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Abstract 
Implantable biomaterials are essential surgical devices, extending and improving the quality of life of millions of people 
globally. Advances in materials science, manufacturing, and in our understanding of the biological response to medical 
device implantation over several decades have resulted in improved safety and functionality of biomaterials. However, post-
operative infection and immune responses remain significant challenges that interfere with biomaterial functionality and host 
healing processes. The objectives of this review is to provide an overview of the biology of post-operative infection and the 
physiological response to implanted biomaterials and to discuss emerging strategies utilizing local drug delivery and surface 
modification to improve the long-term safety and efficacy of biomaterials.
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Introduction

Biomaterials are implanted in tens of millions of patients 
globally, with more than 13 million procedures occurring 
annually in the USA alone [1]. Biomedical implants have 
been employed in almost every domain of surgery, rang-
ing from microscale implants in microvascular and oph-
thalmic surgery to macroscopic devices in orthopedic and 
general surgery. Interaction between the host environment 
and implanted biomaterials begins immediately upon intro-
duction, after which biomaterials may become coated with 
serum proteins, aqueous humor, mucosal secretions, micro-
biota, and/or extracellular fluids depending on their location 
in the body [2]. This makes the biomaterial surface highly 

susceptible to microbial as well as host cellular adhesion. In 
1987, orthopedic surgeon, Dr. Anthony Gristina postulated 
that “a race to the surface” would result in (i)  bacterial adhe-
sion to the surface of the material and proliferation into a 
biofilm leading to infection or (ii) host cell encapsulation of 
the biomaterial with extracellular matrix to isolate it from 
host tissues [3]. Accordingly, infection and inflammation are 
the two primary causes of medical device complications and 
failure, both of which are mediated by cellular interaction 
with the biomaterial. Thus, it is desirable to engineer bio-
materials that are both resistant to contamination/biofouling 
and can successfully integrate with host tissue. Biomaterial-
associated infections lead to an increased annual economic 
burden of more than $11 billion [4, 5]. The first half of this 
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review focuses on mechanisms involved in post-operative 
bacterial infection of long-term implants which are highly 
susceptible to bacterial adhesion and biofilm formation such 
as orthopedic prostheses, ureteral stents, and sutures. We 
discuss advances in biomaterial design that may help prevent 
bacterial adhesion and proliferation. The latter half of this 
review discusses host responses to implanted biomaterials, 
particularly the role of innate immune cells and stromal cells 
in implant fibrosis. Recent approaches for modulating cel-
lular responses to implanted biomaterials are also examined. 
Collectively, medical implants that are highly biocompatible 
and impervious to infection will significantly improve clini-
cal outcomes and reduce healthcare costs.

Implants are susceptible to infection

Nearly half of all healthcare-associated infections in the USA 
occur with implanted biomaterials [6]. Implant-associated 
infections increase duration of hospitalization, as well as rates 
of re-hospitalization and re-intervention [7–9]. Microbiota  
from the patient, the operating room, and the surface of the 
implant itself have all been implicated in post-operative infec-
tions [10, 11]. Bacterial adhesins interact with host proteins 
that coat the implant’s surface, aiding in bacterial adhesion to 
the surface of the device. Left unchecked, certain species of 
bacteria (predominantly commensal bacteria like Staphylococ-
cus aureus and Staphylococcus epidermidis) can secrete signal-
ing molecules to communicate and alter their metabolic states 
to form a biofilm [12–14]. A biofilm is a matrix composed 
of proteins, DNA, and membrane structures from dead cells 
that protect the bacteria within the biofilm, including limiting  
penetration of small molecule drugs [15, 16]. Systemic admin-
istration of antibiotics is often the first-line mode of prophy-
laxis and treatment of infections, although poor bioavailability 

and systemic toxicity may limit efficacy [17–19]. Systemic 
antibiotic therapy has been associated with risk of allergic reac-
tions, nephritis, and enteric dysbiosis [20]. Further, the lack of 
patient adherence to prescribed dosing regimen further limits 
both the safety and efficacy of antibiotics [21, 22]. Subthera-
peutic drug exposure contributes to the number of bacterial 
species that have become resistant to widely used antibiotics 
such as gentamicin and methicillin [23–25], as well as antibac-
terial agents such as triclosan [26]. Thus, rather than relying on 
adjunct antibiotic administration for preventing post-operative 
infections, engineering functionality into the implant itself may 
lead to improved surgical outcomes. Figure 1 provides an over-
view of biomaterial-associated infection and strategies reviewed 
herein. In this section, we describe mechanisms of bacterial 
adhesion and biofilm formation, followed by approaches for 
engineering implantable biomaterials that provide local, sus-
tained antibiotic release and/or prevent bacterial adhesion.

