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Abstract
To cure the illness in the brain glioblastoma, the Gliadel wafer, as the first FDA-approved chemotherapy, was available on 
the market since 1997. Due to the complex studies in vivo, more and more researchers have paid their attention to investigate 
the dynamic process in the brain by numerical methods. This study aimed to simulate the drug concentration in the cavity 
after drug releases from Gliadel wafers into the brain tumor by a two-dimensional simulation. The government equations, 
the parameters, and corresponding initial and boundary conditions are specified. Then the models are discretized and solved 
by finite element method (FEM) and finite difference method (FDM) based on C++ library Adaptive Finite Element Pack-
age (AFEPack) and MATLAB, respectively. First of all, the numerical convergence of the method is studied by numerical 
results represented in several successively refined meshes, which shows the reliability of our method. In the results from 
FEM, a steady state of the pressure in the normal tissue can be simulated. As for FDM, the changes of drug concentration 
are displayed at six different times. The numerical method in this paper is an effective tool for the numerical study on drug 
release from polymers. Additionally, convection is a critical factor in drug transportation. Moreover, the simulation approach 
can be used as the guild for remedy optimization and dynamic analysis of other drugs (paclitaxel) for tumor treatment in the 
clinic. This mathematical model has wide applications about drug release in multiple dosage forms, such as long sustained 
release microspheres, oral extended release hydrophilic matrix tablets, hydrogel, and sustained release topical rings.
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Introduction

In 2016, 320000 new cases and 220000 death of central 
nervous system tumors in the USA were reported by the 
University of Washington [1]. The main brain tumors con-
sist of neurogliomas (about 50% ), pituitary tumors (about 
15% ), meningiomas (about 21% ), and schwannomas (about 
8 % ) [2]. As for diagnosis, most tracers may reach tumors 
in the body very optionally when there is a rupture from 

the blood–brain barrier (BBB), where BBB is the site that 
drugs can be controlled restrictively to pass. So the fracture 
of the BBB can be examined by magnetic resonance imag-
ing (MRI) and computed tomography (CT), which are two 
popular diagnostic pointers for brain tumors [3]. For this 
treatment, surgical operation, radiotherapy, and chemothera-
peutics will be combined and against cancers [4].

Gliadel wafer is the first FDA-approved chemotherapy 
to cure brain tumors in 1996 [5]. The whole weight of this 
wafer is 200mg, with a thickness of 1mm and a diameter of 
14.5mm, which can be inserted into the cavity at the loca-
tion where the tumor had been partly excised in surgery. In 
the center of residual brain tumor, the average implantation 
of eight wafers sustainedly releases carmustine at a dosage 
of 61.6mg, bypassing the BBB [6, 7]. Before 2010, BCNU 
(carmustine) wafers were approved as an appurtenance to 
surgical operation and radiation therapy in sufferers against 
neurogliomas and recrudescent glioblastoma multiforme [8]. 
Comparing to systemic chemotherapy, this treatment, which 
avoids repetitive injections and keeps a high local concentra-
tion in the target site, makes an extended survival time [9]. 
In one clinical test, four patients have been implanted with 
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BCNU wafer to treat glioblastoma multiforme, and the sur-
vival time is in the range of 14 to 33 months, which is longer 
than the average of nearly 15 months as the survival time 
reported in another clinical test by the European Organisa-
tion Research and Treatment of Cancer (EORTC). In order 
to improve the opportunity of favorable patient results, clini-
cians sometimes combine BCNU wafers with other radio-
therapies and chemotherapies [8], because the experimental 
tools are difficult to measure drug distribution in tumor sites. 
However, numerical methods are able to simulate the drug 
release process from the injection site to the tumors [10].

Simulation researches for this are sharply rising in recent 
years. Saltzman and Radomsky [11] initially built a one-
dimensional model to research the agent distributed and 
eliminated in the brain when the drug release from a poly-
mer. Fung et al. [12] illustrated the spatial distribution of 
BCNU, containing the amount and concentration of drugs 
nearby the polymer implants upon a one-month period in 
the rat brain. Kalyanasundaram et al. [13] added FEM and 
construct a two-dimensional (2D) model to predict the agent 
distribution delivered to a rabbit brain. Wang et al. [14] 
and Tan et al. [15] updated the abstract model via three-
dimensional human brain tumors and added the convection 
influences which could be significant after surgery. Arifin 
et al. [6, 7] constructed an ordinary differential equation 
(ODE) model, which assumed that the concentration is not 
related to time steps. In summary, all of the preceding stud-
ies offered advantageous knowledge for better therapeutics 
against brain tumors, emphasizing the contribution of math-
ematical simulation. Sometimes, combining the numerical 
methods in partial differential equations (PDEs) with the 
ODE system may describe the systemic model precisely. 
Actually, ODE is always considered the single variable or 
parameter, which can show some specific mechanisms, but 
it may lack the component of the dynamics in the spatial 
region of the tumor if the PDE is neglected [16].

