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Abstract
Osteoporosis is a bone disorder characterised by low bone mineral density, reduced bone strength, increased bone fragility, 
and impaired mineralisation of bones causing an increased risk of bone fracture. Several therapies are available for treating 
osteoporosis which include bisphosphonates, anti-resorptive agents, oestrogen modulators, etc. These therapies primar-
ily focus on decreasing bone resorption and do not assist in bone regeneration or offering permanent curative solutions. 
Additionally, these therapies are associated with severe adverse events like thromboembolism, increased risk of stroke, 
and hypocalcaemia. To overcome these limitations, bone regenerative pathways and approaches are now considered to 
manage osteoporosis. The bone regenerative pathways involved in bone regeneration include wingless-related integration 
site/β-catenin signalling pathway, notch signalling pathway, calcium signalling, etc. The various regenerative approaches 
which possess potential to heal and replace the bone defect site include scaffolds, cements, cell therapy, and other alterna-
tive medicines. The review focuses on describing the challenges and opportunities in bone regeneration for osteoporosis.
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Introduction

Osteoporosis is a disorder of bones characterised by low 
bone mineral density (BMD), reduced bone strength, and 
increased bone fragility of the bones causing higher risk 
of bone fracture [1]. This bone disorder frequently remains 
undiagnosed until a low-trauma fracture of spine, hip, pelvis, 
wrist, or proximal humerus is identified, which may often 
lead to hospitalisation. Osteoporosis is a silent disease until 
the incidences of fractures appear frequently and cause sec-
ondary health issues [2]. The annual osteoporotic fractures 
are expected to rise by 50% in the year 2025 [3]. A greater 
than 87% rise is anticipated in individuals of age group 65 to 
74 years [4]. The risk of osteoporotic fracture is around 40 
to 50% in women and 13 to 22% in men [5]. During twen-
ties, the bone mass of an adult human reaches its peak level. 
Thereafter, it starts to decline as the speed of bone resorp-
tion crosses the speed of bone formation. Although the bone 
mass decreases by 1% in ageing humans, it decreases by 3% 

in postmenopausal women [6]. As the bone structure gets 
damaged due to uncontrolled formation of regulators, such 
as hormones and local factors, the individual becomes more 
susceptible to osteoporosis [7].

The primary cause of osteoporosis is ageing, whereas 
there are several secondary causes which include genetic 
diseases like cystic fibrosis and glycogen storage diseases, 
endocrine diseases namely central obesity and diabetes, 
gastrointestinal disorders namely gastric bypass and mal-
absorption, haematological disorders, i.e. thalassemia and 
haemophilia, neurological disorders which include epilepsy 
and multiple sclerosis, and rheumatological and autoimmune 
disorders like rheumatoid arthritis and systemic lupus [8]. 
Life style modifications, namely vitamin D and calcium defi-
ciency, high salt intake, alcohol, and smoking, significantly 
increase the risk of osteoporosis [9].

Osteoporosis is classified into two types that are primary 
osteoporosis and secondary osteoporosis. Primary osteo-
porosis is further classified as type 1 and type 2. Type 1 
primary osteoporosis is also called as postmenopausal osteo-
porosis which results from oestrogen deficiency [10]. Type 2 
primary osteoporosis is termed as senile osteoporosis which 
is due to ageing and affects both men and women [11]. Sec-
ondary osteoporosis is associated with secondary causes 
like drugs or diseases which cause bone mass reduction, an 
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etiological factor that can be clearly identified and distin-
guished [12].

There are multiple pharmacological therapies available 
for treatment of osteoporosis like anti-resorptive agents, 
vitamins, and calcium, but these conventional therapies 
come with proven undesirable side effects (Table 1). For 
example, bisphosphonates may lead to odd fractures of the 
bones due to excessive rigidity caused by the treatment, and 
hormonal therapies may lead to severe adverse events like 
thromboembolism. The current therapies are more inclined 
towards decreasing bone resorption and do not focus on 
offering a permanent solution for osteoporosis.

Although autogenous bone grafts are the gold standard 
for reconstruction of large bone defects, it has demerits such 
as lack of sufficient transplantable materials, donor site mor-
bidity, resorption of implanted bone, and inflammation [13]. 
Synthetic grafting materials and allografts are useful to over-
come these demerits of autogenous bone grafts. However, 
they are limited due to lack of osteoconductivity and immu-
nogenesis [14].

