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Abstract
Multidrug resistance (MDR) is a complex phenomenon caused by numerous reasons in cancer chemotherapy. It is related to the
abnormal tumor metabolism, precisely increased glycolysis and lactic acid production, extracellular acidification, and drug efflux
caused by transport proteins. There are few strategies to increase drug delivery into cancer cells. One of them is the inhibition of
carbonic anhydrases or certain proton transporters that increase extracellular acidity by proton extrusion from the cells. This
prevents weakly basic chemotherapeutic drugs from ionization and increases their penetration through the cancer cell membrane.
Another approach is the inhibition of MDR proteins that pump the anticancer agents into the extracellular milieu and decrease
their intracellular concentration. Physical methods, such as ultrasound-mediated sonoporation, are being developed, as well. To
increase the efficacy of sonoporation, various microbubbles are used. Ultrasound causes microbubble cavitation, i.e., periodical
pulsation of the microbubble, and destruction which results in formation of temporary pores in the cellular membrane and
increased permeabilization to drug molecules. This review summarizes the main approaches to reverse MDR related to the drug
penetration along with its applications in preclinical and clinical studies.
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Introduction

According toWorld Health Organization, 8.8 mln people died
from cancer in 2015 and it was one of the leading causes of
death worldwide [1]. Although during the last two decades
mortality rates decline, they still remain high [2]. Therefore,
it is very important to improve cancer diagnostics and enhance
the efficacy of anticancer therapy. To ensure the therapeutic
efficacy of an anticancer drug, sufficient concentration of the
compound must be achieved in tumor cells. It becomes a
challenge for the drug developers due to certain characteristics

of the tumor microenvironment [3]. An increasing attention is
given to the transport of drugs to tumors.

Due to increased extracellular acidity of tumor, basic
drugs tend to ionize. Positive charge limits drug ability to
permeate cellular membrane and reach the target site [4].
The efficacy of chemotherapy is also associated with
MDR which is partially caused by various drug efflux pro-
teins, that transport drug molecules from the cytoplasm to
the extracellular fluid [5, 6]. Multidrug resistance protein-1
(MRP-1/ABCC1) has been shown to be associated with
MDR in stage I and II hormone positive breast cancer (n =
516). Patients who administered cyclophosphamide, meth-
otrexate, and fluorouracil and who had increased expression
of MRP-1 experienced increase in relapse rate and mortality
when compared to those patients, who had negative MRP-1
expression in tumors [7]. In other clinical study (n = 59),
high phosphoglycoprotein (P-gp/ABCB1) expression level
was associated with a poor prognosis of a disease and de-
creased length of progression-free survival [8]. It is impor-
tant that cell sensitivity to chemotherapy and the mecha-
nisms of resistance vary between different types of cancer
and different cell lines of the same type of cancer. Kibria
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et al. investigated the sensitivity of 15 different cell lines to
doxorubicin. They found that the sensitivity of cancer cells
to doxorubicin was not always proportional to the intracel-
lular concentration of doxorubicin. Also, the inhibition of P-
gp in certain cell lines significantly increased cytotoxicity of
doxorubicin, while in other cell lines, no effect was ob-
served. This means that, besides P-gp, there are some other
mechanisms that determine drug resistance [9]. Various
types of tumors differ in the rates and mechanisms of
chemoresistance. For example, a characteristic feature of
pancreatic cancer is a very rich stroma with a high number
of fibroblasts and macrophages. It was found that these cells
contribute to chemoresistance by secreting various growth
factors which leads to increased cell survival and prolifera-
tion [10, 11]. Furthermore, cancer stroma is like a physical
barrier to drug penetration. High number of stroma cells and
increased interstitial pressure cause the constriction of
blood vessels and limited drug penetration into target site
[12]. Also, pancreatic cancer is usually highly hypoxic.
Hypoxia may increase chemoresistance by activation of cer-
tain signaling pathways [13]. Pancreatic cancer is very
poorly vascularized [14]. It is considered to be one of the
most hypoxic types of cancer [14]. Also, increased expres-
sion of drug efflux transporters multidrug resistance
protein-5 (MRP-5/ABCC5) [15], multidrug resistance
protein-5 (MRP-8/ABCC11) [16], and human equilibrative
nucleoside transporter-1 [17] contributes to chemoresistance
to gemcitabine and 5-fluorouracil.