The purpose of this study is mainly to do the two-
dimensional PDE model for pressure in the brain tissue and 
carmustine releasing from Gliadel® wafers by numerical 
methods. To simplify the study, the domain of this problem 
used for modeling brain and tumor should be a bounded 
one, and it is restricted from R3 to R2 , which stands for a 
slice of the brain . The drug release is researched inside 
the brain slice because the reduction of the dimension will 
significantly simplify the study to explain some potential 
phenomena. First method is the FEM, which is a modern 
computational method that is used for solving problems in 
the mathematical models. Here, a mass continuity equation, 
a constitutive equation, and a simple momentum equation 
in the brain tissue are integrated into a new elliptic equation 
that contains an unknown variable (pressure in the inter-
stitial fluid) and can be discretized into a system of matrix 
formulation. In detail, this large system will be subdivided 

into smaller portions that are called finite elements. This can 
be attained by a special space discretization in the spatial 
dimensions, which is performed by the building of a mesh 
of the model geometry: a finite number of points will be con-
tained in the giving domain for the numerical solution. The 
form of a boundary value problem finally converts to a sys-
tem of algebraic equations, and then they are approximated 
by the unknown function in the domain. Since the practical 
problems in brain tissue are difficult to obtain accurate solu-
tions, the variational methods will be utilized from the vari-
able calculus to approximate a solution by minimizing an 
associated error function. After the discretization, the cor-
responding codes will be written into a flexible and general 
computer program AFEPack [17]; this package is actually 
a library of classes for finite element processing. Next, the 
numerical solution in every discretized point can be dis-
played by a visual software Open Data Explorer (OpenDX) 
which is able to handle the complex domains (like the human 
brain) along with measured or computed data. Afterward, 
the details of the simulation result will be obtained. Sec-
ond is the FDM, and this numerical method is a direct way 
for solving PDE by approximating derivatives with finite 
differential. In this research, the given conservation equa-
tion of the concentration is the standard formulation of the 
diffusion–convection–reaction equation. After simplifying 
the equation in the cavity and the computational domain by 
a regular shape, the modified PDE will be discretized, or 
subdivided into a finite number of steps, then it is converted 
into a system of linear equations, and the solution value is 
approximated by solving the algebraic equations at those dis-
crete points. Subsequently, the relevant codes will be created 
and compiled with the discretizing equation in MATLAB. 
Also, the effect of the convection flow is considered in an 
ODE model, following the former research in the references 
[6, 7] with some modifications. Moreover, by comparing the 
experimental data with the numerical results, it is captured 
that convection is significant and these methods can be uti-
lized on other potential models, such as sustained release 
microspheres and oral extended release hydrophilic matrix 
tablets, for the further studies.

Models and methodologies

Mathematical model

The information of the tumor model is from [6]. The geom-
etry of a patient brain tumor was acquired from MRI. This 
procedure could rebuild the brain geometry precisely of +∕− 
3 mm. The volume of the concrete tumor is 12.8 cm3 , with an 
average radius (R) of this sphere of 14.5 mm. After complete 
tumor resection, the tumor remains about 60% of an open cav-
ity in the center part and the equivalent thickness (L) of the 
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left tumor is around 2.3 mm around the leftover tumor. After-
ward, eight wafers will be implanted in the cavity by Surgical 
cellulose [6, 7]. Figure 1 shows the site of the ventricle and 
brain tumor in the brain. Figure 2 portrays a simple image 
performance with a cut section of the brain. �Ω1 , �Ω2 , �Ω3 
are the different domain boundaries. Domain Ω1 shows the 
normal tissue of the brain, domain Ω2 delineates the remnant 
tumor part which is remained from the surgical operation, 
the portion of the excision cavity is shown in the domain Ω3 , 
and in the most inner domain Ω4 , there are the eight Gliadel 
wafer implants.

Transport equations

In this research, the brain tumor is dealt with as a spatially 
homogeneous domain, due to the absence of in vivo data to 
demonstrate the heterogeneous distribution. The mass continu-
ity equation in the interstitial space for the normal tissue can 
be expressed as:

(1)∇ ⋅ v = Fbv,

where v is velocity vector in the interstitial space, Fbv repre-
sents the change of net fluid flow obtained from capillary in 
the blood circulation system. It also satisfies Starling’s law:

Here, Lbv is the hydraulic conductivity from the vascular 
wall, S is the vascular surface area, and V is the parallel 
volume in the normal tissue. pbv and pin are the pressure in 
the blood vessel and interstitial space, respectively. �bv is the 
osmotic pressure in the vascular space, and �in is the intersti-
tial space osmotic pressures. �T is the coefficient of osmosis 
reflection for the plasma proteins [18]. In the brain, due to 
the absence of lymphatic vessels by functional operation, 
the fluid loss in the lymphatic system can be neglected [19].