Regenerative therapies have the potential ability to heal 
and replace damaged organs and tissues due to factors like 
age, diseases, trauma, as well as congenital defects. The cur-
rent drawbacks of bone grafting, such as lack of availabil-
ity of the donor and severe immune-related complications, 
can be bypassed by means of regenerative medicines [23]. 
Thus, novel therapeutic strategies based on the advances in 
molecular and cellular biology aiming to regenerate dam-
aged bones and tissues have been developed recently and are 
under further research for assessment of fate of bone regen-
erative approaches. Therefore, this article primarily focuses 
on the bone remodeling, pathways of bone regeneration, and 
various bone regenerative approaches that can be incorpo-
rated for the management of osteoporosis.

Process of bone regeneration 
in osteoporosis

Bone remodeling cycle

Bone is an extremely dynamic tissue that constantly under-
goes modelling and remodeling through the activation of 
cells including osteoblasts, osteoclasts, and osteocytes 
[24]. The osteoclasts originate from haematopoietic precur-
sor cells and are primarily responsible for bone resorption, 
whereas the osteoblasts originate from mesenchymal stem 
cells (MSCs) and assist in bone formation [25]. Osteocytes, 
terminally differentiated osteoblasts, are located in miner-
alised bone and participate in controlling time and site of 
bone remodeling [26]. The bone remodeling is a five-phase 
process involving activation, resorption, reversal, formation, 
and termination.

The activation phase mainly involves stimulating bone 
remodeling signal due to the expression of receptor activator 
of nuclear factor kappa-Β ligand (RANKL) in osteocytes at 
damaged bone sites, which enhances recruitment, differen-
tiation, and fusion of osteoclast precursors to form osteo-
clasts. Osteocytes convert the mechanical strain signals into 
biological signals to initiate bone remodeling. Parathyroid 
hormone (PTH) assists in maintaining calcium homeostasis 
and can trigger bone remodeling by binding to receptors 
on osteoblasts [27]. In resorption phase, osteoclast enrol-
ment takes place at remodeling site. The osteoblast releases 
cytokines and matrix metalloproteases for stimulation of 
osteoclastogenesis. This leads to unmineralised osteoid deg-
radation and formation of attachment sites for osteoclasts 
[28]. During reversal phase, the osteoclast facilitated bone 
resorption is completed, and the bone prepares itself for 
osteoblast-mediated bone formation via removal of collage 
debris by mononuclear cells [29].

The differentiation of osteoblast progenitor cells and 
secretion of bone growth facilitating molecules like type I 
collagen, proteoglycans, lipids, alkaline phosphatases, and 
integrin-binding proteins forms the key highlight of forma-
tion phase [30]. In later stage, remodeling is terminated 
when resorbed bone is completely substituted by newly 
formed bone in quantitatively equal portion. The minerali-
sation of osteoid is the final step in bone formation phase, 
in which hydroxyapatite crystals grown in matrix vesicles 
deposit on type I collagen. Osteoclasts undergo apoptosis 
in few weeks, while osteoblast apoptosis takes few months. 
The increasing rate of bone remodeling will lead to loss 
bone density [31]. There is an imbalance between bone 
resorption and bone genesis in case of osteoporosis which 
can be resolved by targeting pathways which promote bone 
regeneration.

Pathways of bone regeneration in osteoporosis

There are multiple pathways which assist in bone regenera-
tion via restoring the balance between osteoblasts and osteo-
clast functions, thereby stimulating new bone formation at 
the defect site.

Wingless-related integration site (Wnt)/β-catenin sig-
nalling pathway participates throughout the bone healing 
process as it is known to regulate wide range of cell-fate 
decisions. Wnt signalling through β-catenin participates in 
healing of bone fractures by promotion of osteoblastogenesis 
and osteoblast functions [32].

Notch signalling pathway is a ligand receptor signalling 
pathway which promotes cell proliferation, differentiation, 
survival, and cell-fate decision [33]. This pathway gets acti-
vated upon interaction of notch ligands with its receptors. It 
is a potential pathway with direct osteoinductive effects on 
bone cells called osteoblasts [34].
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Bone morphogenetic protein (BMP)/transforming 
growthfactors-β (TGF-β) pathway is another key pathway 
participating in boneregeneration. BMPs belong to super-
family of TGF-β which is essential inosteogenesis [35]. 
BMPs can activate endochondral formation of bone inmice; 
however, it is difficult to evaluate the activity of BMPs in 
foetus andadults [36]. Among BMPs, BMP2 is of interest in 
the field ofclinical research as it has shown to be effective in 
bone regeneration [37]. BMP2 facilitates bone regeneration 
by stimulating MSCsand osteoblast progenitor cells which 
leads to callus formation [38, 39]. 

