
ol

ya
m

id
oa

m
in

e 
de

nd
rim

er
In

 v
itr

o 
(M

C
F-

7 
an

d 
M

D
A

-M
B

-2
31

)
In

 v
iv

o 
(B

A
LB

/c
 n

ud
e 

m
ic

e 
w

ith
 M

D
A

-M
B

-2
31

 
ce

lls
)

Ti
m

e-
de

pe
nd

en
t e

ffi
ci

en
t e

nt
ry

 in
 th

e 
ly

so
so

m
e 

pa
th

w
ay

, 
au

gm
en

te
d 

an
tic

an
ce

r a
ct

iv
ity

 a
t l

ow
 d

os
es

, r
em

ar
ka

bl
e 

an
tit

um
or

 a
ct

iv
ity

, r
ed

uc
tio

n 
in

 D
O

X
 to

xi
ci

ty
, s

ub
sta

nt
ia

l 
tu

m
or

 g
ro

w
th

 su
pp

re
ss

io
n 

w
ith

ou
t t

ox
ic

ity

[6
7]

D
O

X
 h

yd
ro

ch
lo

rid
e 

an
d 

V
R

P
m

PE
G

2K
-P

C
L 4

K
-P

G
A

1K
 a

nd
 

 m
PE

G
2K

-P
C

L 4
K
-P

G
A

1K
 p

ol
ym

er
so

m
es

In
 v

itr
o 

(M
C

F-
7/

A
D

R
)

In
cr

ea
se

d 
in

hi
bi

tio
n 

of
 M

C
F-

7/
A

D
R

 c
el

ls
, s

lo
w

er
 re

le
as

e 
ra

te
[6

8]

Lo
va

st
at

in
 a

nd
 D

O
X

Pu
llu

la
n 

na
no

pa
rti

cl
e

In
 v

itr
o 

(T
N

B
C

 M
D

A
-M

B
-2

31
, n

on
-T

N
B

C
 M

D
A

-
M

B
-4

53
)

In
cr

ea
se

d 
pr

ol
ife

ra
tio

n 
in

hi
bi

tio
n 

in
 M

D
A

-M
B

-2
31

 c
el

ls
, 

up
ta

ke
 in

 b
ot

h 
ce

ll 
lin

es
 in

 a
 ti

m
e-

de
pe

nd
en

t m
an

ne
r, 

in
cr

ea
se

d 
nu

m
be

r o
f e

nt
ry

 o
f N

Ps
 in

 M
D

A
-M

B
-2

31
 

th
an

 in
 M

D
A

-M
B

-4
31

[6
9]

Sa
lid

ro
si

de
 a

nd
 ta

m
ox

ife
n

PL
G

A
–P

EG
–P

LG
A

 n
an

op
ar

tic
le

s
In

 v
itr

o 
(4

T1
 c

el
ls

)
In

 v
iv

o 
(B

A
LB

/c
 n

ud
e 

m
ic

e 
w

ith
 4

T1
 x

en
og

ra
ft 

tu
m

or
 m

od
el

)

En
ha

nc
ed

 c
yt

ot
ox

ic
ity

, r
ed

uc
ed

  IC
50

, d
ec

re
as

ed
 tu

m
or

 
vo

lu
m

e,
 in

cr
ea

se
d 

tu
m

or
 a

ct
iv

ity
[7

0]



2746 Drug Delivery and Translational Research (2023) 13:2739–2766

1 3

effective killing of the MCF-7 cancer cells by inhibiting the 
gene expression of estrogens [83]. Several agents explored 
in this regard act by enhancing the time of residence of con-
ventional chemotherapeutics inside the tumor vasculature, 
upregulating the pro-apoptotic proteins thereby causing cell 
death, inducing the damage of DNA [80], increasing the 
sensitivity of drug, and modulating the efflux proteins [84, 
85]. Taken together, these mechanisms lead to synergistic 
actions in normal as well as resistant cells subsequently 
increasing the cytotoxic effect of the anticancer agents [41], 
enhancing the bioavailability of any one agent among the 
two [86], and decreasing the standard dose of chemothera-
peutic agents consequently reducing the severe side effects 
that arise due to extensive use of synthetic anticancer agents 
[87]. In line with this, Vakilinezhad et al. [88] successfully 
fabricated MTX and CUR-loaded PLGA nanoparticles 
(MTX-CUR-NPs) using the co-precipitation method and in 
the same manner MTX-NPs, CUR-NPs, and blank-NPs were 
formulated as well. It was found from the in vitro studies 
that CUR resulted in the sustained release action of MTX 
from the optimized formulation. Moreover, in vitro cytotox-
icity studies conducted on SK-Br3 cell lines in 24 and 48 h 
revealed the significantly lower cytotoxicity of MTX from 
MTX-NPs in 24 h in comparison to MTX-solution owing 
to the incomplete release of MTX from MTX-NPs. How-
ever, it did exhibit augmented cytotoxicity in about 48 h, 
whereas CUR-NPs exhibited lower cytotoxicity at both 24 
and 48 h than the CUR solution as well as MTX solution. 
Lastly, the optimized MTX-CUR-NPs-8 depicted the highest 
cytotoxicity among MTX-NPs, CUR-NPs, and their plain 
solutions with 2.5 and 1.7 folds lower  IC50 at both 24 as 
well as 48 h than the MTX-NPs. In vivo studies conducted 
in female Sprague Dawley rats with chemically induced 
tumor by MNU revealed that compared to the control group 
any other group that received MTX formulation displayed 
an improvement in the incidence as well as the size of the 
tumor, whereas the treatment group that received MTX-NPs 
resulted in significantly reduced size of the tumor in contrast 
with MTX solution. Moreover, CUR solution and CUR-NPs 
depicted similar improvement in the tumor incidence that 
was comparatively lower than that in the control group. Con-
sidering the size of the tumor, the MTX-NPs revealed slow 
development of tumor size than the CUR-sol and CUR-NPs. 
Nonetheless, MTX-NPs-8 depicted marked improvement in 
the size of the tumor thereby stressing at its suitability in 
the treatment of breast cancer. Although the current study 
provided deep insight into the effectiveness of co-delivered 
cargos in breast cancer management, it still lacks pharma-
cokinetic studies for the fabricated PLGA nanoparticles, 
including which may help further establish the effect on 
bioavailability and various other essential pharmacokinetic 
parameters (Fig. 2) [88].