Mechanisms of infection

Bacteria colonize a diverse range of surfaces, including host 
tissues and abiotic biomaterials [27]. Bacteria may adhere to 
biomaterials via non-specific interactions, such as electro-
static interactions with the negatively charged bacterial cell 
wall, or by hydrophobic interactions. Alternatively, bacteria 
may interact with host tissue in a ligand specific manner [28, 
29]. Most bacteria have evolved to survive in a community 
adherent to solid surfaces where nutrient availability tends 
to be highest, and there is also positive selection for bacteria 
that form biofilms as a protection [30, 31]. Biofilm forma-
tion on implants presents a challenge for effective treatment 
both because of poor penetration of antibiotics and meta-
bolic heterogeneity within the biofilm which can allow some 
cells to survive high doses of antibiotics [32]. Such resistant 
bacterial cells can proliferate once they sense a decline in 

Fig. 1  Stages of biofilm formation and strategies to prevent infec-
tion. Bacteria adhere to biomaterial surfaces via non-specific adhe-
sion and proliferate to form biofilms. Modifying surface properties of 
the biomaterial such as biocidal patterning and polymer conjugation 

have been shown to be effective in preventing biomaterial-associated 
infections in animal models. Biomaterials can also act as drug depots 
which can release bactericidal small molecules locally circumventing 
systemic delivery barriers
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the bacterial population, causing a recurrent infection [33]. 
Below, we discuss strategies to prevent infections by elimi-
nating early planktonic bacteria or by preventing adhesion.

Sustained release technologies for prevention 
of infection

Numerous anatomical barriers and clearance mechanisms 
significantly reduce drug concentrations at intended loca-
tions [34, 35]. Local delivery of drugs overcomes these chal-
lenges and is a promising alternative to systemic therapies. 
There is increasing use of polymers for manufacturing medi-
cal implants due to the tailorable textural, mechanical, and 
physical properties [36]. Moreover, a wide range of natural 
and synthetic polymers have demonstrated high strength, 
flexibility, and durability together with a favorable safety 
profile and long-term biocompatibility [37–39, 40]. More 
recently, the potential for loading polymeric implants with 
therapeutics for sustained, local release to prevent infection, 
as well as surface patterning to prevent bacterial adhesion, 
have been explored. Specific clinical applications for modu-
lating implantable biomaterials properties to prevent post-
surgical infection are described below (Table 1).

Orthopedic implants

Joint replacement surgery is performed more than a million 
times annually in the USA [41]. Prosthetic joint infection is 
a major cause of revision surgery with a recurrence rate of 

16% [42]. The current standard of care to treat prosthetic joint 
infections involves explanting the prosthesis and using bone 
cement spacers loaded with antibiotics as filler materials for 
several weeks before implanting a new prosthesis, a time-
frame in which mobility is limited [43]. To obviate the need 
for intermediate bone cement spacers, Suhardi et al. manu-
factured prosthetic joint implants containing eccentric drug 
clusters, which resemble highly elongated ellipsoids [41]. 
They demonstrated that the in vitro release kinetics of the 
drug was dependent on the eccentricity of the drug clusters. 
Polymer processing methods that result in spherical drug 
clusters, such as solvent casting, can entrap drug for longer 
durations resulting in slow release kinetics. The authors 
demonstrate that compression molding results in eccentric 
drug clusters in the polymer matrix, which had faster elution 
rates. Implants loaded with a combination of vancomycin 
and rifampin released drug in a sustained manner for up to 
6 months in vitro. In a rabbit joint S. aureus biofilm infec-
tion model, 100% of the animals that received drug-loaded 
prosthetic joints remained uninfected at day 21, while only 
20% of animals receiving vancomycin-loaded bone cement 
spacers remained uninfected [41]. Another strategy that has 
been used successfully in smaller load bearing implants is 
the use of drug-loaded polymeric coatings to provide local 
delivery of antibiotics. Ashbaugh et al. coated Kirschner-
wire implants with poly(lactic-co-glycolic acid) (PLGA) 
and poly(ε-caprolactone) (PCL) nanofibers separately loaded 
with combinations of rifampin, vancomycin, linezolid, or 
daptomycin. Subsequently, they selectively melted the PCL 
nanofibers to create a diffusion matrix composed of PLGA 

Table 1  Summary of manufacturing methods, materials, and active ingredients used in implants described in sections “Orthopedic implants,” 
“Ureteral stents,” and “Antibacterial sutures”

Device Implant material Processing method Active ingredient Clinical application Reference

Prosthetic joint LDPE Compression molding Rifampin, Vancomycin Recurrent PJI prevention [41]
Kirschner Wire PLGA, PCL Electrospinning Vancomycin, Dapto-

mycin, Linezolid, 
Rifampin

Preventing infection after 
bone fractures

[44]

Ureteral stent Biosoft® polymer blend - Tachyplesin III Preventing ureteral stent 
infection

[51]

Device coating Poly(HPMA) Surface-initiated atom 
transfer radical polym-
erization

None Urinary catheter coating to 
prevent biofilm formation

[52]

Device coating Biosoft® polymer blend Dip coating Vancomycin, BMAP-28 Ureteral stent coating to pre-
vent bacterial adhesion

[53]

Antibacterial suture Nylon, Polyglactin High temperature extrusion Triclosan Preventing post-operative 
infection- general surgery

[57]

Antibacterial suture PCL,PEG Electrospinning Levofloxacin Preventing post-operative 
infection- ophthalmic 
surgery

[59]

Antibacterial suture PCL Electrospinning Levofloxacin Preventing post-operative 
infection- ophthalmic 
surgery

[65]
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fibers surrounded by PCL [44]. This created a structure where 
PLGA nanofibers were embedded within bulk PCL. Using 
this strategy, drug release was tuned by selectively loading 
antibiotic combinations in either PCL, PLGA nanofibers, 
or both. Release kinetics of vancomycin, daptomycin, lin-
ezolid in combination with rifampicin were studied in vitro. 
In a prosthetic joint S. aureus infection model in mice, they 
observed that the antibiotic-releasing coatings successfully 
reduced the bacterial load in the K-wire implants as com-
pared with no drug treatment. Further, they showed that the 
systemic antibiotic exposure was modest, underscoring a 
safety benefit of locally delivered therapeutics [44]. These 
results show that the use of novel manufacturing and coating 
methods and design of biomaterials which enable local and 
sustained delivery of drugs may provide protection against 
bacterial infections.