Phosphatidylinositol 3-kinase/threonine protein kinase/
mammalian target of rapamycin pathway is an important 
mitogenic signalling pathway for cellular processes such 
as cell growth, motility, and proliferation. It has a critical 
regulatory function and participates in bone formation and 
remodeling [40].

Mitogen-associated protein kinase pathway is a vital link 
between the surface and nucleus of the cell and regulates 
proliferation, differentiation, migration, and cell death which 
is critical in bone formation [41]. However, its impact on 
osteoblasts is controversial; some suggest that it is stimula-
tory, while others suggest that it is inhibitory [42].

Platelet-derived growth factor (PDGF) signalling is an 
extracellular factor which controls many cell functions 
in the skeleton through its mitogenic, proliferative, and 

angiogenic properties leading to rise in numbers of MSCs 
[43]. Recent studies indicate that pharmacological inhibi-
tion of PDGF receptors reduces the proliferation of MSCs 
without affecting osteoblastic differentiation [44].

Insulin-like growth factor (IGF) signalling is an impor-
tant signalling pathway involved in proliferation and dif-
ferentiation of osteoblasts. IGF1 and IGF2 are the only 
members of IGF family with similar properties and bio-
logical characteristics, and both are expressed in osteo-
blasts [45]. IGF2 is abundantly found in the bones. Both 
the IGFs differentiate osteoblasts, express collagens and 
non-collagenous proteins, and stimulate bone matrix depo-
sition [46].

Fibroblast growth factor (FGF) pathway maintains pro-
liferation and differentiation of fibroblast osteoblasts dur-
ing the formation of bone cells and regulates endochondral 
and intramembranous signalling in osteoprogenitor cells 
[47].

Calcium has a structural role in bone formation since 
calcium signalling pathway enhances osteoblast differ-
entiation [48]. During the process of bone remodeling, 
calcium is constantly released into the extracellular 
environment in the form of free ions which are available 
for various biological activities of osteoprogenitors and 
osteoblasts [49]. Figure 1 describes the bone regeneration 
pathways.

Fig. 1   Bone remodeling and bone regeneration pathways
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Approaches for bone regeneration

The reconstruction of the severely defected and injured 
bones is a highly technical challenge that needs synthetic 
substitutes with osteoinductive and osteoconductive proper-
ties along with sufficient mechanical properties [50]. Several 
approaches for the management of osteoporosis are being 
investigated which includes scaffolds, cements, cell therapy, 
and other alternative medicines.

Scaffolds with potential of bone regeneration

An ideal scaffold for bone regeneration should be bio-
compatible, form chemical bond with the host bone, have 
interconnected pore structure, a surface appropriate for the 
attachment of osteogenic cell, exhibit properties similar to 
the host bone, and possess potential to be commercially pro-
ducible and sterilisable [51]. Figure 2 describes the advan-
tages of scaffolds in bone regeneration.

Bioactive glass scaffolds

Bioactive glass is an ideal material for scaffolds due to rapid 
binding with the bone and having biodegradable nature. Bio-
active glasses are attractive in bone tissue engineering due to 
osteoinductive and osteoconductive properties and promote 
bone growth via proliferation of osteoprogenitor cells [52]. 
Bioactive glass can be made of natural polymers, such as 
collagen, chitosan, silk, or alginate. It can also be prepared 
from synthetic polymers, such as polyesters and copolymers 
[53]. The in vivo and in vitro effectiveness of bioactive glass 
mainly depends on the composition and the pore structure of 
the glass scaffolds. Although direct bonding occurs between 
the scaffold and the new bone, bioactive glass scaffolds have 
limitations. Toughness and mechanical reliability of these 

scaffolds limit their use in loaded bone repair. However, a 
composite with biocompatible coating polymer may aid in 
overcoming this limitation [54]. Chlanda et al. coated bioac-
tive glass with polylactide and polycaprolactone polymers 
for improving mechanical properties, porosity, and adhesive-
ness [55].

Alendronate is orally administered drug used in osteo-
porosis due to its capabilities of inhibiting bone resorption. 
However, systemic administration of alendronate leads to 
poor bioavailability and increased toxicity. Alendronate-
loaded amino-modified bioactive glass scaffolds were pre-
pared using powder processing technique as a novel delivery 
approach. The scaffolds could successfully promote bone 
growth by upregulation of alkaline phosphatase and down-
regulation of RANKL. The histomorphometric assay indi-
cated twofold increase in area of newly formed bones which 
confirms early bone regenerative abilities of amino-modified 
bioactive glass scaffolds in ovariectomized rats [56]. On a 
similar line, zoledronic acid-loaded mesoporous bioactive 
glass fabricated with polycaprolactone were prepared by 
robocasting. The scaffolds showed good in vitro and in vivo 
biocompatibility with osteoblast and osteoclast cells. In vivo 
studies performed in osteoporotic sheep model suggested 
promotion of new bone formation via inhibition of osteoclast 
activity [57].