In order to overcome these problems of inefficient cancer
chemotherapy, pH modulators (vacuolar-H+-ATPase (V-
ATPase) inhibitors, carbonic anhydrase (CA) inhibitors,
sodium-hydrogen exchanger-1 (NHE-1) inhibitors), inhibi-
tors of MDR proteins P-gp, MRP-1, and breast cancer resis-
tance protein (BCRP/ABCG2)), nanocarrier systems, and
physical methods (sonoporation, electroporation) are being
developed and widely investigated.

Tumor microenvironment

There are some significant differences between normal and
tumor tissues and one of the main discrepancies is a pH gra-
dient. Because of anaerobic metabolism in tumor tissues, ex-
tracellular fluid is more acidic than in normal tissues [18]. It
was estimated that extracellular pH in tumor varies between is
about 6.8 [19, 20]. Activation of oncogenes, hypoxia-
inducible factor-1 activation arises in cancer cells, and this
leads to induced expression of glycolytic enzymes [21].
Upregulation of glucose transporters occurs, as well [22].
Therefore, cellular energy metabolism shifts from oxidative
phosphorylation towards anaerobic glycolysis even in the
presence of oxygen. This phenomenon is called the Warburg
effect and was discovered by Otto Heinrich Warburg in 1920s
[23]. High rate of glycolysis results in increased lactic acid
production and various transporters, such as V-ATPase,
NHE, monocarboxylate transporter, extrude protons into the
extracellular tissue, thus increasing its acidity [24, 25].

It is known that neutral molecules penetrate cell membrane
easier than positively or negatively charged ions [26].
According to pH-partition theory, at lower pH basic drugs,
e.g., doxorubicin, undergo ionization, therefore, the penetration
of these compounds declines and their therapeutic efficacy de-
creases (Fig. 1) [18, 27]. This is called Bion trapping^ phenom-
enon. The same problem is typical with other basic compounds
such as anthracyclines, anthraquinones, and Vinca alkaloids.
Weakly basic drugs also tend to accumulate in lysosomes and
endosomes that have an acidic lumen [28, 29].

There are two main strategies to reduce this acidity-related
chemoresistance. One of them is increasing pH of extracellu-
lar milieu by basic substances, such as sodium bicarbonate
[27, 30]. Robey et al. investigated that oral administration of
200 mM sodium bicarbonate slightly increased extracellular
pH from 7.0 to 7.4, whereas did not affect intracellular pH in
murine breast cancer models [31]. Other study showed that

Fig. 1 Mechanism of acidity-
related chemoresistance. Due to
increased acidity in cancer cells
protonation of basic drugs occurs
thus limiting their ability to
penetrate through the cell
membrane
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oral administration of sodium bicarbonate in mice may en-
hance the activity of basic anticancer drugs, such as doxoru-
bicin [27]. However, it is associated with a risk of metabolic
alkalosis, hypernatremia, electrolyte imbalance, and other side
effects [32]. Therefore, other more modern approaches, based
on the inhibition of proton transporters, CAs or ATP-binding
cassette (ABC) transporters are being developed. These en-
zymes and transporters contribute to chemoresistance by
pumping protons from cytoplasm to extracellular tissue and
acidic vesicles, thus increasing extracellular acidity, and by
mediating drug efflux out of cancer cell (Fig. 2). Compounds
that inhibit proton pumps prevent proton transport from the cell
cytoplasm to extracellular milieu and suppress the acidification
of the extracellular tissue [33].

pH modulators

One of the strategies to increase the penetration of basic drugs
into the cells is to reduce the extracellular acidity in tumor
tissue. For this purpose, various pH modulators, such as pro-
ton pump inhibitors (PPIs), CA inhibitors, or NHE inhibitors
are being applied.

V-ATPase inhibitors

V-ATPase is a proton pump which regulates H+ transport
across cell membrane and maintains low pH within
endosomes and lysosomes [34]. It is located in the membrane
of lysosomal vesicles and in the plasma membrane of certain
cells. This enzyme pumps H+ from the cell into the interstitial
fluid, thus maintaining acidic extracellular pH and transport
H+ from cytosol to cellular vesicles [35].