Both the normal tissue and brain tumor are regarded as a 
porous medium that satisfies Darcy’s law, because of drug 
transportation scale is not always shorter than the distance 
among the capillaries [20, 21].

The expression form of mathematical equation about this 
phenomenon is:

(2)Fbv = Lbv

S

V

[
pbv − pin − �T

(
�bv − �in

)]
,

Fig. 1   The model geometry of 
the brain, showing the presence 
of ventricle (the brown part), 
tumor (red part), and rest is the 
normal brain tissue
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where � and � are the interstitial space density and interstitial 
space viscosity, respectively. K is the normal tissue perme-
ability , and t is time [22].

The velocity in the interstitial fluid could be further 
rewrite by the direct proportion of pressure gradient because 
of the Darcy’s law [6, 7, 14, 23]:

then a steady equation can be solved [24] by combining Eqs. 
(1), (2) and (4):

The dimensionless modalities of mass continuity and motion 
equations could be shown to:

where ∇̃ = Lbr∇ and Lbr is the brain average radius. 
ṽ = v∕vc, here vc is the scalar velocity in the interstitial 

(3)�
(
�v

�t
+ v ⋅ ∇v

)
= −∇pin + �∇2v +

�

K
v,

(4)v = −
K

�
∇pin,

(5)∇2pin =
�

K
Lbv

S

V
pin −

�

K
Lbv

S

V
[Pbv − �T(�bv − �in)].

(6)∇̃ ⋅ ṽ = F̃bv,

(7)𝜕ṽ

𝜕𝜏
+ ṽ ⋅ ∇̃ṽ = −

(pv − po)

𝜌v2
c

∇̃p̃in +
1

Re
∇̃2ṽ −

1

Re
(
L2
b

K
)ṽ,

space, i.e. 1 × 10−7 m/s in the brain tissue. pv and po are 
the pressure from ventricle part and normal tissue domain, 
respectively, and p̃in =

(
pin − p0

)
∕
(
pv − p0

)
 is the dimen-

sionless pressure [7]. � is the dimensionless time, and the 
form of Re = �Lbvc�

−1 is Reynolds number.
In the normal tissue, drugs could be divided into two 

various forms as free (F) and bound (B). Moreover, brain 
normal tissue is constituted by three compartments: cell 
membrane(CM), extracellular/interstitial space (ES), and 
intracellular space (IS). Only drugs in free form could cross 
through the CM into the interior space [25]. The drug transport 
among three compartments is graphically depicted in Fig. 3.

The drug concentration in both two forms can be described 
by:

Here, � is the extracellular spaces volume fraction, and 
� is the cell interior volume fraction. Due to there is no 
elimination or bound effect between drugs and proteins on 
cytomembrane, BCM , the equivalent agent concentration in 
bounded state, is assumed to be 0 [25].

In extracellular space, the availability of the free drug is 
related to drug transport by diffusion, convection, metabolism, 
and local proteins binding. Then the drug concentration equa-
tion could be demonstrated by:

where DES is agent diffusivity in the extracellular space, t is 
time, kbbb is the elimination constant for agent passing the 
BBB, ke is the elimination velocity because of reactions by 
enzymatic and non-enzymatic processes. By presuming the 
linear relationship of free and bound drugs concentration [6, 
7, 26], and the equivalence of free drugs among ES, CM, 
and IS, (PIS−ES = FIS∕FES;PCM−ES = FCM∕FES ) [11, 22, 27], 

(8)
F = �FES + �FIS + (1 − � − �)FCM

B = �BES + �BIS + (1 − � − �)BCM ,

(9)

�F

�t
= �DES∇

2FES − ∇ ⋅

(
vFES

)
− �

(
kbbb + ke

)
FES − �keFIS −

�B

�t
,

Fig. 2   The model of the tumor in the brain. The region Ω1− the nor-
mal tissue, Ω2− the remnant tumor, Ω3− the cavity. The boundary 
�Ω1− the external boundary, �Ω2− boundary between residual tumor 
and brain normal tissues, �Ω3− boundary between the cavity and 
residual tumor. Ω4 represents the wafer area. Eight blue lines repre-
sent the eight Gliadel wafers in the center of the cavity