Combination of calcium and silica glass scaffolds fab-
ricated with strontium were suggested to enhance expres-
sion of various osteogenic and angiogenic markers in 
osteoporosis. The polymerase chain reaction assay showed 
Runt-related transcription factor-2 (RUNX-2), and vascular 
endothelial growth factor (VEGF) were upregulated, thereby 
indicative of osteogenic effects. The increased ratios of bone 
volume to total volume and trabecular thickness compare 
to conventional calcium silica scaffold confirmed in vivo 
bone regenerative abilities of the strontium calcium silica 
scaffold [58]. Similar observation was reported in a study 

Fig. 2   Advantages of bone 
regenerative scaffolds
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where mesoporous strontium bioactive glass scaffolds were 
prepared. The results suggested that new bone formation 
was promoted via upregulation of RUNX-2, alkaline phos-
phatase, and bone gamma-carboxyglutamate protein [59]. 
These strategies are thus well-suited alternatives for delivery 
strontium ranelate.

Hydrogel scaffolds

Hydrogels are promising candidates in tissue engineering 
due to their abilities of promoting biomineralisation and 
osteointegration. Additionally, hydrogels have improved 
mechanical strength and aid in providing suitable environ-
ment for bone regeneration. Hydrogels assist in tailoring 
scaffold geometry, controlling drug release and enhancement 
of porosity [60].

Alginate hydrogel scaffold loaded with β-estradiol and 
BMP2 for sustained release and bone regenerative abilities in 
osteoporosis was prepared by electrospinning. Macroscopic 
analysis of calvaria indicated that the defect was filled, and 
the new bone formation was confirmed by 22% higher 
amount of adipose and connective tissue in the defect area 
[61]. In another study, thermoresponsive alginate hydrogel 
loaded with microsphere of β-estradiol, plasma-rich growth 
factors, and BMP2 was administered locally for regeneration 
of calvaria bone defects in osteoporotic rats. The histological 
and histomorphometric analysis showed that all components 
exhibited a synergistic effect which lead to improvement 
in bone regenerative abilities possibly due to upregulated 
osteocalcin and collagen type I [62].

The composite structure of biomineral combines the 
advantages of both organic and inorganic materials. Mineralised 
hydrogels easily mimic mineral phase of native bones. 
Mineralised hydrogel was prepared using nano-hydroxyapatite, 
sodium carbonate, and polyacrylic acid [63]. The live dead 
assay showed that bone marrow MSCs improved cell viability 
when they were cultured on mineral hydrogel matrix. The 
F-actin intensity was measured after 3-day incubation with 
bone marrow MSCs. The mineral hydrogels showed 1.46 
folds greater F-actin intensity in bone marrow MSCs than 
control suggesting early maturation of bone marrow MSCs 
and enhancement of bone cell functions. The over expression 
of multiple osteogenic markers precisely alkaline phosphatase 
(1.79 folds), RUNX-2 (1.65 folds), osteopontin (1.39 folds), 
and osteocalcin (1.42 folds) is indicative of bone regenerative 
abilities of mineral hydrogel scaffold. The increased oestrogen 
levels and bone volume fraction confirm the bone regeneration. 
The hydrogel showed excellent stability, biocompatibility, and 
osteoconductive abilities [63].

Tissue scaffolds with three-dimensional nanofibrous scaf-
folds were prepared using gelatin, nano-hydroxyapatite, and 
polylactic acid by electrospinning technique. BMP2 was 
later immobilised on the scaffolds and cultured with bone 

MSCs for 14 days to assess change in levels of osteogenic 
markers. The upregulation of alkaline phosphatase, RUNX-
2, and osteocalcin confirmed bone regenerative abilities of 
the scaffold. The micro-computed tomography suggested 
that new bone formation completely filled defects in rat cra-
nial bone defect model of osteoporosis [64].