Table 2 summarizes recent combinatorial nanomedicine 
studies conducted with different herbal chemotherapeutics.

Combination with the herbal chemotherapeutic 
agent for breast cancer management

Nanomediated co‑delivery of curcumin with herbal 
chemotherapeutic agents

Originated from Curcuma longa L., the family Zingiber-
aceae CUR is obtained as a hydrophobic yellowish compo-
nent [109]. According to a plethora of research conducted 
in the past CUR has depicted its valuable role as being a 
potent anti-inflammator, immunoregulator, anti-tumoral, 
anti-bacterial, anti-fungus, and anti-oxidant agent [110, 
111] in treating various types of malignant cancers such 
as prostate, breast, gastric, ovarian, pancreatic, cervical, 
and colorectal cancers [112]. Considering its mechanism 
of anticancer activity, it is reported to act via interfer-
ing with various signaling pathways including the PI3K/
Akt, JAK/STAT, p53, Wnt/β-catenin, NF-ĸB, MAPK, and 
signaling related to apoptosis. Additionally, by non-coding 
RNA expression modification, it is capable of inhibiting 
the proliferation, angiogenesis, invasion, metastasis, and 
epithelial-mesenchymal transition associated with malig-
nant cells [113–116]. In light of this, in 2022 Oghaz et al. 
fabricated the zein nanoparticles coated with chitosan, 
co-loaded with CUR and berberine (CUR-Z-Ber-Ch) by 
anti-solvent precipitation technique for investigating their 
potential in breast cancer. In their research, the in vitro 
drug release studies revealed augmented drug release of 
both CUR and Ber at acidic pH. Moreover, increased cel-
lular uptake of CUR-Z-Ber-Ch was revealed by cellular 
uptake studies (confocal imaging and flow cytometry) 
wherein CUR and Ber having intrinsic green fluorescence 
properties resulted in strong intensity in comparison to 
CUR + Ber in MDA-MB-231 cancer cell lines after a 4 h 
duration. The findings of apoptosis studies carried out on 
MDA-MB-231 cells after their successful staining with 
AO and EB dyes resulted in the appearance of green fluo-
rescence with normal cells and red/orange fluorescence 
with dead or late apoptotic cells. Results revealed green 
fluorescence by untreated as well as free dug combination 
treated cells. Also, the cells that were treated with CUR-
Z-Ber-Ch nanoparticles were found to be majorly located 
in the early and the late apoptotic stages as evident by 
the results of confocal imaging microscopy with the blank 
nanoparticles having no influence on the cell death. Fur-
ther, the flow cytometry studies also found the highest pro-
portion of cells stained with ethidium bromide and treated 
with CUR-Z-Ber-Ch nanoparticles lying in the lower right 
quadrant depicting the percentage of apoptotic cells. The 
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researchers also inferred the elevated anti-inflammatory 
action of CUR-Z-Ber-Ch on IL-8 cytokine secretion in 
MDA-MB-231 cells in comparison to the combination of 
free drug solutions thereby proving its efficacy as a potent 
inflammatory cytokine. Although this study suggested a 
significant role that “layer by layer nanopolymers” can 
have in the management of breast cancer, however, it still 
lacks the in vivo pharmacokinetic and pharmacodynamic 
studies the inclusion of which may further help in validat-
ing the therapeutic efficacy of the developed nanocarriers. 
Further, the inclusion of acute toxicity studies for know-
ing the toxic effects on the vital organs is advocated too 
(Fig. 3) [117].