Fig. 3   The situation for drug transport in ES, CM, and IS
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the agent concentration equation is the simplified form as 
follow:

Here, �∗ = �
(
1 + K

ES

)
+ �P

IS−ES

(
1 + K

IS

)
+ (1 − � − �)P

CM−ES is a parameter value that reflects the agent capacities 
of local binding and cell membrane partitioning, v∗ = v∕�∗ 
is the apparent velocity in the extracellular space, and 
D∗ = (�∕�∗)DES is the agent apparent diffusion coefficient 
in brain tissue. k∗ =

[
akbbb + (a + �)ke + Fv

]
∕�∗ is the appar-

ent elimination constant [7, 27].
In the cavity, carmustine is in the interstitial fluid for 

transport. Diffusion and convection can influence without 
any limitations due to the local binding with proteins and 
cell membrane partitioning can be ignored. Therefore, the 

(10)
�FES

�t
= D∗∇2FES − v∗ ⋅ ∇FES − k∗FES,

diffusion–convection–reaction equation of drug distribution 
in the extracellular space can be described by the following:

where v is the velocity vector in the extracellular space and 
could be calculated by the Eq. (4) [6], and kc is the elimina-
tion parameter in the open cavity [28].

Parameters

Summarized in two tables, Tables 1 and 2 provide the 
equation parameter values related to the brain tissue, and 
anticancer drugs [29]. In human brain, the entire flow 
speed of interstitial fluid is approximately 5.83 × 10−6 
kg/s [30, 31]. The initial concentration is assumed to 

(11)
�FES

�t
= DES∇

2FES − v ⋅ ∇FES − kcFES,

Table 1   Parameters in the brain tissues

Symbol Parameter Cavity Remnant tumor Normal tissue Source

Fbv   Hydraulic conductivity (m/Pa/s) N/A 1.1 × 10−12 1.4 × 10−13 Arifin et al. [7]
� Volume fraction of interstitial fluid 1 3.5 × 10−1 2 × 10−1 Fung et al. [12]; Kalyanasundaram et al. 

[13]
� Volume fraction of intracellular space 0 5.5 × 10−1 6.5 × 10−1 Fung et al. [12]; Kalyanasundaram et al. 

[13]
� Density in the extracellular space (kg∕m3) 1 × 103 1 × 103 1 × 103 Green and Perry [32]
� Viscosity in the extracellular space 

(kg/m/s)
7 × 10−4 7 × 10−4 7 × 10−4 Green and Perry [32]

pbv   Pressure in blood vessel (Pa) N/A 4.61 × 103 4.61 × 103 Kimelberg [33]
pv   Pressure at the ventricle (Pa) 1.4474 × 103 1.4474 × 103 1.4474 × 103 Kimelberg [33]
po   Pressure at outer phase (Pa) 6.579 × 102 6.579 × 102 6.579 × 102 Kimelberg [33]
S

V
   Surface area of vascular blood per tissue 

volume  (m−1)

N/A 2 × 104 7 × 103 Baxter and Jain [20]

�bv   Osmotic pressure in the blood vessel (Pa) N/A 3.44 × 103 3.44 × 103 Kimelberg [33]
�in   Osmotic pressure in the interstitial fluid 

(Pa)
N/A 1.11 × 103 7.4 × 102 Baxter and Jain [20]

�T   Osmotic coefficient of blood tissue N/A 8.2 × 10−1 9.1 × 10−1 Baxter and Jain [20]
K Darcy permeability (m2) 1.0 × 10−11 6.4 × 10−14 6.4 × 10−15 Arifin et al. [7]

Table 2   Parameter values about carmustine

Symbol Parameter Carmustine Source

MW Molecular mass (g/mol) 2.14 × 1o2 Wolff et al. [34]
DES Diffusion coefficient in the extracellular space (m2∕s) 1.5 × 10−9 Fung et al. [12]
PIS−ES Distribution coefficient between cellular and interstitial fluid 1 Fung et al. [12]
PCM−ES Distribution coefficient between cell membrane and interstitial fluid 1.03 × 102 Fung et al. [12]
KES,KIS Binding constant of free and bound agent in the extracellular and intracellular fluid 5.0 Fung et al. [12]
kbbb Drug elimination from microvascular bed (1/s) 1.4 × 10−2 Fung et al. [12]
ke Drug elimination because of reactions by enzymatic/non-enzymatic process(1/s) 1.1 × 10−4 Fung et al. [12]
kc Cavity elimination constant(1/s) 9.63 × 10−5 Fleming and Saltzman [35]
FES,eff Effective therapy of concentration (kg∕m3) 3.2 × 10−3 Fung et al. [25]
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be 0.05 kg∕m3 due to the ratio of dosage of carmustine 
in each wafer to the volume of the cavity by surgically 
removed.