Bone cements

Bone cements are biomaterials consisting of powder phase 
and liquid phase, which are implanted as a paste at defect 
site and easily set at body temperature. An ideal bone cement 
should have mechanical properties resembling the bone of 
the individual permitting cellular ingrowth and supporting 
new bone formation; it should degrade with time as the new 
bone regenerates and replaces this substitute. Additionally it 
should have ease of handling, injectable nature, and appro-
priate in vivo setting times and should not disintegrate upon 
contact with body fluids [65]. Bone cements are advanta-
geous for development of regenerative alternatives since 
they offer curative solution, perfectly fit implant site, and 
provide assured mechanical support. Figure 3 describes the 
mechanism of action of bone regenerative cements.

Calcium phosphate bone cements

Calcium phosphate cements are extensively used for the 
treatment of bone defects due to biological performance, 
including biodegradability, biocompatibility, osteoinductiv-
ity, osteoconductivity, acceptable in vivo setting time, and 
interactions with cells [66]. Calcium phosphate degrades in 
the body causing release of calcium and phosphate ions lead-
ing to alteration of the bioactivity, including proliferation, 
adhesion, and formation of new bone via the osteoblasts. 
The release of calcium ions increases the local concentration 
of the ions promoting bone mineral formation on the surface 
of calcium phosphate cement. It is crucial in adhesion of 
cells and formation of tissue as it adsorbs the proteins from 
the extracellular matrix onto its surface [67]. Calcium phos-
phate cements are superior in performance as it can be used 
as an injectable in surgical procedures, which makes the 
surgeries minimally invasive [68]. Hydroxyapatite, a natu-
ral form of calcium phosphate, is extensively used in bone 
regeneration and comprises the largest part of the inorganic 
component of the bones. Tricalcium phosphate is a widely 
studied calcium phosphate along with hydroxyapatite; it 
has a high bone resorption rate and is useful in increasing 
biocompatibility. Whitlockite is a ceramic made of calcium 
phosphate and also contains magnesium ions; it is one of the 
most abundant minerals found in human bone [69].

The study reported development of composite bone 
cement by adding calcium silicate to calcium phosphate 
cement that did not affect chemical structure of later and 
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had very little effect on the compressive strength and setting 
time. It was found to improve cell proliferation and enhance 
in vitro and in vivo bioactivity of the cement. Although this 
composite cements can aid in the degradability and bioac-
tivity, the study did not confirm regenerative abilities of the 
cements [70].

Trace elements or trace metals are minerals present in 
biological tissues in relatively minor quantity [71]. A vari-
ety of trace elements like lithium, strontium, zinc, fluorine, 
iron, boron, copper, manganese, magnesium, and selenium 
are osteoprotective which promote activity of osteoblasts 
and suppress action of osteoclasts [72]. Copper acts as a 
co-factor for antioxidant enzymes, whereas magnesium is 
an essential co-factor for regulating calcium metabolism 
[73]. Research investigated fracture healing potential of 
lithium-doped calcium phosphate bone cements. Lithium 
activated Wnt/β-catenin signalling pathway which enhances 
bone formation and leads to increase in bone mass, thereby 
effectively healing the fracture. The presence of lithium in 
calcium phosphate cements also lowered tumour burden and 
suppressed in vivo myeloma development in osteoporotic 
rats. It showed excellent bioactivity, biocompatibility, osteo-
conductivity, and osteointegration abilities [74]. Strontium-
doped calcium phosphate cements also indicated similar 
results where upregulation of alkaline phosphatase was 
identified as key factor for promoting bone growth [75].

Drug-loaded calcium phosphate cements for localised 
treatment of osteoporosis are thought of as key candidates 
for targeting specific skeletal areas prone to osteoporotic 
fractures. Alendronate-loaded calcium phosphate cement 
was reported for localised osteoporosis treatment. Alen-
dronate was released gradually in a sustained manner over a 
period of 21 days. A significant increase in BMD and bone 
volume was reported in ovariectomised rats owing to inhibi-
tion of bone resorption by alendronate [76].

Acrylic bone cements

Acrylic bone cements are another type of cements which have 
been used in the field of orthopaedics since decades. The mar-
keted products of acrylic bone cements consist of two phases, 
i.e. polymethylmethacrylate (82–89% w/w), an inorganic radi-
opacifying agent such as zirconium dioxide or barium sulphate 
(10–15% w/w), and benzoyl peroxide (0.5–2.6% w/w) [77].

Poly methyl methacrylate bone cement is used for man-
agement of osteoporosis-induced fractures. The clinical 
applications are restricted due to poor performance and 
weak binding to the bone. To overcome these limitations, 
mineralised collagen-loaded poly methyl methacrylate 
bone cement was prepared. Improvement in alkaline phos-
phatase and bone marrow MSCs activity was noted which 
indicated bone formation. In vivo studies performed in 
rabbit model indicated significantly increased osteoblast 
activity and new bone area which can be correlated with 
bone regeneration potential of developed cement [78].