Ureteral stents

Ureteral stents are commonly used devices to maintain  
urological patency. The constitutive materials in early iterations 
of ureteral stents were synthetic polymers such as poly(ethylene) 
and silicones. Later versions of the stents were made from  
metals and metal-alloys such as titanium and nitinol. The most  
pressing issue concerning both metallic and polymer ureteral 
stents is the formation of crystalline and bacterial biofilms.  
Ureteral stents often have a limited indwelling time before 
removal due to the development of symptoms such as local 
pain, fever, and frequent urination resulting from infection and 
biofilm formation. Nearly 90% of removed indwelling stents 
test positive for cultures of common ureteral pathogens such 
as Pseudomonas aeruginosa, S. aureus, Escherichia coli, and 
Proteus mirabilis [45]. Protein deposits from urine are thought 
to enable bacterial adhesion via interaction with bacterial  
adhesins [46]. Boston Scientific developed a triclosan-coated 
ureteral stent in 2006 to prevent bacterial adhesion. Triclosan  
is a broad spectrum antibacterial agent that does not interfere  
in the normal wound healing response. In rabbits, triclosan-
coated stents prevented a P. mirabilis infection in over 50% of 
animals within a week of implantation [47]. However, common 
pathogens including E. coli, P. aeruginosa, and S. aureus are 
growing increasingly resistant to triclosan due to widespread 
use as an antiseptic over the past several decades [48–50],  
limiting the potential clinical use of triclosan-coated stents. 
More recently, coating ureteral stents with anti-bacterial peptides  
has been explored. Tachyplesin III conjugated to biomaterial 
surfaces has been shown to sterically inhibit bacterial adhesion  
and subsequent colonization [51]. Tachyplesin III peptide  
coating on ureteral stents, when used in combination with  
piperacillin-tazobactam (TZP), has been shown to reduce  
the in vitro TZP minimum inhibitory concentration (MIC) 
against P. aeruginosa 8-fold. In a rat subcutaneous infection 
model, the combination of intraperitoneally delivered TZP and 

a Tachyplesin III peptide-coated stent reduced stent surface  
colonization by 400-fold. The steric hindrance/antifouling effect 
has also been shown for synthetic polymers such as poly[N-
(2-hydroxypropyl) methacrylamide] (poly(HPMA)). In a study 
conducted by Gomes et al. [52], poly(HPMA) was conjugated to 
a glass surface to form brush-like structures to characterize the 
attachment and biofilm forming capacity of E. coli on bare glass, 
poly(dimethylsiloxane) (PDMS), and brush-like poly(HPMA) 
surfaces. They observed 80% reductions in both total biofilm 
forming cells and viable cells on the poly(HPMA) coatings 
compared with bare glass surfaces in vitro [52]. Furthermore, 
BMAP-28, a cathelicidin peptide with intrinsic antimicrobial 
activity, was tested by Orlando et al. as a coating alone and in 
combination with antibiotics [53]. When stents coated with  
either vancomycin or BMAP-28 were challenged with S.  
aureus, the bacterial burden was significantly reduced compared  
with uncoated stents. However, near complete elimination of  
infection was achieved when the BMAP-28-coated stents  
were used in conjunction with intraperitoneally administered 
vancomycin [53]. Another study investigated the synergistic 
effects of combining antibiotics [54]. They showed in vitro that  
there was an eight-fold reduction in the minimum bactericidal 
concentration of amikacin when used in combination with 
clarithromycin against adherent P. aeruginosa. In a rat model 
of P. aeruginosa bladder infection, they found that either  
systemically administered amikacin with an uncoated stent or 
clarithromycin-coated stents provided a reduction in bacterial 
colonization compared with an uncoated stent alone. However, 
near elimination of infection was achieved in rats that received 
systemic amikacin in combination with clarithromycin-coated 
ureteral stents [54]. These results demonstrate that sensitization 
of bacteria to antibiotics by deterring attachment and the use of 
combinatorial drugs are significantly advantageous in preventing 
ureteral infections of biomaterials.