Numerical methods

The method on interstitial pressure

The mathematical model about the pin distribution in the 
brain is based on AFEPack and FEM, Aiming at the Eq. 
(5), discretization is necessary by using the Ritz-Galerkin 
method. A simple picture about the boundary and domain 
can be showed by Fig. 4.

Here we let

then Eq. (5) can be written as follow:

u = pin,

a1 =
�

K
Lbv

S

V
,

b1 =
�

K
Lbv

S

V
[Pbv − �T(�bv − �in)],

(12)∇2u = a1u − b1 in Ω1,

(13)u(x, y) = 1447.4 on �Ωven,

(14)u(x, y) = 657.9 on �Ω1,

where Ω1 is the open boundary about the normal brain, with 
a piecewise and smooth boundary �Ω1 , Ω = Ω1 ∪ �Ω1.

If U ∈ H1(Ω1) × H1(Ω1) is a vector in 2D, then

where H1(Ω1) a Hilbert space, n is the unit normal vector 
which points at the boundary �Ω1 , and dr is a line element.

Let U = v∇u =
[
v
�u

�x
, v

�u

�y

]T
 , then

where n = (nx, ny)(n
2
x
+ n2

y
= 1) is the unit normal vector, 

then �u
�n

= ∇u ⋅ n = nx
�u

�x
+ ny

�u

�y
.

The format of a linear elliptic PDE in second order is

the discriminant of this equation is B2 − AC < 0 . The format 
of a self-adjoint elliptic PDE in second order is

let u(x, y) ∈ H2(Ω1) , v(x, y) ∈ H1(Ω1) , then

Transforming the equation and adding an arbitrary test func-
tion v(x, y) ∈ H1(Ω1) , then

and utilizing the integration by parts then the equation will 
be as follow:

The weak form of this is

(15)∬Ω1

div Udxdy = ∬Ω1

∇ ⋅ Udxdy = ∫�Ω1

U ⋅ ndr,

(16)

∬Ω1

∇ ⋅ Udxdy = ∬Ω1

(vΔu + ∇u ⋅ ∇v)dxdy

= ∫�Ω1

U ⋅ ndr

= ∫�Ω1

v∇u ⋅ ndr = ∫�Ω1

v
�u

�n
dr,

(17)

A(x, y)uxx + 2B(x, y)uxy + C(x, y)uyy + D(x, y)ux + E(x, y)uy

+ F(x, y) + G(x, y)u = 0

(18)−∇ ⋅ (m(x, y)∇u) + n(x, y)u = F(x, y),

(19)∬Ω1

vΔudxdy = ∫�Ω1

v
�u

�n
dr −∬Ω1

∇u ⋅ ∇vdxdy.

(20)∬Ω1

(−∇2u) + a1u)vdxdy = ∬Ω1

b1vdxdy,

(21)∬Ω1

(∇u ⋅ ∇v + a1uv)dxdy − ∫�Ω1

vundr.

(22)

∬Ω1

(∇u ⋅ ∇v + a1uv)dxdy =∬Ω1

b1vdxdy

+ ∫�ΩN

g(x, y)v(x, y)dr

for ∀v(x, y) ∈ H1(Ω1),

Fig. 4   The model of the ventricle. The region Ω1− the normal tissue, 
The region Ω

ven
− the ventricle surface, The boundary �Ω1− the exter-

nal boundary, �Ω
ven

− boundary on the ventricle part
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here, �ΩN is called as Neumann boundary condition.
The solution space of the above equations is

here �ΩD is Dirichlet boundary condition.
Then, the definition of the bilinear format is

and the linear form is

A basis function of the piecewise linear functions in H1(Ω1) 
can be defined as

Then

where Vh = {v(x, y) is continuous in Ω1 and piecewise linear 
over each non-overlapping triangles v(x, y)|�Ω1

= 0
}
.

then

that is

The method on concentration

The simulation of the concentration in cavity is supported 
by MATLAB via second-order FDM, and each term about 
discretization of the government equation is gained by the 
Euler method, first upwind scheme and second-order explicit 
scheme. Cavity is regarded as a square with length rc is 8.7 
mm. The agent concentration will be negligible in the Ω1 , 
Ω2 , Ω3 at the initial condition.

(23)

V =
{
v(x, y), for v(x, y) = 0, and (x, y) ∈ �ΩD,

for v(x, y) ∈ H1(Ω1)
}
,

(24)B(u, v) = ∬Ω1

(∇u ⋅ ∇v + a1uv)dxdy,

(25)L(v) = ∬Ω1

b1vdxdy.

(26)�i(xj) =

{
1, when i = j;

0, otherwise .