With use of poly methyl methacrylate bone cement, there 
is a risk of bone stiffening. Hence, poly methyl methacrylate 
was combined with freshly harvested bone marrow cells from 
sheep. The modified cement showed reduced Young’s modulus 
indicating high porous nature of cement which would over-
come bone stiffening. There was an improvement in mechani-
cal properties like viscosity, setting time, and hardening time 
noted for modified cement. The use of bone marrow cells can 
also assist in bone regeneration; however, there was no experi-
mental evidence drawn from the study pertaining to regenera-
tion potential of developed cement [79].

Cell therapy

An inflammatory stimulus causes a cascade of inflam-
matory and regenerative events for repair and healing of 

Fig. 3   Mechanism of action of 
bone cements
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injured bone. It includes the release of cytokines, alloca-
tion of the immune cells to the wounded site, oedema and 
inflammation of the soft tissue, osteogenic progenitor cell 
differentiation, BMP release, callus formation, and bone 
remodeling [80].

Mesenchymal stem cells (MSCs) are common precur-
sors for adipocytes and osteoblasts. The properties on 
MSCs isolated from bone marrow of healthy individual 
compared with postmenopausal women with osteoporosis 
suggest that the intrinsic properties of MSCs are disturbed 
in those with osteoporosis [81]. The age-related reduction 
in proliferation of MSCs also suggest that MSC therapy 
may be useful in osteoporosis [82].

Cell therapies utilising MSCs, which possess self-
differentiating and self-renewal properties, are the solution 
to many problems associated with bone fracture or bone 
diseases. The migration of endogenous and exogenous 
MSCs to the injured site of the bone is necessary for bone 
healing. Inflammatory mediators secreted by immune 
cells chemokines and TGF-β1 regulate the allotment of 
endogenous MSCs. Immediate use of MSCs post the 
injury cause reduction in local and systemic inflammatory 
response, whereas MSCs administered at intermediate 
periods after the injury participate in healing and repair 
of the bone by differentiation into osteoblasts and 
chondrocytes. This causes stimulation of local endogenous 
allotment of osteoprogenitor cells [83]. MSCs can be 
delivered to the wounded area through local or systemic 
injections. Systemic MSC injections are preferable when 
the injuries are at multiple sites with complex nature, and 
local injections are preferred for single injury.

MSCs were incorporated in a calcium alginate gel matrix 
and injected into femur of ovariectomized rabbits. Post 
8 weeks, 50% increase in trabecular thickness and upregu-
lation of alkaline phosphatase activity was noted in treated 

rabbits which indicates new bone formation [84]. Ocarino 
et al. injected MSCs isolated from healthy rat bone mar-
row into femur of ovariectomized rats where significant 
enhancement in trabecular thickness was noted. The green 
fluorescence protein labelling technique successfully con-
firmed MSCs lining surface of newly formed bone at defect 
site [85].

The main limitations of MSC-based therapy is the 
complexity of cell types to differentiate into osteogenic 
lineage upon treatment, and these therapies are also 
considered to be immune evasive. Thus, cell therapy has 
promising possibility in the treatment of osteoporosis, but 
it comes with many intrinsic obstacles, such as lack of bone 
homing ability in MSCs. Additionally, there is always an 
uncertainty regarding the fate of cell post-implantation 
[86]. Advance research needs to be conducted to evaluate 
and confirm the safety and effectiveness of cell therapy in 
osteoporosis. Figure 4 describes overview of cell therapy as 
bone regenerative approach.

Alternative medicine

The elements present in deep sea water (DSW) and the phy-
toconstituents, such as phytoestrogens, form an integral part 
of alternative approaches for managing osteoporosis [87]. 
Sea water obtained from a depth of more than 200 m is 
referred to as DSW and is rich in various minerals, such 
as calcium, potassium, chromium, selenium, vanadium, 
zinc, and magnesium [88]. It is also known to stimulate 
production of osteoblasts and osteoclasts. Sodium chloride 
present in DSW improves the alkaline phosphatase activ-
ity to stimulate bone growth. In vivo studies indicate that 
combining DSW with soluble silicon promotes proliferation 
of osteoblasts and enhances osteogenesis-related expression 
of RUNX2 genes and alkaline phosphatase [89]. DSW has a 

Fig. 4   Stem cell therapies for 
bone regeneration in osteopo-
rosis
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potential in treatment of osteoporosis by causing significant 
rise in osteoblastic proliferation rate which was observed in 
cytotoxicity assay and increase in osteogenic differentiation 
markers like BMP2, RUNX-2, osteocalcin, and osteopontin. 
Microcomputed tomography images also indicated forma-
tion of new bone in ovariectomized SAMP8 mice after use 
of DSW [90]. Therefore, DSW can be a potential agent for 
the overall improvement of bone health in osteoporosis.