It is well known that in some tumors the activity of several
isoforms of V-ATPase is increased [36–38]. High activity of
this transport protein is associated with a poor prognosis of the
disease [39]. Compounds that inhibit V-ATPase lead to pH
increase in extracellular milieu and acidic vesicles [40].
Thus, basic drugs can easier penetrate into cancer cells [41].
V-ATPase inhibitors also reduce basic drug sequestration and
neutralization within lysosomes and their extrusion out of
cells via exocytosis [42]. It leads to decrease of drug trapping,
enhanced delivery to their target site, and improved cell sen-
sitivity to chemotherapy. Lee et al. found that siRNA-induced
inhibition of V-ATPase leads to the reduced intracellular pH
and increased cytotoxicity of paclitaxel in chemoresistant ep-
ithelial ovarian cancer cells [39].

P lecomacro l ide an t ib io t i cs baf i lomycins and
conacanamycins are the earliest known V-ATPase inhibitors.
It was shown that bafilomycin A1 effectively inhibits V-
ATPase, thus increases extracellular pH in cancer cell cultures
[43]. Similar results were found with concanamycin A.
Kiyoshima et al. estimated that this compound inhibits the acid-
ification of cellular vesicles and reduces proliferation of oral
squamous carcinoma cells [44]. Nevertheless, none of these
compounds was introduced to clinical trials.

Another well-known group of V-ATPase inhibitors is PPIs.
Recent studies show that drugs, such as omeprazole,
lansoprazole, and pantoprazole, reverse MDR by reducing
extracellular acidity [39, 41, 45, 46]. PPIs tend to accumulate
in acidic cell compartments where they are activated by the
protonation of basic nitrogen atoms [47]. In this way, they
might specifically be active in acidic tumor tissues. Patel
et al. found that pantoprazole increased endosomal pH and
nuclear uptake of doxorubicin within mouse mammary sarco-
ma cells and tumor tissue [46]. There is evidence that

Fig. 2 Transporters and enzymes
involved in multidrug resistance.
Proton transporters V-ATPase and
NHE extrude protons out of cells
thus decreasing pH of
extracellular milieu; CA IX
contributes to the extracellular
acidity by carbon dioxide
hydration resulting in bicarbonate
ion and proton release. ATP-
binding cassette transporters P-
gp, MRP-1, and BCRP mediate
anticancer drugs efflux out of the
cell. Abbreviations: V-ATPase,
vacuolar-H + -ATPase; NHE,
Na+/H+ exchanger; CA IX,
carbonic anhydrase IX; P-gp,
phosphoglycoprotein; MRP-1,
multidrug resistance protein-1;
BCRP, breast cancer resistance
protein
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omeprazole pretreatment in combination with paclitaxel re-
duces tumor growth in chemoresistant epithelial ovarian can-
cer mice models compared to paclitaxel alone [39]. Similar
results were reported by Luciani et al. [48].

It is important to emphasize that simultaneous treatment
with PPIs and antitumor drugs did not potentiate the efficacy
of chemotherapy. Authors explain this phenomenon by the
competition of drugs against each other for cellular uptake
[48]. However, the data about the disruption of intracellular
and extracellular pH gradient caused by PPIs is controversial.
Linder et al. detected no difference in intracellular and extra-
cellular pH after 24 and 48 h of cancer cells treatment with
PPI. Furthermore, increase in intracellular pH and decrease in
extracellular pH were determined in these cells after 72 h of
treatment with PPI [49]. These data suggest that there may be
some other mechanisms through which PPIs enhance the cy-
totoxicity of anticancer drugs. Also, there is evidence that co-
administration of PPIs with certain anticancer drugs may re-
duce some side effects of chemotherapy. Recently, Ikemura
et al. investigated that PPIs can ameliorate the nephrotoxicity
of cisplatin by inhibiting organic cation transporter 2 [50].
Furthermore, there is evidence that PPIs not only improve
the efficacy of chemotherapeutics, but also exert anticancer
activity themselves. Among these drugs, lansoprazole has
shown the most potent cytotoxicity [51].