(27)�i ∈ Vh, U =

N∑

i=1

ui�i, ui are unknown scalars,

(28)v =

N∑

i=1

vi�i,

(29)B

(
N∑

j=1

(
Uj�j,�i

)
)

= L(�i), j = 1,… ,N,

(30)
N∑

i=1

[(∇�i,∇�j) + (a1�i,�j)]ui = (b1,�j), j = 1,… ,N.

Firstly we let

the next step is to choose integers n = 64 to define step size 
h = (xn − x1)∕n , where xn  and x1 are the end point and start 
point of given interval in x axis, respectively, and do the 
same as in y axis. k is time step size.

The Eq. (11) can be expressed by:

u = FES,

a = DES,

b = v,

c = kc

(31)
�u

�t
= a

(
�2u

�x2
+

�2u

�y2

)
− b(ux + uy) − cu,

(32)
�u

�t
(xl, ym, tn) =

1

k

(
un+1
l,m

− un
l,m

)
,

(33)

a

(
�2u

�x2
+

�2u

�y2

)
(xl, ym, tn)

=
a

h2

(
un
l−1,m

− 2un
l,m

+ un
l+1,m

+ un
l,m−1

− 2un
l,m

+ un
l,m+1

)

=
a

h2

(
−4un

l,m
+ un

l−1,m
+ un

l+1,m
+ un

l,m−1
+ un

l,m+1

)
,

(34)

−b(ux + uy)(xl, ym, tn) = −
b

h

(
un
l,m

− un
l−1,m

+ un
l,m

− un
l,m−1

)
,

(35)−cu = −cun
l,m
,

(36)

un+1
l,m

= un
l,m

− ckun
l,m

+
ak

h2

(
−4un

l,m
+ un

l−1,m
+ un
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(
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l,m
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=
(
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4ak
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h

)
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+
(
ak

h2
+

bk

h

)(
un
l−1,m

+ un
l,m−1

)

+
ak

h2

(
un
l+1,m

+ un
l,m+1

)
.

(explicit scheme)

(37)

un
l,m

=
(
1 + ck +

4ak

h2
+

2bk

h

)
un+1
l,m

−
(
ak

h2
+

bk

h

)(
un+1
l−1,m

+ un+1
l,m−1

)

−
ak

h2

(
un+1
l+1,m

+ un+1
l,m+1

)
.

(implicit scheme)
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Boundary condition

The ventricle surface pressure and normal brain tissue pres-
sure are chosen as 1447.4 Pa [33] and 657.9 Pa [36], respec-
tively. All variables among the �Ω1 , �Ω2 , �Ω3 are presumed 
to be continuous.

Results and discussion

Numerical results of pin distributed in the brain

Figure 5 displays the 2D distribution of the interstitial pres-
sure around the ventricle to the whole brain, the high pres-
sure is red surrounding the ventricle, which diffuses to the 
external environment of the brain. This is a steady situation 
in tumor, due to the simplification of � is not relevant with 
t in Eq. (4). In order to show the numerical convergence, a 
relatively dense mesh will be assumed as the analytic solu-
tion (after four times refinement), then by comparing the 
coarse mesh and the assumptive true solution, the L2-error 
and L1-error can be obtained by comparing the next mesh 
with the above one with their convergence rate. The refine-
ments of mesh grids are shown in Fig. 6, and the meshes are 
more and more smooth because of the increase of elements, 
with the error in Table 3.

Numerical results of drug distribution in the cavity

Equation (9) has a dimensionless format, which could be 
transformed as

where Γ = FES∕FES,eff is dimensionless agent concentration 
normalized to the effective therapy of concentration, � = tkc 
is the time in dimensionless form of the agent elimination 
due to degradation into the cavity, Lc(= 1 cm) is the length 
scale of the cavity size, ṽ = v∕vc is the dimensionless extra-
cellular space velocity. In this simulation, v = 8 × 10−7  m/s 
is volume-averaged velocity. P ec = vcLc∕DES = 2 is a Peclet 
number that observes the significance of convection influ-
ence diffusion into the open cavity [6, 7]. �c = xc∕Lc is dis-
tance from cavity interface ( xc ) normalized to the cavity size 
length scale ( Lc).