Antibacterial sutures

Surgical site infections (SSIs) are one of the most common 
post-operative complications and have an incidence of 5.6 per 
100 surgeries in developing countries and 2.6 per 100 surger-
ies in the USA [55]. Additionally, in procedures like colorectal 
surgeries, incidence of post-operative infection can be as high 
as 17.5%, even in developed countries [56]. While sutures are 
routinely used for wound closure in a wide variety of surgical 
procedures, the presence of sutures at a wound site has been 
associated with infection. This has led to the investigation, 
development, and approval of surgical sutures with antibacte-
rial properties. In 2002, Ethicon received regulatory clearance 
for coated antibacterial sutures containing triclosan in general 
surgery [57]. However, as mentioned previously, there is grow-
ing concern over bacterial resistance to triclosan [26, 48]. One 
alternative strategy that has gained attention is employing sus-
tained-release technologies to deliver antibiotics locally at the 
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surgical site. Chen et al. [58] developed PCL-based levofloxacin 
hydrochloride coatings for silk sutures (sizes 2-0 and 0-0). The 
PCL/levofloxacin coatings demonstrated sustained release for 
up to 5 days in vitro, leading to measurable zones of inhibition 
against S. aureus and E. coli in agar diffusion assays for 7 days 
[58]. However, suture coatings may require multifilament thread 
and increased suture diameter to achieve sufficient drug release, 
which limits use in surgeries requiring thin sutures (e.g., micro-
surgery). For example, Ethicon’s antibacterial sutures are only 
available in diameters suitable for general surgery (70–339 µm). 
One potential solution is to form a suture entirely out of polymer 
with drug embedded, which is achievable via electrospinning. 
In one study, Kashiwabuchi et al. manufactured poly(L-lactide) 
(PLA) nanofiber sutures (size 8-0) loaded with the antibiotic 
levofloxacin, using a wet electrospinning method. By incorpo-
rating poly(ethylene glycol) within the PLA nanofibers, they 
achieved sustained release kinetics of levofloxacin for over a 
period of 70 days in vitro. Further, agar diffusion tests showed 
that the drug released from the electrospun sutures successfully 
inhibited S. epidermidis for a period of 7 days (59).

Historically, drug-loaded electrospun suture materials 
have failed to demonstrate sufficient mechanical strength as 
stipulated by the US Pharmacopeia guidelines for clinical use 
[60–64]. Parikh et al. [65] designed a novel electrospinning 
apparatus that was capable of manufacturing highly twisted 
nanofibers loaded with levofloxacin. Increasing the number of 
twists greatly improved tensile properties of the multifilament 
sutures. Sutures that were highly twisted (~ 1575 twists per 10 
cm) surpassed US Pharmacopeia breaking strength require-
ments (0.24 N) for a 28-µm absorbable suture with a maxi-
mum tensile strength of 0.35 N. Further, the sutures exhibited 
a direct dependency on the number of twists imparted to the 
nanofibers for breaking strength. This is the first report of 
electrospun suture materials demonstrating sufficiently high 
breaking strength required for use in clinic. In a rat model of 
corneal keratitis, the levofloxacin-loaded sutures successfully 
prevented multiple consecutive inoculations of S. Aureus over 
1 week (see Fig. 2) and detectable levels of levofloxacin in rat 
eyes for a month [65]. Overall, the general approach of loading 
small molecules into polymeric suture materials to enable local 

Fig. 2  a Antibiotic-eluting 
ophthalmic sutures prevent 
S. aureus infection in a rat 
model of corneal keratitis (** 
indicates p < 0.01). b Scanning 
electron micrographs (scale 
bars represent 2 µm) of com-
mercial nylon sutures (top), 8% 
(middle), and 16% Levofloxacin 
loaded nanofiber sutures (bot-
tom) explanted from the corneal 
stroma after bacterial challenge 
with S. aureus. c H&E-stained 
corneal tissue showing reduced 
inflammation in eyes which 
received drug-eluting suture 
48 h after bacterial inocula-
tion. d Breaking strength of 
drug-loaded sutures scaled with 
suture diameter. Dashed green 
lines indicate minimum break-
ing strength requirement for 
absorbable sutures of 10-0, 9-0, 
and 8-0 diameters. Modified 
with permission from [65]
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and sustained delivery of antibiotics by means of direct loading 
of drug in the suture or via surface coatings have shown great 
promise in abrogating bacterial adhesion and proliferation.

Modulating material surface properties to prevent 
bacterial adhesion

Bacterial adhesion to materials is highly dependent on surface  
topography, chemistry, and hydrophobicity [66–68]. Sur-
face roughness has been shown to affect bacterial adhesion in  
dental implants [69], leading to many attempts to modify surface  
roughness to reduce the risk of infection [70–72]. The  
rationale is that bacteria have evolved to detect patterns that are 
dimensionally similar to their own size (~ 1 µm), and thus, creat-
ing smoother surfaces (surface roughness < 1 nm) reduces adhe-
sion [73]. For example, one study showed that titanium surfaces 
blasted with micronized aluminum oxide particles to produce a 
nanoscale surface roughness (> 100 nm) had increased adhe-
sion of bacteria derived from whole saliva. In contrast, naturally 
occurring nanopatterns, such as the self-cleaning hydrophobic 
surfaces on lotus leaves, and dragonfly and cicada wing pat-
terns are highly resistant to bacterial adhesion and biofouling 
[74]. Bhadra et al. [75] used hydrothermal etching to nanopat-
tern titanium surfaces and evaluated the attachment of S. aureus 
and P. aeruginosa compared with unmodified titanium surfaces. 
They noted a significant reduction in the total number of adher-
ent bacteria and specifically live bacteria on the nanopatterned 
surfaces, indicating that certain nanopatterned surfaces have an 
inherent bactericidal nature [75].

Linklater et al. [76] compared the bactericidal nature of 
dragonfly wings to a synthetic nanomaterial developed for use 
in photovoltaic applications and biosensors, termed black sili-
con [77- 79]. Black silicon was manufactured using a reac-
tive ion-etching process to achieve nanoscale protrusions on the 
surface of silicon wafers. The authors then studied the adhesion 
and bactericidal properties of these surfaces using S. aureus, 
P. aeruginosa, and S. subtilis. Nanotopographical features on 
black silicon resemble sharp protrusions and are capable of 
causing indentations and mechanical stress to the bacterial 
cell wall. The authors postulate that an imbalance between the 
hydrostatic pressure caused by the cytoplasm on the bacterial 
cell wall and the indentation stress caused by the nanopatterned 
substrate caused cell wall rupture and death of the bacteria. Fur-
ther, certain bacteria such as S. subtilis are spore forming, and 
this property protects the bacteria from environmental stress 
and enhances their rigidity. Nanopatterned black silicon sur-
faces not only disrupted spores of S. subtilis, indicating an anti-
adhesive nature, but also required a significantly higher number 
of bacterial cells of all three tested model organisms in order to 
achieve colonization of the material suggesting a bactericidal 
nature [76]. Further research and validation is required in order 
to translate these technologies for clinical use.