Because of high potential for the application in chemother-
apy, PPIs gained a great interest among researchers. On the
basis of existing structures, novel bisbenzimidazole deriva-
tives were developed. These compounds showed to be potent
V-ATPase inhibitors and demonstrated high antiproliferative
activity against breast cancer cells [52] and are among the
most promising transport modulators of basic drugs.

CA inhibitors

CA is a transmembrane zinc metalloprotein which is in-
volved in pH homeostasis of various tissues. This enzyme
catalyzes the reversible hydration of carbon dioxide to bi-
carbonate [53]. 16 α-CA isoforms exist in mammals. Two
of them—CA IX and XII—are associated with cancer de-
velopment and progression [54, 55]. According to
Robertson et al., inhibition of CA IX expression results in
a delay of cancer cell growth and reduction of cell survival
under normoxia and hypoxia [54]. Although both isoforms
are found in normal tissues, such as the gastric mucosa,
duodenum, or kidney, their gene expression is highly in-
creased in many types of tumors [56, 57]. Therefore, they
are attractive targets for anticancer therapy.

It is hypothesized that inhibition of CA IX and XII reduces
extracellular acidification, therefore enhancing basic drug de-
livery into tumor tissue. There are some preclinical studies
confirming this theory. Gieling et al. found that inhibition of
CA IX by acetazolamide enhances uptake and toxicity of

weakly basic doxorubicin, but reduces weakly acidic melpha-
lan penetration into cells [58].

Several CA IX and CAXII inhibitors have been developed
and tested as transport modulators. However, most of them are
still in preclinical studies and the results are controversial.
SLC-0111, also known as U104, is a benzenesulfonamide
derivative and highly selective inhibitor of CA IX and CA
XII. It was shown that U104 significantly increased the effi-
cacy of paclitaxel in orthotopic breast cancer mice models
[59]. In contrast, Riemann et al. assessed that although U104
reduced cancer cell proliferation and increased apoptosis, it
did not improve the cytotoxicity of daunorubicin and cisplatin
in prostate cancer cells [60]. Phase I clinical study was de-
signed in order to evaluate the pharmacokinetic profile, safety,
and efficacy of U104 in anticancer therapy (clinicaltrials.gov,
NCT02215850). However, the results have not been
published yet.

For higher therapeutic efficacy, CA inhibitors can be incor-
porated into nanocarrier systems. Janoniene et al. loaded po-
rous silicon nanoformulations with doxorubicin and conjugat-
ed with selective CA IX inhibitor VD11-4-2 [61]. It enhanced
target drug delivery towards tumor tissue and improved doxo-
rubicin penetration into cancer cells. VD11-4-2 also enhanced
drug loading efficacy into nanoparticles and improved drug
release profile by reducing the premature release of doxorubi-
cin. Besides an increase in intracellular drug concentration in
tumors, these systems also reduce the effect on other tissues
thus reducing toxicity. Therefore, this field is currently very
widely investigated and show promising results.

NHE inhibitors

NHE is a ubiquitous proton transporter that mediates Na+/
H+ exchange across the cell membrane. It extrudes pro-
tons out of the cell and transports Na+ into the cytoplasm.
As cellular pH regulators, NHEs also contribute to MDR.
Inhibition of these transporter proteins increases basic
drug penetration into tumor tissue. Thirteen isoforms of
NHE exist in humans. NHE-1 is of particular interest in
oncology because it is involved in cancer cell migration
[62] and metastasis [63]. NHE-1 is found in many normal
tissues and also is upregulated in various tumors, such as
gastric [64] and breast cancer [63], hepatocellular carci-
noma [65] or glioblastoma [66]. Previous studies showed
that knockdown of NHE-1 results in increased sensitivity
to doxorubicin in T cell acute lymphoblastic leukemia
cells [67].