Another recently conducted study investigated the co-
delivery of CUR and paclitaxel (PTX) in biodegradable 
polymeric nanoparticles and tested their anticancer effi-
cacy against breast cancer both in vitro and in vivo. Results 
depicted small particle size and slow release with enhanced 
cellular uptake, increased cytotoxicity, and a high rate of 
apoptosis in comparison to the free drug combinations in 
the MCF-7 cell line. Also, when tested in a BALB/C nude 
mouse bearing MCF-7 cells by intravenous route substantial 
suppression of tumor growth, decreased side effects, and 
prolonged rate of survival than the free drug combinations 
were observed suggesting the therapeutic efficacy of com-
binatorial drug delivery packaged in nanoformulation [118].

In the investigation of Pushpalatha et al., CUR and resver-
atrol were encapsulated in cyclodextrin nanosponge-based 

hydrogel, and their therapeutic effects against breast can-
cer cells were assessed. They concluded synergistic action 
with a 0.29 value of CI on the MCF-7 cells with increased 
photostability and enhanced in vitro release profile of the 
nanoformulation [119].

An in vitro investigation showed that CUR and chrysin 
when co-delivered in a nanofiber result in synergistic activ-
ity on T47D breast cancer cells in terms of both antiprolif-
eration as well as cytotoxicity. They also downregulated the 
levels of BCL-2, cyclin D1, Bax, p53, hTERT, caspase-3, 
and 7 [120]. The study of Danafar et al. demonstrated the 
antitumor effect of CUR and sulforaphane by their encapsu-
lation in PEGylated gold-coated  FE3O4 magnetic nanoparti-
cles. Results depicted increased cytotoxicity on the MCF-7 
cell lines than the free drug combinations, enhanced apopto-
sis, and inhibition of the cells migration as well as induction 
of necrosis was also observed [121]. In a nutshell, it can be 
inferred that these novel nano-combinations of CUR with 
another herbal chemotherapeutic agent hold a promising 
future in curbing the resilient breast cancer disease.

Nanomediated co‑delivery of quercetin with herbal chemo‑
therapeutic agents

Found in several fruits and vegetables, quercetin (QC) is 
a potent polyphenolic compound [122] that is reported to 
exhibit various pharmacological activities including anti-
inflammatory, anti-proliferative, anti-oxidant, and also 

Fig. 2  A Characterization of 
nanoparticles by scanning 
electron microscopy (SEM) (1) 
MTX-NP, (2) CUR-NP, and (3) 
MTX-CUR-NP-8. B In vitro cell 
viability study of MTX-CUR-
NP-8 (optimized formulation) in 
comparison to blank NP, MTX, 
MTX-NP, CUR, and CUR-
NP wherein conc. 1, 2, and 3 
signify 6.25, 12.5, and 25 µg/ml 
conc. for MTX and 2.5, 5, and 
10 µg/ml conc. for CUR. Repro-
duced with permission from ref-
erence [88] copyright Elsevier 
2019. MTX methotrexate, CUR 
curcumin, MTX-NP methotrex-
ate nanoparticle, CUR-NP cur-
cumin nanoparticle, blank NP 
blank nanoparticle, MTX-CUR-
NP-8 methotrexate-curcumin-
nanoparticle-8
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anti-diabetic properties [123–125]. Growing evidence has 
shown a remarkable effect of QC against numerous types 
of cancers such as breast, colon, cervical, ovarian, prostate, 
lung, and gastric cancer [126–131]. Regarding its anticancer 
mechanisms, it acts by modulating the STAT signaling path-
way, PI3K/Akt/mTOR, altering the intracellular pH, modify-
ing the expression of heat shock protein, and is also involved 
in the regulation of various cancer-related factors that 
include vascular endothelial growth factor, apoptosis pro-
teins, and matrix metalloproteinases [132–134]. In line with 
this, Liu et al. highlighted that QC sensitizes the MCF-7/
ADR cells to PTX wherein they fabricated QC and PTX-
loaded mesoporous silica nanoparticles by sol–gel method, 
further coated with chondroitin sulfate (ChS) for evaluating 
their MDR reversal potential as well as for enhancing their 
anticancer activity. The results of in vitro cell cytotoxicity 
performed on MCF-7/ADR cells revealed that the QC and 
PTX-loaded mesoporous silica ChS nanoparticles (MSNs-
ChS@PQ) formulation exhibited the lowest  IC50 value thus 
displaying better chemotherapeutic action. Moreover, the 
results of fluorescence microscopy revealed time-dependent 
cellular uptake of fluorescein5 (6)-isothiocyanate (FITC), 
MSNs-COOH-FITC, and MSNs-ChS-FITC in MCF-7/ADR 
cells. It was further concluded that MSNs-ChS-FITC treated 
cells exhibited augmented fluorescence intensity than the 
cells treated with either free FITC or MSNs-COOH-FITC. 
Additionally, the results of flow cytometry were also con-
sistent with the aforementioned results wherein the higher 
cell intensity was attributed to the targeting of the CD44 
receptor by ChS. MSNs-ChS@PQ exhibited a significant 
increase in the rate of apoptosis in comparison to other sam-
ples which was ascribed to the higher internalization of NPs 
inside the cell along with CD44 mediated endocytosis path-
way and the QC action of efflux reversal. Additionally, the 
cell cycle analysis performed by flow cytometry revealed, 
the free drug combination of QC + PTX resulted in G2M 
phase arrest indicating at the MDR reversal efficacy of QC 
thereby causing the cell cycle arrest by PTX. Nevertheless, 
MSNs-ChS@PQ due to their CD44 targeting resulted in the 
highest G2M phase cell cycle arrest disrupting the proce-
dure of tubulin synthesis thereby augmenting the efficacy 
of chemotherapy. Significant microtubule polymerization 
was caused by MSNs-ChS@PQ due to co-delivered drugs 
and potent MDR reversal. Furthermore, it was also found 
that QC was capable of downregulating the expression of 
P-gp since the fluorescence intensity got markedly reduced 
in the MCF-7/ADR cells. The in vivo imaging performed 
in mice showed a comparatively higher intensity of fluores-
cence for MSNs-ChS@DiR while the highest optimal sup-
pression of tumor volume by MSNs-ChS@PQ and MSNs@
PQ was ascribed to the active targeting property of ChS. 
On the other hand, the ex vivo studies performed on vital 
organs such as the heart, liver, spleen, and lungs revealed H
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the enhanced accumulation of MSNs-ChS@DiR which was 
ascribed to the EPR effect as well as CD44 targeting effi-
ciency. Furthermore, the hemolysis studies performed on 