Implants are susceptible to immunologic 
reactions

Implanted biomaterials generally illicit a chronic inflam-
matory response that eventually results in fibrosis, isolating 
the material from the rest of the body. This fate is common 
to materials made from natural and synthetic sources, and 
the speed and extent of the fibrotic response determine the 
functional lifespan of the implant. Surgical procedures and 
biomaterial implantation cause injury to the surrounding 
tissue, facilitating interactions with host proteins and cells. 
Non-specific protein adsorption to the material surface forms 
a “provisional matrix” which makes the microenvironment 
surrounding the biomaterial conducive to cellular adhesion 
[80]. A complex set of infiltration, proliferation, fusion, and 
degranulation events associated with various types of innate 
immune cells and stromal cells, such as smooth muscle cells 
and fibroblasts, culminates in fibrotic encapsulation (Fig. 3). 
This physiological response to the implant is interlinked 
with bacterial colonization, as misguided host defenses can 
create a niche for bacterial adhesion and proliferation [10, 
81]. In particular, neutrophils and macrophages form part 
of an acute response to infection as well as abiotic implants 
and thus, dysregulation of their activity can result in infec-
tion, inflammation, and fibrosis [82, 83]. In this section, 
we provide an overview of recent advances in controlling 
the biological response to biomaterials, including provid-
ing local drug release, cell capture, and modifying surface 
topography. Lastly, we outline this evolution of concepts in 
the design and implementation of endovascular devices with 
improved surgical outcomes.

Immune cell responses to biomaterials

Immune cells are first responders that influence the nature 
of the microenvironment surrounding the biomaterial. Neu-
trophils are the predominant immune cell type at the site of 
implantation in the first hours [84]. The role of neutrophils in 
generating reactive oxygen species (ROS) and vasodilation 
has been well studied [85, 86]. While the primary function 
of neutrophils is to phagocytose foreign material and release 
inflammatory cytokines to recruit monocytes and mac-
rophages, most implants are too large to be phagocytosed. 
In this case, neutrophils undergo degranulation and deposit 
neutrophil extracellular traps (NETs), or networks made 
from DNA, histones, and neutrophil elastase [84, 87, 88]. 
NETs function to trap pathogens like bacteria and viruses 
and drive the sterile inflammatory response to implant mate-
rials. Jhunjhunwala et al. [89] used a mouse model of peri-
toneal fibrosis to examine the role of NETs in the fibrotic 
response to foreign materials. They implanted microcap-
sules made from alginate, glass, poly(lactic-co-glycolic)
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acid (PLGA), and poly(methyl methacrylate) (PMMA) in 
the peritoneal cavity of mice and observed an increase in 
histone H1 and neutrophil elastases on the surfaces of glass, 
PMMA, and alginate microcapsules. Interestingly, PLGA 
microcapsules that degrade in 2 weeks showed lower levels 
of neutrophil recruitment as compared with PLGA micro-
capsules that take longer to degrade [89]. Further, Cohen 
et al. [90] showed that cell adhesion has a deterministic 
role in neutrophil fate. The authors showed that neutrophil 
adhesion to polyethylene glycol (PEG) scaffolds resulted 
in increased secretion of ROS, matrix metalloprotease-9 
(MMP-9), and myeloperoxidase molecules in comparison 
with polydimethylsiloxane PDMS scaffolds [90]. Further 
studies are required to elucidate the mechanisms underly-
ing neutrophil-biomaterial interactions and device centric 
approaches to modulate neutrophil response to biomaterials.

Macrophage plasticity and diversity in phenotypes are 
essential to tissue restoration, repair, and remodeling [91, 
92]. Macrophages begin to accumulate on biomaterial sur-
faces a few hours after implantation and can remain there 
for several months [93]. Macrophage recruitment is thought 
to be mediated by monocytes to enable further recruitment  

of immune cells [94–96]. Monocytes can also differ- 
entiate into macrophages of many different phenotypes 
based on physical and chemical microenvironmental cues, 
typically classified as M1 or M2. M1 macrophages are 
involved in secretion of proinflammatory cytokines and 
are associated with host defense [97], while subtypes of 
M2 macrophages are generally associated with construc-
tive tissue remodeling [98, 99]. Therefore, it is generally 
desirable to skew macrophages surrounding biomedical 
implants to an M2 phenotype. Multiple studies have suc-
cessfully demonstrated macrophage polarization to M1/
M2 phenotypes by using immunomodulatory small mol-
ecule therapies [100–102]]. Recent data in RAG-2/γ KO 
mice showed that macrophages are central to host fibrotic 
response and that macrophage depletion leads to the near 
absence of the foreign body reactions surrounding intraperi-
toneal implants in rodents and non-human primates [103]. 
Further, inhibiting colony stimulating factor-1 (CSF-1) 
receptors on macrophages can lead to an equivalent effect 
in suppressing foreign body reaction to multiple classes of 
materials, including polymers, hydrogels, and glass micro-
capsules (Fig. 4). Recent work has also implicated IL-17, a 