The first known NHE inhibitor was potassium-sparing
diuretic amiloride, discovered in 1965 [68]. A few decades
later, more potent amiloride derivatives specific to NHE-1
were synthesized. 5-(N-ethyl-N-isopropyl)amiloride
(EIPA) is amiloride analog which is 200-fold more effective
in inhibition of NHE. Some studies show that EIPA may
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reverse doxorubicin resistance in cancer cells. Pannocchia
et al. found that EIPA significantly increased doxorubicin
accumulation in doxorubicin-resistant colon cancer cells
while the addition of monensin (NHE activator) significant-
ly reduced intracellular doxorubicin concentration [69].
Miraglia et al. showed that inhibition of NHE by EIPA leads
to the reduction of intracellular pH and thus increases doxo-
rubicin concentration in colon cancer cells [70]. On the con-
trary, activation of NHE by phorbol 12-myristate increases
intracellular pH and decreases penetration of doxorubicin
into cells.

Recently, more powerful and highly selective NHE-1 in-
hibitors cariporide, zoniporide, and eniporide were developed.
Although they showed good tolerability in humans, all the
clinical trials performed were oriented in the field of cardiol-
ogy because of their cardioprotective effects [71, 72].

ABC transporters

Another reason for MDR is the activity of ABC trans-
porters. They are transmembrane proteins involved in
self-defense mechanisms. These proteins actively pump
various endogenous molecules and xenobiotics out of
the cell. The main transporters that are linked to the
resistance of many structurally unrelated anticancer
agents are P-gp, MRP-1, and BCRP [73]. The substrates
of these transporters include numerous anticancer agents
from various groups (Table 1).

ABC transporters are normally found in many various
organs such as the kidney, liver, testes, intestine, and
physiological barriers [95]. Usually, their expression in
tumor tissues is highly increased [96, 97]. It was shown
that inhibition of these transporters may enhance delivery
and efficacy of anticancer drugs [78].

P-gp inhibitors

The most widely studied ABC transporter is P-gp. It is a 170-
kD transmembrane protein. P-gp overexpression causes
chemoresistance against many anticancer agents, such as pac-
litaxel, doxorubicin [98], daunorubicin [99], etoposide [100],
or vinblastine [101].

There are three generations of compounds that inhibit P-gp
(Table 2). First generation includes verapamil, quinine, and
cyclosporine A. These are pharmacologically active com-
pounds, approved for various cancer unrelated indications.
In 1989, it was found that verapamil competitively inhibits
P-gp and enhances doxorubicin, colchicine, and vincristine
retention within leukemia cells [102]. Cyclosporine A was
found to enhance distribution, retention and cytotoxicity of
doxorubicin and mitoxantrone in cells overexpressing P-gp,
MRP-1 and BCRP [103]. However, during some studies, it
was noticed that these drugs lack efficacy [104] or may im-
prove the toxicity of chemotherapy and cause various adverse
events [105, 106].

In order to reduce toxicity, first-generation P-gp inhibitors
were modified using chiral switching, and second generation
P-gp inhibitors were developed. Drug binding to P-gp is not
stereospecific; thus, isomers of P-gp inhibitors maintain their
inhibitory effect and ability to reduce MDR. Dexverapamil,
the R-isomer of verapamil, was shown to exert less potent
calcium channel blocking activity and lower cardiotoxicity
compared to S-isomer [107, 108] while maintaining its ability
to reduce doxorubicin chemoresistance in the same extent as
its racemate [109]. Another second-generation P-gp inhibitor
PSC833, also known as valspodar, is a 10–20-fold more po-
tent analog of cyclosporine D, but contrary to its parent com-
pound, valspodar does not exert immunosuppressive activity.
However, these compounds showed to be potent CYP 3A4
enzyme inhibitors. Therefore, significant undesirable pharma-
cokinetic interactions between anticancer drugs were

Table 1 Substrates of ABC
transporters Class of anticancer drugs BCRP MRP-1 P-gp

Anthracyclines Daunorubicin [74] Daunorubicin [75] Daunorubicin [74]

Doxorubicin [76] Doxorubicin [77] Doxorubicin [78]

Epirubicin [79] Epirubicin [80]

Camptothecins Irinotecan [79] Irinotecan [81]

Topotecan [82] Topotecan [83]

Epipodophyllotoxins Etoposide [84] Etoposide [85] Etoposide [84]

Folate analogues Methotrexate [79] Methotrexate [86] Methotrexate [87]

Kinase inhibitors Imatinib [88] Imatinib [89] Imatinib [74]

Nilotinib [90] Nilotinib [88]

Taxanes Paclitaxel [91]

Docetaxel [92]

Vinca alkaloids Vinblastine [93] Vinblastine, Vincristine [94]
Vincristine [85]
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observed, that result in delayed elimination and increased tox-
icity [110–113]. It is because many anticancer agents, such as
doxorubicin, paclitaxel, and vinblastine, are metabolized by
CYP 3A4 enzyme.