blank NPs showed RBCs with slight damage equivalent to 
only 5% rate of hemolysis. Lastly, histopathological studies 
were performed in the organs of the NS and MSNs-ChS@

Fig. 3  A Flow cytometry analysis images indicating the intracellular 
internalization of CUR-Z-Ber-Ch nanoparticles and free drug combi-
nation of CUR + Ber after a duration of 4  h. B Fluorescent images 
of AO/EB dual staining indicating the morphology of apoptosis in 
MDA-MB-231 cells incubated with (a) untreated cells, (b) blank 
nanoparticles, (c) free CUR + Ber combination, and (d) CUR-Z-Ber-

Ch nanoparticles. Reproduced with permission from reference [119] 
copyright Elsevier 2022. CUR curcumin, BER berberine, CUR-Z-
Ber-Ch nanoparticles curcumin-zein-berberine-chitosan, CUR + BER 
curcumin and berberine, AO/EB dual acridine orange/ethidium bro-
mide fluorescent staining
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PQ group that depicted no lesion formation and no signs of 
abnormalities were observed (Fig. 4) [135].

Another work assessed the co-delivery of QC and vin-
cristine in matrix metalloproteinase (MMP)-triggered dual-
targeting hybrid micelle-in-liposome system and investigated 
their synergistic action on the MDA-MB-231 cell lines. The 
co-encapsulated nanoformulation exhibited a CI of 0.113 
suggesting significant synergism as per the Chou Talay pro-
tocol; also reducing the dose of vincristine with a DRI of 115 
thereby signifying the multiple possible positive effects that 
this co-encapsulated system can have when explored further 
[136]. In general, QC primarily due to its natural source, its 
safety profile, and its comparatively less cost than synthetic 
anticancer agents is considered a promising anticancer agent; 
however, its co-delivery with herbal agents is still very less 
reported in the literature and thus researchers should focus 
on exploring this agent in the nanomediated combination 
therapy targeting the breast cancer cells for harnessing its 
potential in addressing the challenges.

Nanomediated co‑delivery of epigallocatechin‑3‑gallate 
with herbal chemotherapeutic agents

Epigallocatechin gallate (EGCG) is a polyphenolic com-
pound present in green tea that exhibits vital therapeutic 
potential, particularly against several health-damaging 
disease conditions, namely, Parkinson’s, stroke, diabetes, 
Alzheimer’s, and diabetes [137]. Apart from exhibiting the 
aforementioned pharmacological effects, it is also reported 

to possess anticancer properties wherein it acts by down-
regulating the various genes involved in the pathogenesis of 
tumors as well as modifying the signaling pathways associ-
ated with tumor proliferation and development [138–141]. 
Furthermore, according to several studies, epigallocatechin 
is known to suppress cancers at all stages that are from ini-
tiation till progression, and is also reported to induce the 
process of apoptosis, induction of cell cycle arrest, and pro-
liferation inhibition [142]. Additionally, suppression of ERK 
phosphorylation and AKT by epigallocatechin has been 
observed in in vitro studies; also the cell cycle arrest and 
apoptosis induction are brought by the successful activation 
of the transcription factors such as FOXO [143]. Moreover, 
a growing body of evidence confirms the potent anticancer 
potential of epigallocatechin. For instance, inhibition in cell 
proliferation was observed in treating MDA-MB-231 and 
MCF-7 cells with EGCG, QC, and tamoxifen as well [144].