Fig. 3  Local cellular response 
to implanted biomaterials. 
Proteins from blood or extracel-
lular fluids adsorb to biomate-
rial surfaces upon implantation. 
Innate immune cells like neutro-
phils and monocytes adhere to 
protein-coated surfaces through 
non-specific binding interac-
tions. Neutrophils undergo 
degranulation and deposit 
neutrophil extracellular traps. 
Monocytes differentiate into 
macrophages which can fuse to 
form giant cells in an attempt 
to phagocytose biomaterials. 
Crosstalk between immune 
cells and stromal cells is an 
important step in wound healing 
and is a promising target for 
engineering biomaterials that 
can modulate host response
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pro-inflammatory cytokine associated with Th-17 helper T 
cells and macrophage activation, in biomaterial-mediated 
fibrosis [104–107]. The absence of IL-17 signaling in mice 
was shown to mitigate fibrotic response to intraperitoneally 
implanted PCL [108].

Fibroblasts are the majority cell type in the healing stage of 
tissue restoration and play a key role in inflammation, angio-
genesis, and fibrosis. Fibroblasts are thought to be present in  
the neo-tissue for years, reprogramming their phenotype to  
become quiescent once tissue restoration is complete [109– 
111]. Upon injury, a deluge of pro-inflammatory molecules 
activates fibroblasts present in connective tissue [112].  
Fibroblasts then differentiate into either fibrocytes, myofi-
broblasts, or other phenotypes based on microenvironmental 
and chemical cues. Myofibroblasts are associated with highly 
dense ECM deposition in implant-associated fibrosis patholo-
gies [113, 114]. Many pharmacological and materials-centric 
strategies to restrict fibroblast proliferation and activation 
have been successfully employed in preclinical models. Pitha 
et al. [115] detailed the use of Rho-kinase (ROCK) inhibitors 
(Y27632, fasudil, H1152) in suppressing the myofibroblast 
phenotype in scleral fibroblasts. All three inhibitors reduced 
TGF-β-induced α-SMA expression and associated collagen 
contraction in primary scleral fibroblast cells in vitro. Further, 
in mouse models of bead-induced glaucoma, they showed that 
scleral fibroblast proliferation was restricted in mice treated 
with Y27632 and fasudil by sub-conjunctival injection [115]. 
Biomaterial properties including implant size, surface topog-
raphy, and porosity also influence fibroblast behavior. Veiseh 

et al. [116] injected crosslinked alginate and glass spheres 
of 8 different diameters (0.3–1.9 mm) intraperitoneally in 
C57BL/6 mice to study the effect of size on fibrotic response. 
Interestingly, increasing sphere diameter inversely correlated 
with immune cell recruitment and cellular overgrowth on 
explanted spheres after 14 days in vivo as measured by flow 
cytometry and phase contrast imaging, respectively. Further-
more, expression of fibrotic markers such as α-SMA, colla-
gen 1 (COL1A1), and collagen 2 (COL1A2) genes in cellular 
deposits on the sphere surfaces was significantly downregu-
lated for 1.8 mm spheres as compared with 0.3 mm spheres. 
Additionally, when alginate spheres either 0.5 or 1.55 mm 
diameter were implanted subcutaneously in non-human pri-
mates, the 1.55 mm spheres were devoid of cellular growth, 
whereas the 0.5 mm spheres were encapsulated in fibrotic cap-
sules up to 100 µm thick [116]. Taken together, these studies 
suggest that modulating fibroblast behavior either by material 
design or by using small molecules may deliver outcomes 
desirable for non-fibrogenic tissue remodeling.

Engineering biomaterials to modulate immune 
response

Restoration of function to injured tissues is crucial to the 
survival of organisms. The role of innate and adaptive 
immune responses to implanted materials, particularly shap-
ing tissue architecture surrounding biomaterials in becom-
ing increasingly clear. Early responders such as neutrophils 
have a very transient presence, and therefore, it is difficult 

Fig. 4  a Colony stimulating 
factor-1 receptor inhibition 
(CSF1R inh.) mitigated fibrotic 
overgrowth on intraperitoneally 
injected alginate spheres in 
mice as compared with vehicle 
only and CXCL13 neutralized 
wild type mice. b Histological 
examination of intraperitoneal 
alginate spheres in non-human 
primates. b Macrophage 
populations (green) and fibrosis 
associated α-smooth muscle 
actin (red) around explanted 
alginate spheres from non-
human primates as visualized 
by confocal imaging. Modified 
with permission from [103]
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to understand and modulate their behavior with meaning-
ful consequences. On the other hand, macrophages have an 
extended presence at implant sites and a more robust and 
definitive response. As a result, emphasis has been placed on 
studying macrophage responses to biomaterials. It is impor-
tant to note that while adaptive immune cells were initially 
thought to be peripheral to immune response to biomaterials, 
the role of helper T cells in determining the fate of tissue 
regenerative biomaterials has been shown to be essential 
[117]. Surface and physical properties of biomaterials have 
been described as mediators of macrophage activation. Mac-
rophages respond to physical cues both in vitro and in vivo.