Combining with the assumption in Subsection 2.4 and 
the concentration on boundary �Ω3 which is regarded to be 
0, Fig. 7 reveals the numerical results of the dimension-
less concentration Γ against to the dimensionless distance 
�c . There are two significant messages which can be shown 
by the following pictures. Firstly, the carmustine concentra-
tion reaches effective therapeutic conditions ( Γ > 1 ) nearly 
before 120h. After that, the drug dimensionless concentra-
tion decreases below the effective concentration ( Γ < 1 ). 
Next, the loss of carmustine concentration in the cavity is 
mainly by the diffusion. Due to the coefficient of convection 
term v is assumed to be the average one, the influence of 
convection is showed by the concentration that shifts in the 
upper right corner. The domain is assumed to be a regular 
geometry, which shows the numerical results in this mesh 
after discretizing. The direction of the upper right means a 
specific trend primarily affected by the combination of dif-
fusion, convection and reaction in this 2D plane. It depends 

(38)
�Γ

��
= ∇̃2Γ − Pecṽ ⋅ ∇̃Γ − Γ,

Fig. 5   The steady state of pin 
contour on the surface of the 
brain
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on the establishment of the coordinate system and the drug 
placement in the initial time., and the penetration to remnant 
tumor is limited, even at the start time when carmustine 
concentration is high in the cavity. The details of this are 
discussed in next section.

Approximately 120h is the period of the carmustine 
releasing in vivo; As for Gliadel wafers in the interstitial 
fluid, the period of complete degradation of this wafer is 
from 42 to 56 days, and the metabolic elimination studies 
have shown that the products of carmustine degradation are 
excreted mainly by urine [35], which is nearly anastomotic 
in the above simulation.

The reason that the FEM is not utilized on this diffusion– 
convection–reaction equation is that when the influ-
ence of convection is far greater than that of diffusion, it  
will bring many difficulties to the numerical solution, such 
as numerical oscillation and numerical excessive diffusion. 
Hence, to maintain the stability of the final results, FDM 

seems a satisfactory way to simulate the process. On the 
whole, the two numerical methods are feasible to estimate 
the different conditions in the brain tissue and to simulate the 
approximate results in the different parameters.

Drug penetration to the remnant tumor

To consider the influence of convection flow precisely, the 
hypothetical lines I, II, III will represent three different direc-
tions of convection flow. The diffusion permeates from cavity 
to remnant tumor because of the changes of concentration, 
which is on account of the gradient of the concentration. As 
a consequence, the convection flow inline I cooperates with 
diffusion, thereby enhancing the penetration. Along with II is 
the place where convection is neglectable due to it is vertical 
to the cavity surface. As for line III, convection restricts the 
effect of diffusion. Hence, in this region, the permeation is 
suppressed [7]. (see Fig. 8)

One simple preceding equation is analyzed under the 
assumption of quasi-steady conditions, which can be studied 
by:

where Γt = FES∕Fc is the dimensionless agent concentra-
tion uniformized to the interfacial surface between the open 

(39)0 =
d2Γt

d�2
− Pet

(
vx

vc

)
dΓt

d�
− Γt,

Fig. 6   Four successively refined 
mesh, with (a) 12028 elements, 
(b) 48112 elements, (c) 192448 
elements, (d) 769792 elements

Table 3   The error and the convergence rate

dx L2 Error Norm rate2 L1 Error Norm rate1

1/70 6.3e-2 1.41 4.1e-3 1.44
1/140 2.37e-2 1.49 1.5e-3 1.52
1/280 8.47e-3 1.81 5.27e-4 1.83
1/560 2.42e-3 - 1.48e-4 -
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cavity and remnant tumor, 
(
Fc

)
 and � = x∕Lt is the dimen-

sionless distance from the interfacial surface between the 
open cavity and remnant tumor (x) uniformized to the length 
scale of the diffusion/reaction Lt(Lt =

√
D∗∕k∗ = 0.3 mm). 

Pet is the Peclet number which observes the significance of 
convection effect on diffusion in the tumor tissue. For car-
mustine, Pet is 0.06. vc = 1 × 10−7 (m/s) is the characteristic 
velocity in both remnant tumor and nearby normal tissue.

The boundary conditions contain: (i) the agent con-
centration is 1 at the beginning of penetration in the 

cavity/remnant interfacial surface 
(
Γt = 1 for � = 0

)
 , 

(ii) the agent concentration is nearly 0 at infinite site (
Γt = 0 for � = ∞

)
 . Hence, for the velocity ( vx ) is 

an unchanged parameter, the form of solution can be 
expressed by following:

where p = vx∕2
√
k∗D∗ . p reflects the importance of convec-

tion influencing carmustine penetration [6, 7].