Another line of the study conducted by Ramadass et al. 
investigated the anticancer potential of EGCG by potenti-
ating its co-delivery with PTX and further encapsulated 
them in liposomes. The cytotoxicity studies performed in 
the MDA-MB-231 cells depicted 1:5 as the optimum syn-
ergistic ratio wherein it was reported that with increasing 
the EGCG concentrations the antitumor activity of the dual 
loaded liposomes got enhanced. Also, the elevated anti-
cancerous response was attributed to the synergistic action 
of both drugs acting via different anticancer mechanisms. 
This was then followed by the apoptosis assessment that 
revealed higher fluorescence intensity for the PTX/EGCG 
treated cancerous cells signifying the augmented apoptosis 

Fig. 4  A MCF-7/ADR cells treated with different formulations for 
investigating apoptosis populations. B MCF-7/ADR cells treated with 
different formulations for investigating the cell cycle process. Repro-

duced with permission from reference [137] copyright Elsevier 2022. 
QC quercetin, PTX paclitaxel, (MSNs-ChS@PQ) quercetin and pacli-
taxel-loaded mesoporous silica chitosan nanoparticles
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rate in contrast to individual drug loaded liposomes which 
were confirmed by the elevated levels of caspase activity in 
the cells treated with PTX/EGCG liposomes. Additionally, 
the formulated co-loaded liposomes depicted the highest 
reduction in the levels of both MMP-2 and MMP-9 by the 
PTX/EGCGC liposomes whereas the individual ECGC and 
PTX liposomes also resulted in the reduction of MMPs 
with negligible difference which was ascribed to the PTX 
enhanced cytotoxic activity that might have resulted in 
reduced cell viability thereby reducing the MMPs levels. 
Also, zymography analysis revealed the ECGC’s ability of 
forming a chelating complex with ions or attaching with 
proteins subsequently suppressing MMPs levels. Further-
more, the cell invasion assay was carried out on MDA-
MB-231 cells using matrigel or type-I coated transwell 
membrane wherein the maximum inhibition of the cell 
invasion was depicted by the dual cargo loaded liposomes. 
This was followed by EGCG liposomes and PTX liposomes 
wherein the reason behind the reduced cell invasion 
brought by PTX in comparison to the control group was 
ascribed to its capability of decreasing cell viability. How-
ever, irrespective of this, EGCG liposomes depicted more 
pronounced suppression of the invasion than PTX probably 
due to its better MMPs inhibition ability. The present study 
although provides enough evidence for nano-based com-
binatorial delivery for the treatment of breast cancer but 
lacks pharmacokinetics, pharmacodynamics and biodistri-
bution studies including them would have been better in 
understanding the influence of the dual loaded liposomes 
in terms of pharmaceutical aspects, efficacy, and safety 
(Fig. 5) [145].

In yet another study, the co-delivery of EGCG with 
PTX fabricated in PLGA-casein core–shell nanoparticles 
was explored by Narayan et al. wherein results depicted 
the sequential release of PTX after EGCG. Further, the 
increased sensitivity of MDA-MB-231 cells to PTX was 
also reported along with the apoptosis induction, inhibition 
of the activation of NF-κB, and suppression of various genes 
associated with the process of angiogenesis, metastasis of 
tumor as well as tumor survival. Furthermore, inhibition 
of P-gp was observed both at gene and protein levels with 
major cytotoxic action on the breast cancer cell lines [146]. 
In summary, evidence from the reported literature suggested 
the efficacious synergistic effect of EGCG in combination 
with another herbal chemotherapeutic agent in the manage-
ment of the critical condition of heterogenous breast cancer. 
However, only a few of the studies have investigated the 
co-delivery of EGCG with other herbal chemotherapeutics 
and are thus inconclusive. It is, therefore, appropriate that 
the investigation of this highly promising herbal anticancer 
agent with other herbal moieties be done more vigorously to 
gain maximum therapeutic efficacy from these herbs in the 
management of breast cancer.

Nano‑combination of cytotoxic agents with siRNA

A plethora of several complex factors are known to contribute 
to the astounding development of tumors which are currently 
treated by the cancer management approaches utilizing the 
concept of a single magic bullet that are further painfully 
insufficient in the eradication of the disease [35, 43].