McWhorter et al. [118] studied macrophage polariza-
tion on micropatterned surfaces. They manufactured sub-
strates which had either 20 or 50 µm thick alternating lines 
of fibronectin and pluronic F127 forming a micropattern. 
F127 is largely bioinert and deters cell adhesion, facilitat-
ing cellular elongation preferentially along the fibronectin 
components of the micropatterned substrate. The authors 
compared cell shape and markers associated with M1 and 
M2 macrophage activation in cells cultured on either pat-
terned or non-patterned substrates. Macrophages cultured 
on micropatterned substrates displayed a distinct elongated 
shape, whereas those cultured on non-patterned substrates 
were more rounded with protrusions. Micropatterned sub-
strates also induced increased expression of Arginase-1, 
which is an M2 biomarker. Molecules that are associated 
with inducing M2 polarization acted synergistically with 
physical cues to enhance Arginase-1 expression by up 
to 20-fold. In contrast, when macrophages on patterned 
substrates were exposed to classical activation pathway 
stimulators LPS and IFN-γ, expression of iNOS which is 
a known biomarker for the M1 phenotype was only mod-
erately increased suggesting that physical cues can have a 
protective effect against pro-inflammatory signaling mol-
ecules. Looking at actin microstructure, the authors found 
that inhibition of pathways involved in actin contractility 
lowered the expression of Arginase-1, but did not affect cell 
shape or spreading [118]. This observation did not hold for 
cytokine-mediated activation, suggesting that macrophages 
rely on cytoskeletal contractility after sensing physical cues 
to modulate polarization.

Another recent study performed by Tylek et al. [119] showed 
that porosity heavily influenced macrophage polarization. They 
used a manufacturing technique called melt electrowriting to 
create three-dimensional scaffolds of varying pore sizes (40–100 
µm) and geometries (triangular-, round-, square-shaped pores) 
from PCL. It was observed that a pore size of 40 µm induced 
definitive M2-like polarization in contrast to 50, 80, and 100 
µm pore sizes. Interestingly, round geometry of the pores sig-
nificantly decreased expression of the M2 macrophage marker 
CD-163 compared with rectangular, triangular, and disordered 
pore shapes. Additionally, a decrease in pore size from 100 to 

40 µm significantly increased CD-163 expression. Further, the 
authors measured phagocytic activity of macrophages cultured 
on porous and 2-dimensional film scaffolds using a fluores-
cent bead assay and observed significantly decreased phago-
cytic activity on all porous scaffolds at day 7 as compared with 
2-dimensional films made from the same PCL polymer [119].

Li et al. [120] studied composite structures made from 
PCL nanofibers and hyaluronic acid (HA) hydrogel networks 
as filler materials to restore tissue function and mechanical 
integrity. The composites had the combined advantages of 
mechanical stability, injectability, and large matrix pore sizes 
which made the materials durable, easy to administer, and 
capable of modulating immune cell response. In vitro cultures 
of macrophages in PCL-HA composites displayed a signifi-
cantly higher degree of M2 polarization, whereas a greater 
extent of M1 polarization was observed in the HA hydrogels 
alone. They theorized that the compliant nature combined 
with the porous framework of the PCL-HA enabled tissue 
revascularization and cell infiltration in a model of rabbit 
soft tissue defect repair. Histological analysis showed that 
angiogenesis and integration with host tissue had occurred 
[120]. Wolf et al. [121] studied the role of ECM in altering 
macrophage phenotype. In a rat model of abdominal muscle 
defects, the authors implanted polypropylene meshes coated 
with a urinary bladder ECM-derived hydrogel matrix. In the 
animals which received an ECM-coated mesh, there was a 
reduction in the number of M1 macrophages as well as a 
reduction in the number of foreign body giant cells FBGCs 
on the surface of the implants at 7, 14, and 35 days compared 
with uncoated meshes [121]. These results offer insights into 
the significant advantages of device centric approaches to 
modulate host immune response. Tailoring physical proper-
ties of biomaterials such as surface topography, roughness and 
porosity can induce a favorable immune microenvironment 
which is critical for the longevity of functional biomaterials.

Clinical case study: coronary stents

Cardiovascular disease is the leading cause of death glob-
ally, accounting for nearly 18 million deaths globally in 2017 
[122]. An estimated 12–29% of elderly individuals suffer from 
peripheral artery disease requiring vascular intervention [123]. 
Vascular intervention technologies have undergone a gradual 
evolution in parallel with advances made in understanding 
physiological responses to biomaterials. Table 2 provides an 
overview of coronary stent technologies that have been studied  
in clinical settings. Percutaneous coronary intervention is one 
of the most widely practiced surgical procedures involving the 
use of biomaterials in the USA. The first balloon angioplasty  
was performed in the 1970s [124]. Early enthusiasm around 
this procedure was dampened due to the occurrence of adverse 
events, such as in stent restenosis (ISR) due to excessive prolif-
eration of smooth muscle cells after injury, elastic recoil, and 
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abrupt closure of blood vessels [125]. Patients then needed 
to undergo coronary artery bypass grafting surgery to restore 
homeostasis, leading to the development and use of bare metal 
stents (BMS), which were approved by the FDA in 1993 [126]. 
However, both ISR and thrombosis remained issues with uti-
lization of BMS. BMS therefore needed to be supplemented 
with systemic pharmacological agents, such as warfarin and 
aspirin, to avoid thrombosis and restenosis [127]. Conventional 
BMS require placement using a balloon, which dilates the wall 
of blood vessels by exerting radial mechanical stress. The pro-
cedure is also associated with significant de-endothelialization 
and acute overexertion of pressure on the intimal and medial 
tissue, leading to smooth muscle cell proliferation and vessel 
constriction [128]. Furthermore, injury to the endothelial cells 
and intimal tissue results in the secretion of pro-inflammatory 
signaling molecules, immune cell infiltration, and thickening 
of the intima [129–131]. Attempts have been made to coat 
BMS with biocompatible polymers, such as polyethylene 
terephthalate and polytetrafluoroethylene, though without 
any impact on restenosis or thrombotic events in large clinical  
trials [132, 133]. Several efforts to modify the surface proper-
ties of stent coatings such as the use of nanofibers to enhance 
surface roughness and mimic ECM features are in preclinical  
development [134].