Aforesaid limitations encouraged the development of the
third-generation P-gp inhibitors, that possess low toxicity,
higher specificity, and binding affinity to P-gp and do not
interact with the CYP450 3A4 enzyme. These inhibitors in-
clude tariquidar, zosuiqudar, elacridar, biricodar, and ONT-
093. Design of these novel compounds was based on the
structure-activity relationship studies. Tariquidar is a deriva-
tive of anthranilic acid. It has 4-fold higher affinity for P-gp
than vinblastine, and 20-fold higher affinity than paclitaxel
[114]. Tariquidar is a non-competitive P-gp inhibitor [114].
Phase I trial showed that tariquidar is well tolerated when
combined with doxorubicin, docetaxel, or vinorelbine [115].
However, two phase III clinical trials of tariquidar in combi-
nation with paclitaxel plus carboplatin or vinorelbine alone for
non-small cell lung cancer were discontinued. These decisions
have been made due to high levels of toxicity observed in the
tariquidar arms (QLT Inc. Form 8-K). Another P-gp inhibitor
biricodar showed acceptable levels toxicity and good tolera-
bility [116], but was not very efficient [117].

Due to unsuccessful results of the third-generation in-
hibitors in clinical trials, screening of natural substances
has been started. These plant-based compounds belong to
the fourth-generation P-gp inhibitors and include alka-
loids, terpenoids, flavonoids, coumarins, and saponins. It
has long been known that grapefruit juice induces P-gp-
related drug efflux [118]. In a recent study by Zhang
et al., incubation of doxorubicin-resistant osteosarcoma
cells with resveratrol for 48 h caused an almost 7-fold
decrease of doxorubicin antiproliferative activity when
compared to cells incubated with doxorubicin alone.
Also, an increase in intracellular concentration of drug
and downregulation of MDR1/P-gp gene expression was
determined [119]. Another natural P-gp inhibitor, citrus
methoxyflavone nobiletin, was found to inhibit P-gp ef-
flux function and increase the efficacy of paclitaxel, doxo-
rubicin, docetaxel, and daunorubicin in ovarian cancer
and colorectal adenocarcinoma cells [120]. Moreover, it

was shown that flavonoids inhibit not only P-gp but also
BCRP, thus increasing an intracellular concentration of
anticancer compounds that are BCRP substrates [121].

BCRP inhibitors

BCRP is the most recently found ABC transporter. The sub-
strates of BCRP possess several common structural features
such as a planar structure, hydrophobic regions, aromatic sys-
tems, 7 to 20 carbon atoms and oxygen-containing groups
[136]. There are only few selective BCRP substrates.
Usually, the substrates of BCRP have the high affinity to P-
gp, as well. One of the first discovered BCRP inhibitors was
fumitremorgin C, an indole alkaloid isolated from Aspergillus
fumigatus. According to in vitro studies, it is a very effective
BCRP inhibitor that almost completely reverses resistance to
mitoxantrone, doxorubicin, topotecan and paclitaxel in BCRP
overexpressing MCF-7 breast cancer cells [137]. Similar re-
sults were found in colon carcinoma cells S1-M1-3.2 that
expressed low levels of P-gp and MRP [138].

However, fumitremorgin C has been reported to cause se-
vere neurotoxicity, which impeded its application in clinical
practice. Therefore, its nontoxic analog Ko143 was devel-
oped. It is a very potent BCRP inhibitor that exerts its effect
at nanomolar concentrations [139]. Recently, it was found that
at concentrations higher than 1 μM Ko143 inhibits P-gp and
MRP-1 [132]. This inhibitory effect on all three ABC trans-
porters may be favorable in order to increase the efficacy of
anticancer therapy but may also increase the risk of toxicity.