However, the emergence of the powerful RNA inter-
ference (RNAi) technology has offered a paragon shift 
in the treatment strategies of cancer, wherein it results in 
the downregulation of the post-transcriptional genes when 
applied to the cancerous gene expressions specifically 
[147]. By employing the recent RNAi approach, one can 
carry out the knockdown of the genes particularly causing 
resistance in conventional chemotherapy. Furthermore, the 
use of siRNA has been reported to sensitize the cancer-
ous cells more toward the chemotherapeutic agent [148]. 
Since chemotherapeutic agents develop MDR and thus lose 
their potential, these siRNAs on the other hand have been 
reported to inhibit the proliferation of the resistant breast 
cancer cells due to their silencing capability thereby over-
coming MDR. In this regard, various studies conducted so 
far have shown that different categories of breast cancer 
cell lines were made resistant by their exposure to DOX and 
were then further treated by siRNA along with combina-
tions of drugs that finally led to the induction of apoptosis 
confirmed by the microarray analysis that depicted the ele-
vated level of apoptosis-associated proteins [149]. Moreo-
ver, countless studies conducted using the synthetic siRNAs 
have established their potential in degrading the messenger 
RNA in cell cytoplasm thereby inhibiting the particular 
gene of interest and subsequently suppressing their expres-
sion [150–152]. For instance, it has been hypothesized that 
the activation of the Pi3-K/Akt signal pathway leads to the 
increased expression of Lifeguard/LGF, an anti-apoptotic 
gene that further plays a vital decisive role in the suppres-
sion of programmed cell death [153, 154]. In view of this, 
Bucan et al. potentiated the combinational delivery of a 
chemotherapeutic agent for suppressing the Pi3-k/Akt cas-
cade, preceded by siRNA therapy for reducing the levels of 
LGF in the MCF-7 cells wherein the results demonstrated a 
robust decrease in the proliferation of cells along and their 
survival along with cumulative apoptosis [155–158].

In this regard, a combination of a conventional chemo-
therapeutic agent with siRNA could serve as an efficient and 
encouraging novel treatment approach sparking the interest 
of researchers globally; however, both these agents suffer 
from several hindrances that further impede their clini-
cal efficacy. Conventional chemotherapeutics for instance 
results in the development of MDR that damages the nor-
mal cells along with the malignant ones due to their non-
selective action exhibiting poor permeability followed by 
their low penetration in the malignant cells, increased dose, 
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and frequency of the cytotoxic agents [159]. siRNAs on the 
other hand generally present low selectivity, ease of clear-
ance from the renal system, and low cellular uptake includ-
ing instability issues [160].

The clinical efficacy of both chemotherapeutics as well 
as the siRNA is limited due to these hurdles and thus war-
rants newer strategies. These challenges can be reiterated 
by the efficient nanoparticles in which both hydrophobic 
and hydrophilic moiety can be loaded simultaneously 
achieving enhanced encapsulation efficiency and further 
smoothening its internalization inside the tumor resulting 
in augmented therapeutic efficacy and reduced adverse 
effects. A vast array of nanoparticles has been found to 
be of extreme importance in terms of biocompatibility and 
safety for siRNA delivery and their encapsulation as well. 
Additionally, successful loading of the siRNAs in nanopar-
ticles not only protects them from in vivo degradation by 
the external environment but also aids in their delivery at 
the required site minimizing the off-target silencing [147]. 
Moreover, these nanoparticles often result in a synergetic 

effect that can be attributed to the formation of a chemical 
and physical bond between the siRNA and the cytotoxic 
drugs that aid in their delivery to the same tumor cell thus 
emerging as a potential tool for therapeutic intervention 
[161, 162]. In accordance with this, Tunc et al. potentiated 
dual delivery of siRNA (Bcl2) with Dox via the formula-
tion of gold nanoparticles wherein siRNA was thiolated 
on the surface of AuNPs followed by the intercalation of 
DOX (DOX-siRNA-AuNPs). Furthermore, scrambled siR-
NAs (Scr-siRNAs) that were devoid of any particular thera-
peutic potential were prepared as well, for investigating the 
effect of the carrier system specifically. The researchers 
investigated the cytotoxic action of the nanoformulations 
with and without DOX that revealed a pronounced effect of 
DOX-loaded AuNPs on the viability of TNBC breast cancer 
cells (MDA-MB-231) with increasing its concentration than 
the free solution of DOX. Furthermore, an enhanced rate 
of apoptosis and cancer cell inhibition was exhibited by the 
dual drug delivery system. Moreover, suppressed formation 
of colony and cell migration was achieved too by the BCl-2 

Fig. 5  A Cell viability evaluation of free PTX and EGCG compared 
to PTX/EGCG co-loaded liposomes conducted by MTT assay on 
MDA-MB-231 cells. The treatment was performed in triplicate. PTX/
EGCG co-loaded liposomes and free drug combinations depicted 
significant reduction (*, p < 0.001) in viability of cells than the 
vehicle and PTX/EGCG co-loaded liposomes only resulted in sig-
nificant treatment (#, p < 0.001) than the treatment by single drugs. 
B ELISA method employed for evaluating MMP-2 concentration 
and C MMP-9 concentration by control, PTX liposomes, EGCG 
liposomes, and PTX/EGCG co-loaded liposomes. Significant reduc-
tion (#, p < 0.01) depicted by PTX/EGCG co-loaded in comparison 