To circumvent the issues of thrombosis and neointimal 
hyperplasia, stents capable of delivering therapeutics locally 
have been developed [125]. Drug-eluting stents (DES) are 
composed of a metal backbone to provide structural integrity 
with drug-loaded polymer coatings to provide local, sustained 

drug release. The TAXUS stent was the first DES and deliv-
ered the anti-mitotic drug paclitaxel [135]. Around the same 
time, the Cypher DES containing the anti-proliferative and 
anti-inflammatory drug, sirolimus, was also developed [136]. 
Both stents reduced ISR compared with BMS, supporting the 
potential for sustained-release technologies [137]. However, 
large trials showed no benefit in reducing stent-associated 
mortality compared with BMS [138]. The second generation 
of DES (Endeavour, Xience, Resolute, Promus) incorporated 
either everolimus or zotarolimus, which are structural ana-
logs to sirolimus and show similarities in effective cytostatic 
activity. These drugs also show potent immunosuppressive 
function and are used in transplant surgery to prevent patho-
logical rejection. Large clinical trials and subsequent meta-
analyses showed that overall, second-generation DES were 
associated with reduced overall mortality, and lower rates of 
myocardial infarction, late stent thrombosis, and ISR.

There are, however, key challenges that remain to be 
addressed concerning DES. Major among them is delayed 
re-endothelialization of the injured blood vessel, which is 
associated with late stage thrombosis events [130]. The latest 
generation of stent technologies aims to promote the in situ 
cellularization of scaffolds. Endothelial progenitor cell cap-
ture stents (EPCCs) work by presenting a CD34 antibody 
on the luminal side of the stent to encourage EPCs binding 
and proliferation [139]. Early studies of sirolimus-eluting 
EPCCs show non-inferiority to paclitaxel-eluting stents in 
mitigating neointimal hyperplasia and in the incidence of 
adverse cardia events [140].

Table 2  Summary of vascular stent technologies approved for clinical use

Device Implant Manufacturer Material Active agent Reference(s)

Bare metal stents Vision Abbott Cobalt-Chromium None [126, 127]
Rebel Boston scientific Platinum-Chromium None
Integrity Medtronic Cobalt-Chromium None

Drug eluting stents TAXUS Boston scientific Stainless steel, SIBS. Paclitaxel [135–138]
Cypher J&J Stainless steel, PBMA/PEVA. Sirolimus
Xience Abbott Cobalt-Chromium, PBMA/PVDF-

HFP.
Everolimus

Promus Boston scientific Platinum-Chromium, PBMA/
PVDF-HFP.

Everolimus

Endeavor Medtronic Cobalt-Chromium, Phosphoryl 
choline.

Zotarolimus

Resolute Medtronic Cobalt-Chromium,biolynx. Zotarolimus
JANUS Sorin biomedica Cobalt-Chromium-Carbofilm. Tacrolimus

Bioabsorbable vascular scaffolds ABSORB Abbott PLLA, PDLLA Everolimus [127]
Synergy Boston scientific Platimun-Chromium, PLGA Everolimus
Orsiro Biotronik Cobalt-Chromium, PLLA Sirolimus

Endothelial cell capture stents Genous OrbusNiech 
medical tech-
nologies

Stainless steel, Polysaccharide 
coating

CD34+ antibody [139, 140]

COMBO Stainless steel, ULG CD34+ anti-
body coating

Sirolimus, CD34+ antibody
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Concluding remarks and future perspectives

Biomaterials have substantially contributed to improving 
quality of life and extending lifespan of millions of people. 
Preventing biomaterial-associated infections and controlling 
host-material interactions will continue to be a critical factor 
for successful surgical outcomes. As biomaterials continue 
to evolve, it is becoming increasingly evident that a local, 
materials-centric approach offers distinct advantages in con-
trast to systemic therapies. Functionalizing biomaterials as 
drug depots to deliver high concentrations of antimicrobi-
als locally, as well as employing surface modifications that 
deter bacteria from adhering and proliferating, are promising 
strategies to combat the increasing threat of antimicrobial 
drug resistance and circumvent issues with systemic tox-
icity and patient compliance. However, long-term surgical 
outcomes are often still poor due to fibrotic response, which 
can occur long after drug release has ceased. Strategies for 
modifying the biomaterial surface, such as patterning, may 
work to modulate the local immune cell signaling and stro-
mal cell response to successfully integrate biomaterials with 
host tissue. We posit that the next generation of biomedical 
implants may incorporate topographical features as well as 
local drug delivery for both short- and long-term modulation 
of biological response. Biomaterials engineered to evade 
microbial colonization and instruct host cellular responses 
have great therapeutic and translational potential.
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