MRP-1 inhibitors

MRP-1 is another transmembrane protein that belongs to the
ABC transporter family and pumps drug substances out of the
cell. It was first discovered in human small cell lung carcino-
ma cells in 1992 [77]. As previously described P-gp and
BCRP, MRP-1 is also overexpressed in a wide variety of solid
tumors and it is considered to be a negative prognostic factor
of the disease. This protein takes part in the efflux of well-
known common anticancer drugs such as doxorubicin, vin-
blastine, methotrexate, and recently developed compounds,

Table 2 Generations of P-gp inhibitors

Generation P-gp inhibitors Limitations Ref.

First Verapamil, quinidine,
cyclosporine A, tamoxifen

Systemic toxicity, ineffective modulation of P-gp,
high serum concentrations are needed, increased myelosuppression

[104, 106, 122–124]

Second Dexverapamil, valspodar Low efficacy, pharmacokinetic interactions between
anticancer drugs due to CYP 3A4 inhibition

[111, 125, 126]

Third Tariquidar, zosuiqudar,
elacridar, biricodar, ONT-093

Lack of efficacy, further studies are needed [117, 127–132]

Fourth Resveratrol, nobiletin, tetrandrine,
quercetin, silymarin, hyperforin

Further clinical trials are needed. [119, 120, 133–135]
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for instance, tyrosine kinase inhibitors. Numerous in vitro and
in vivo studies have shown that inhibition of MRP-1 or down-
regulation of its gene expression leads to chemosensitization
of cancer cells to various anticancer agents [140–142]. One of
the most potent MRP-1 inhibitors is a pyrazolopyrimidine
derivative reversan. Reversan also inhibits P-gp, and it
showed favorable toxicity profiles in murine models [143].
Regardless of favorable results in vitro or in mice, no clinical
trials were conducted with MRP-1 inhibitors yet.

Physical methods

Besides inhibition of pH-regulating proteins or ABC trans-
porters with chemical compounds, physical methods can also
be used to improve drug delivery into cancer cells. These
methods include sonoporation by low-intensity ultrasound
and electroporation.

Sonoporation

In late 1940s, ultrasound was first applied for medicinal diag-
nostics [144]. In recent decades, there is an increasing interest
by scientists in the application of ultrasound in anticancer
therapy. There are numerous studies proving that ultrasound
combined with microbubbles may enhance anticancer drug
delivery into tumor cells [145–147].

Microbubbles consist of hydrophobic, usually fluorinated
gas coated with 10–100 nm layer made of polymers, proteins,
and lipids. In order to increase the specificity of microbubbles
to tumor tissues, a particular ligand specific to the cell surface
receptors can be attached to them. Due to the acoustic pressure
of ultrasound, microbubbles start to shrink and expand peri-
odically. This process is called cavitation. When the acoustic
pressure reaches a certain threshold, a collapse of microbubbles
occurs [148]. It is thought that cavitation or explosion of
microbubbles creates temporary pores in the cell membrane
through which the drug passively enters the cells (Fig. 3)
[149–151]. These pores close up as soon as ultrasound expo-
sure is terminated [149, 151]. The drug solution can be either
mixed with microbubbles or added before.

According to some studies, ultrasound may improve not
only passive diffusion but also the active transport of drugs.

It is believed that ultrasound may cause changes of ion chan-
nels; therefore, intracellular Ca2+ concentration increases and
causes cytoskeletal rearrangement [152]. These processes
stimulate endocytosis and drug delivery into cells.

In order to cause microbubble cavitation, low-frequency
(0.4–3.0 MHz) ultrasound is used and duty cycle may vary
from less than 1 to 90%. Long duty cycle and high intensity of
ultrasound may cause tissue damage [153].

Results from in vitro studies confirm the possible benefit of
ultrasound application in chemotherapy. Escoffre et al. deter-
mined that ultrasound and microbubbles combination in-
creased doxorubicin antiproliferative activity by 2.5-fold
[145]. Similar results were published by Piron et al. [146].
Grainger et al. investigated the effect of ultrasound on drug
delivery in 3D cancer cell cultures. It was shown that ultra-
sound when used in combination with microbubbles increases
nanoparticle penetration into breast cancer cell spheroids
[147]. There is a lack of clinical trials, though. There is only
one phase I clinical trial that showed promising results on the
application of ultrasound and microbubbles against pancreatic
cancer. Ultrasound prolonged survival from8.9 to 17.6months
when compared to control and did not increase drug toxicity.
However, patient cohort was too small (n = 10) to make reli-
able conclusions [154]. In order to evaluate the impact of
ultrasound on the efficacy of chemotherapy, further in vivo
studies and clinical trials are needed.