to PTX and EGCG liposomes. D Gelatin zymography for analyzing 
MMP-2/-9 activity performed in MDA-MB-231 cells on conditioned 
media. EGCG liposomes and PTX/EGCG co-loaded depicted signifi-
cant reduction in MMP-2/-9 activity. E Cell invasion assay incubated 
with control, single drug loaded liposomes. Maximum inhibition of 
cell invasion exhibited by PTX/EGCG co-loaded compared to single 
drug loaded liposomes. Reproduced with permission from reference 
[147] copyright Elsevier 2022. PTX paclitaxel, EGCG epigallocat-
echin gallate, PTX liposomes paclitaxel liposomes, EGCG liposomes 
epigallocatechin gallate liposomes, PTX/EGCG co-loaded liposomes 
paclitaxel/epigallocatechin gallate co-loaded liposomes
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gene silencing. In addition, the dual nanoformulation when 
tested on MCF-7 cell line demonstrated effective results 
wherein enhanced cytotoxicity and increased cellular inter-
nalization were observed.

Although the present research demonstrated the astound-
ing beneficial effects of siRNA and chemotherapeutic 
agents’ dual delivery for the management of breast cancer, 
yet it lacks the noteworthy pharmacokinetics, pharmacody-
namics, and acute toxicity studies that are extremely essen-
tial for ascertaining the pharmaceutical aspects as well as 
for investigating the toxicity and biocompatibility of the 
designed multifunctional nanosystem (Fig. 6) [163].

A simplified description of recent siRNA and cyto-
toxic agent combinatorial delivery investigated by various 
researchers has been summarized in Table 3.

The combinations of chemotherapeutics 
with monoclonal antibodies

The clones of a unique B cell that are further attached to 
specific positions of antigens, also known as the epitopes, 
are referred to as monoclonal antibodies (mAbs). In 1973, 
Schwaber identified the method for the production of mAbs 
for the very first time that involved the human mouse hybrid 
cells too, which was thereafter utilized by Kohler and Mil-
stein for human-derived hybridomas generation that serves 
as the cornerstone for the large-scale production of antibod-
ies for therapeutic use ever since its generation. The discov-
ery of hybridomas soon led to an upsurge in the research of 
mAbs for the treatment of cancer [175]. mAbs are known 
for manifesting multiple essential roles in breast cancer that 
includes cancer cell targeting, rarely attacking them directly, 
assisting in the location as well as delivery of the drugs to 
the target, obstructing the growth of cells, and also suppress-
ing the inhibitors of the immune system. However, the intro-
duction of mAbs is considered a distinct and unparalleled 
breakthrough in the treatment of HER2 breast cancers which 
is otherwise less explored for other types of breast cancers 
[176]. The HER-2 directed mABs exhibit the anticancer 
property by blocking the pathway of HER2 to broad activa-
tion of the immune system which subsequently results in the 
induction of antibody-dependent cellular cytotoxicity [177]. 
The first humanized mAb “trastuzumab” was approved in 
1998 by Food and Drug Administration (FDA), which got 
approval after 2 years for the treatment of early stage and 
metastatic HER2 overexpressing breast cancer by the Euro-
pean Medicines Agency (EMA) [178].

Helmi et al. developed DOX encapsulated PEGylated 
chitosan coated nanoparticles (CNPs) that were conjugated 
with two types of mAbs, namely, anti-human mamma-
globin (Anti-hMAM) and anti-human epidermal growth 
factor (Anti-HER2) for their effective delivery in breast 

cancer. The cytotoxicity results obtained of both Anti-
HER2 functionalized PEGylated DOX loaded CSNPs 
and Anti-hMAM functionalized PEGylated DOX loaded 
CSNPs demonstrated marked cytotoxic effect against 
MCF-7 cell line while comparatively less response was 
observed against mouse fibroblast cell line (L-929) cell 
line. Additionally, the mAbs conjugated CSNPs showed 
enhanced cellular uptake and internalization which may 
be attributed to the attachment of particular receptors of 
mAbs to the cancer cells [179].

In yet another study, Kolahkaj and team formulated 
PLGA coated epirubicin (EPI) encapsulated nanoparti-
cles (NPs) conjugated with trastuzumab mAb by an amide 
linkage. The nanoparticles were prepared by the nanopre-
cipitation technique and were extensively characterized for 
various parameters. The results of in vitro cellular toxicity 
studies performed on positive and negative HER-2 cell lines 
revealed the higher cytotoxic action and enhanced cellular 
uptake of EPI-NPs on HER-2 positive cell lines indicating at 
the superior efficacy of antibodies conjugated NPs in breast 
cancer treatment [180].

In 2019, Mehata et  al. formulated TPGS-g-chitosan 
nanoparticles conjugated with and without trastuzumab 
loaded with DTX for targeted breast cancer therapy. The 
results obtained from the in vitro cytotoxicity studies per-
formed on SK-BR-3 cell lines showed that in comparison 
to the conventional DTX formulation, both targeted as well 
as non-targeted formulation exhibited increased cytotoxic-
ity and higher cellular internalization along with possess-
ing significant bioadhesion property. Moreover, the in vivo 
pharmacokinetic studies revealed enhancement in relative 
bioavailability along with an increase in the other param-
eters of pharmacokinetics for both targeted as well as the 
non-targeted.