Oestrogen is involved in the life cycle of the bone cells, 
and it also regulates the activity and expression of several 
inflammatory cytokines in bone remodeling. Many cases of 
osteoporosis occur due to lack of oestrogen in postmeno-
pausal women and individuals with hypogonadism. Hence, 
plant-derived oestrogen, also referred to as phytoestrogens, 
can be useful in the treatment of osteoporosis [91]. Phy-
toestrogens are similar to mammalian oestrogens but have a 
milder effect on sensitive tissues, such as uterus and breast. 
Some common phytoestrogens include lignans found in flax-
seeds/linseed, isoflavones found in soy, and flavonoids [92]. 
Epimedium brevicornum maxim, plant rich in phytoestrogen 
flavonoids, was studied for its bone preventive abilities in 
postmenopausal women. Eighty-five participants success-
fully completed the 2-year-long double-blind clinical trial. 
The osteocalcin level was enhanced by 10.7% upon treat-
ment with Epimedium brevicornum maxim (four capsules 
daily). Osteocalcin is a protein synthesised by osteoblasts 
which is indicative of osteogenic maturation and new bone 
formation [93].

Many herbs, known as kidney tonics and used in 
traditional medicines, were tested and proven to enhance 
bone metabolism. In a randomised clinical trial, Herba 
epimedii, Fructus ligustri lucidi, and Fructus psoraleae 
(10:8:2) were boiled and extracted. The in vitro results 
indicated osteoblastic and anti-osteoclastic properties of 
the extract. This extract also showed promotion of BMD 
in ovariectomized rats [94]. In another study, alcoholic 

extract of Antrodia camphorata were proven to promote 
formation of bone cells and prevent bone loss, both 
in vitro with proteoblasts and in vivo in ovariectomized 
mice [95]. Granules prepared from Spinacia oleracea were 
administered orally in drill hole fracture model of rats 
that exhibited bone regeneration potential. One hundred 
twenty-two percent enhancement in bone volume/tissue 
was observed in treated group. Twofold increase in RUNX-
2, BMP2, osteocalcin, and collagen 1 were reported which 
indicates bone regenerative potential of Spinacia oleracea 
granules [96]. Table 2 summarises various herbs known 
to promote bone regeneration in osteoporosis. The data 
suggest the effectiveness of herbs; however, further 
research needs to be conducted to confirm the safety and 
efficacy of herbs in osteoporosis.

Challenges and opportunities

The multiple mechanisms involved in bone regeneration pro-
cess make development of bone regenerative therapies chal-
lenging. To establish a curative treatment for osteoporosis, 
it is essential to understand the mechanisms involved and 
identify a suitable signalling pathway capable of promoting 
bone regeneration process. Hence to bypass this challenge, 
development of molecular targets promoting bone regen-
eration is being looked upon as an upcoming area in the 
current research scenario. Additionally, multi-modal target-
ing strategies having scientific rationale can also be thought 
of as promising alternatives for offering bone regenerative 
potential. However, to witness clinical translation of such 
multi-modal targeting or combination therapies, it is crucial 
to illustrate an improvement in efficacy and safety of pro-
posed treatments. Theoretically, the principles and benefits 
of regeneration are encouraging but only few products have 
reached clinical trials (Table 3).

Table 2   Commonly used herbs for promoting bone regeneration in osteoporosis

Herb Phyto active Mechanism Reference

Withania somnifera (root) Withaferin A, syringic acid, gallic acid, 
naringenin

Increase in RUNX-2 expression, stimulation 
of osteoblast production

[97]

Cissus quadrangularis (aerial plant) Catalpol, eugenol, resveratrol, rutin Stimulate oestrogen signalling and Wnt/β-
catenin signalling pathway

[98]

Tinospora cordifolia (stem) Beta-ecdysone, syringin, carvacrol, 
berberine, magnoflorine

Increase in RUNX-2 expression and 
enhancement of osteoblast precursors

[99]

Moringa oleifera (leaf, seed) Myricetin, quercetin, and kaempferol Decreases PTH [100]
Nigella sativa (seed) Beta-amyrin, campesterol, beta-sitosterol Increases alkaline phosphatases and prevents 

calcium loss
[101]