(40)Γt = e(p−
√
1+p2)� ,

Fig. 7   The contour dimension-
less concentration on the cavity 
surface in six different times. 
(a) 0 hour, (b) 8 hour, (c) 24 
hour, (d) 48 hour, (e) 72 hour, 
(f) 120 hour. x, y are both the 
dimensionless distance �

c
 in two 

directions. The changes of Γ are 
revealed by the color bar
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Figure 9 compares the numerical solutions about Γt 
versus the penetration distance (x/L, here L is 2.3 mm, 
which represents the thickness of the remnant tumor, ). 
For line I (p = 0.12) , convection can stretch the distance 
of penetration enhancing drug penetration, compared 
with the pure diffusion and reaction. It seems to be the 

opposite for line III (p = −0.18) , where the penetration 
could be repressed by convection due to the concentra-
tion is nearly 0 at the end of the boundary. Along line 
II (p = 0.02) , the penetration is mainly influenced by dif-
fusion or reaction [7]. Nonetheless, the convection effect 
slightly on the concentration profiles, which means that 
carmustine transport is dominated by diffusion. However, 
the numerical results are not totally accurate because the 
assumption of the tumor is infinite. In the normal tumor, 
there will be a boundary �Ω2 to control the decreasing 
concentration.

In dimensionless analysis, the value of relevant param-
eters, like Γt and � , are strictly set to be between 0 and 
1 for the purpose of obtaining the more intuitive pic-
ture. Otherwise, it would not be linear. In order to show 
the two-dimensional simulation in the remnant tumor, 
it is assumed that there is a steady concentration on the 
boundary between cavity and remnant tumor which is 
a semiannular region, and the inner part is the cavity. 
Because of the Peclet number Pet  = 0.06 in remnant 
tumor is much less than the Pec = 2 [6], the convection 
in this result is not as obvious as former study, the promi-
nent part is the diffusion term which can be showed by 
Fig. 10.

Combining with the simulation in the Fig. 7, it is almost 
certainly that the drug will release to a specific direction due 
to the influence of diffusion convection and reaction. In the 
actual administration of the drug, it may produce a better 
effect by following the integrate direction.

Fig. 8   The direction of three different lines to show the convection 
flow

Fig. 9   The carmustine penetra-
tion among line I, (i.e. data 1), 
line II, (i.e. data 2), line III, (i.e. 
data 3). The concentration is 
from 0 to above 0.4 along line I, 
for line II, the concentration is 
below the 0.4, and it is nearly 0 
when � is closed to 1 due to the 
inhibiting effect of convection
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The convection affected by two drugs in monkey 
brain

In the previous research, the site of the drug was gained 
by scanning the coronal plane and the concentration was 
estimated from the edge of the polymer implant at different 
days [25]. it may reduce the influence of drug penetration 
by convection because the fluid flow is from the ventricle 
to the outer boundary of the brain. Also, all tests here were 
proceeded in normal tissue. Figure 11 shows the concen-
tration of two drugs in numerical data calculated by Eq. 
(40) comparing with the experimental statistics which are 
gained from monkey brain [25]. Y is the dimensionless con-
centration in the normal tissue, and X = xn∕Ln represents 
the dimensionless distance from the surface of the polymer 

pellet in the normal brain. where Ln = 0.3mm is the diffu-
sion/reaction length scale. In Fig. 11(a), as p is between 0.8 
and 2.2, the convection would exist in the monkey brain [6]. 
The penetration of carmustine is heightening on day 7 and 
day 14 ( p = 2.2 ), and it is not obvious on day 30 ( p = 0.8 ). 
This may be influenced by the vanishment of the edema or 
the rate of drug penetration is retarded. For Fig. 11(b), p′ is 
the importance of convection influencing paclitaxel penetra-
tion with the fitted value from −0.5 to 0.3, the penetration 
of paclitaxel in day 1 ( p�

= −0.5 ) is more enhanced than the 
data in day 3 and day 5 ( p�

= 0.3 ), this may advice that the 
velocity of paclitaxel penetration is larger than carmustine, 
or it is influenced rarely by the edema. In the numerical 
solution, the more enhanced penetration will be obtained if 
the p or p′ is larger.

Fig. 10   The change from 
boundary between the cavity 
and remnant tumor to the outer 
tumor layer with � from 0 to 2.5
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Conclusion

This study explores the concrete simulation (pressure, con-
centration) in the brain tumor, which demonstrates that 
numerical methods are effective ways to combine with the 
process of drug release and provides a mechanistic expla-
nation for clinical tests. Although diffusion is the domi-
nant transportation way, the influence of the convection is 
significant, especially in the remnant tumor after surgery 
due to the concentration moves to a nearly fixed direction. 
Besides, these simulation results can be regarded as a guide 
for remedy optimization and dynamic analysis of other drugs 
(paclitaxel) for tumor treatment. Moreover, the mathemati-
cal model may have a wide application on drug release in 
multiple dosage forms, such as long sustained release micro-
spheres, oral extended release hydrophilic matrix tablets, 
hydrogel, and sustained release topical rings.
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