Thus, as per the literature, the unprecedented potential of 
mAbs in breast cancer treatment cannot be underrated and 
must be explored further for developing clinical formula-
tions with relevant efficiency.

Challenges and future perspective

Although a tremendous groundbreaking clinical improve-
ment has been achieved in the field of oncology, still the 
alarming rate at which the cases of breast cancer are ris-
ing is disturbing. Breast cancer; a heterogenous complex 
disease involving several molecular pathways and origins 
of development is usually associated with the development 
of MDR in an unescapable manner further requiring the 
emergence of an essential strategic approach for the effec-
tive management of breast cancer. Hitherto, delivery of 
anticancer agents via nanomedicine has been grabbing eye-
balls worldwide probably due to their manifold advantages 
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including enhanced bioavailability and effective target-
ing, particularly improving the MDR effect. However, 
these nanomedicines still suffer from various pitfalls and 
major issues such as toxicity, biocompatibility, low rate 
of patient survival, and so on that must be addressed for 
their effective translation from the laboratory scale to the 
clinical level. Recently, nano-based combination delivery 
of chemotherapeutics has been developing as a promising 
and novel strategic approach that provides the fabrica-
tion of a single drug delivery system with multiple drugs 
encapsulated in an appropriate nanocarrier so as to aid 

in improved efficacy at a comparatively low dose, pen-
etration inside the tumors barring the physiological bar-
riers and reduced toxic effects associated with the drugs. 
Additionally, these nanocombinations display several other 
distinctive attributes including resulting in a synchronized 
and optimal drug delivery thereby causing effective antitu-
mor action with synergistic effects. Although the recently 
emerging novel technique of simultaneous/co-delivery 
offers us a plethora of advantages, there still persist vari-
ous obstacles hindering the clinical outcome and are thus 
needed to be addressed such as enough evidence must 

Fig. 6  A Flow cytometry analysis conducted at various time points 
for quantitative evaluation of DOX internalization in MDA-MB-231 
cells treated with control, DOX-siRNA-AuNPs, and free DOX. B 
Analysis of cellular internalization (%) of DOX in MDA-MB-231 
cells after their treatment with DOX-siRNA-AuNPs and free DOX. C 
Flow cytometry analysis conducted at various time points for quanti-
tative evaluation of DOX internalization in MCF-7 cells treated with 

control, DOX-siRNA-AuNPs, and free DOX. D Analysis of cellu-
lar internalization of DOX (%) in MCF-7 cells after their treatment 
with DOX-siRNA-AuNPs and free DOX. (Points are presented as the 
mean of three repeats with ± SD. Level of significance: ***p < 0.001) 
Reproduced with permission from reference [165] DOX doxorubicin, 
DOX-siRNA-AuNPs doxorubicin-siRNA-gold nanoparticles  copy-
right Elsevier 2022
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be provided regarding their stability, cost-effectiveness, 
and clinical efficacy as well. Apart from this, there exist 
challenges related to pharmacokinetics that further limit 
the site-specific delivery to the targeted cancerous cells, 
other significant limitations such as identification of the 
synergistic drug combinations and maintenance of syn-
ergism in vivo, optimization of the nanoformulations for 
aiding in appropriate drug loading and enhanced targeting 
procedure. Other key issues that persist are the extensive 
biological studies and in-depth knowledge about the vari-
ous molecular mechanisms that are required for determin-
ing the drug combinations to be used; it is also essential 
to determine the mass ratio of each component present 
within the nanoformulation by understanding the effect 
of the ratios of different components on the biological 
activity. Moreover, in order to develop clinically perti-
nent nanocombinations for effective breast cancer therapy, 
researchers must focus on exploring and fabricating stable 
in vivo combinations with utmost safety, capable of releas-
ing the drug combinations simultaneously reducing the 
toxic side effects and enhancing the internalization inside 
the malignant cells. Lastly, the most critical step in these 
combinations is their clinical development owing to the 
complex structures and design that they possess. However, 
these nanocombinations with integrated efforts of acad-
emicians, regulatory bodies, and pharmaceutical industries 
would soon be highly perceived worldwide for opening 
new horizons capable of achieving great success in the 
field of cancer management in comparison to the tradi-
tional chemotherapeutics and nanomedicine monotherapy.

From the authors’ point of view, the excellent nanofor-
mulation for the combinatorial delivery of chemotherapeu-
tics could be the lipid-based nanoformulations due to their 
ability to encapsulate both hydrophobic and hydrophilic 
agents, better biocompatibility, non-toxicity, and improved 
therapeutic index when compared to other nanoformulations. 
Besides these, the other nanoformulations that can be con-
sidered as outstanding nanoformulation for combinatorial 
delivery are the polymeric micelles owing to their advanta-
geous properties such as enhanced stability, controlled and 
sustained release, and high drug loading capacity for hydro-
phobic drugs.
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