Butea monosperma (bark) Cajanin, isoformononetin, cladrin, 
medicarpin

Manages osteocalcin level [102]

Ginkgo biloba (leaf) Kaempferol, quercetin, isorhamnetin, 
ginkgolic acid

Increased the expression of genes promoting 
osteoblastogenesis

[103]
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There are various agents, such as chemokines, cytokines, 
growth factors, and other signalling molecules, which can be 
vital in bone regeneration due to their abilities in regulating 
bone formation. However, the use of these agents for bone 
regeneration is hindered due to difficulty in achieving site-
specific targeting and maintaining effective therapeutic con-
centrations at target site [104]. Gene therapy is an alternative 
which can overcome these obstacles in delivery. Although 
gene therapy is not tested in humans, animal models prove 
the efficacy of this novel drug delivery [105]. Exogenous 
genetic material has also been introduced for modification 
and correction of cell function and differentiation. Transcrip-
tion of genes related to critical regulators, such as BMP, 
osteoprotegerin, PTH, and targeted drug delivery in bone 
remodeling has proven to be beneficial in osteoporosis. 
However, further studies need to be conducted to identify 
the safety and efficacy of gene therapy as a novel approach in 
bone regeneration in osteoporosis. As microRNA (miRNA) 
plays a role in epigenetic regulation of the disease and bone 
metabolism, the targeted activation or inactivation of the 
miRNA of specific bones can be another molecular therapy 
to improve the osteoanabolic responses [106].

Functionalization of biomaterials with peptides or natural 
biomolecules which supports bone regeneration and would 
assist in enhancement of targeting efficiency can be thought 

of as another opportunity in developing bone regenerative 
solutions for osteoporosis [107]. Designing of rational com-
bination therapies capable of promoting bone growth could 
help in better management of osteoporosis [108]. The devel-
opment of simpler and industrially scalable manufacturing 
techniques for regenerative approaches would help witness 
early bench to bed translation [109].

Conclusion

The adverse events and complications associated with use 
of present treatments are avoided, and the effectiveness of 
therapies in osteoporosis is significantly improved by means 
of regenerative medicines. The regenerative therapies for 
osteoporosis include use of scaffold, cement, cell therapy, 
and alternative medicines. The regenerative therapies are 
promising for offering curative solutions which would 
improve the quality of long-term treatment for osteoporo-
sis. The personalised medicine aspect to osteoporosis has 
opened new avenues which requires identification of key 
bone regenerative signalling pathways and genes specific to 
each individual. There is a need for further research to be 
conducted to evaluate the safety and efficacy of regenerative 
therapies for osteoporosis to witness clinical translation.

Table 3   Clinical trials for osteoporosis focusing on bone regeneration

NCT number Study title Conditions Interventions Phase

NCT01074723 B-cryptoxanthin and phytosterols on bone 
remodeling and cardiovascular risk factors

Postmenopausal osteoporosis b-cryptoxanthin and phytosterols 1

NCT00100607 Safety and efficacy of AAE581 in 
postmenopausal women with osteoporosis

Osteoporosis AAE581 2

NCT00715676 Phase 2 safety and efficacy study of a vitamin 
D compound (DP001) in postmenopausal 
women with low bone mineral density 
(2MD-3H-2B)

Osteoporosis Placebo, DP001 2

NCT00693667 Study of PH3 for the prevention of osteoporosis 
in postmenopausal women (PH3)

Postmenopausal osteoporosis PH3 2

NCT00018447 Combination osteogenic therapy in established 
osteoporosis

Postmenopausal osteoporosis PTH 1–34, MFPSR-fluoride 2

NCT04501354 Evaluation of clinical and bone density 
improvement after implantation of allogenic 
mesenchymal stem cell from umbilical cord 
on osteoporosis patients

Osteoporosis MSCs 2

NCT02061995 Phase 2a study on intravenous infusion of 
autologous osteoblastic cells in severe 
osteoporosis

Severe osteoporosis PREOB® Intravenous Infusion 2

NCT00471237 A phase II study evaluating SB-751689 in 
postmenopausal women with osteoporosis

Osteoporosis Ronacaleret, Teriparatide, Alendronate 2

NCT00452439 A study of Actonel for the prevention of bone 
loss

Osteoporosis Actonel, calcium, Vitamin D 3

NCT00500409 Safety and efficacy of OSTEOFORM (rhPTH 
[1-34]) in increasing bone mineral density in 
osteoporosis

Osteoporosis Osteoform, Shelcal 3
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