Electroporation

Electroporation, also known as electropermeabilization, tech-
nique is similar to sonoporation. The main difference is that
instead of ultrasound the cells are exposed with short pulses of
high voltage (usually 0.5–1 V) electrical field [155]. Electric
field causes structural the rearrangement of lipid molecules of
the cell membrane. This results in creation of hydrophilic
pores and increased permeability of the cell membrane.
Electroporation can be reversible or irreversible. The pores
created by reversible electroporation are temporary and re-
main at least several minutes, depending on their size and
duration of electric pulse [156]. In contrary, during irreversible
electroporation, certain threshold of the strength and duration
of electrical pulse is exceeded and cell death is caused. There
are many in vitro and in vivo [157–159] studies that

Fig. 3 Sonoporation-induced
formation of pores in the cell
membrane. Ultrasound waves
cause contraction, expansion, and
explosion of microbubbles. This
process leads to the rupture of
membrane and temporary pores
formation
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demonstrate an increased efficacy of anticancer drugs, such as
bleomycin, gemcitabine, or cisplatin, when combined with
electric pulses [160–162]. In phase II clinical trial (n = 52),
the influence of electroporation on the efficacy of bleomycin
in treatment of superficial metastasis of various cancers was
tested. One month after the first application of electroporation,
the reduction in tumor size was observed in 50 of 52 patients.
After the second course of electroporation, 18 of 27 patients
had partial or complete response. One hundred sixty-nine of
257 tumor nodules disappeared and in 89 size reduction was
determined [163] . In cont ra ry to sonoporat ion ,
electrochemotherapy is currently used in clinical practice as
palliative treatment in case of melanoma [164], basal and
squamous skin cancer [165], and skin metastasis from tumors
of non-skin origin [166]. Many researchers are still working in
the field of electrochemotherapy in order to investigate the
possible application of the method on other types of cancer,
such as bladder [167] or esophageal cancer [168].

Nanocarrier systems

To increase drug delivery to tumor cells and to reduce toxicity
against normal tissues, various targeted nanocarrier systems
are being developed. They include micelles, liposomes,
dendrimers, gold nanoparticles, mesoporous silica nanoparti-
cles, superparamagnetic iron oxide nanoparticles, carbon
nanotubes, and quantum dots [169]. Non-targeted nanoparti-
cles accumulate in tumor tissues due to leaky and defective
blood vessels, and reduced lymphatic drainage [170].
Targeted nanoparticles bear particular ligands that have high
binding affinity to cancer cell surface molecules [171].

Nanoparticles carry an anticancer agent to the target site,
where drug can be released due to various stimuli, such as pH
changes, reduction reactions caused by glutathione sulfhydryl
groups, enzymatic activity, magnetic or electric field, ultra-
sound [169]. Recently, mono-allyloxylated cucurbit[7]uril
(AO1CB [7]) nanovesicles have been created [172]. It works
as a nanocontainer for various drugs and proteins. When these
vesicles are affected with UV light or near-infrared two-pho-
ton laser, the allyloxy tails of (AO1CB [7]) react with gluta-
thione or other intracellular molecule containing thiol group,
thus resulting in targeted drug delivery. Although this method
showed to increase doxorubicin delivery into cervical cancer
cells, its efficacy needs to be investigated in further in vitro
and in vivo studies.

For stronger therapeutic efficacy, various transport modu-
lators can be incorporated into these systems. Janoniene et al.
combined porous silicon nanoformulations with transport
modulator—selective carbonic anhydrase IX inhibitor [61].
Porous silicon nanoparticles loaded with doxorubicin and
conjugated with carbonic anhydrase IX inhibitor enhanced
target drug delivery towards tumor tissues and improved

doxorubicin penetration into cancer cells. Carbonic anhydrase
IX inhibitor also enhanced drug loading efficacy into nano-
particles and improved drug release profile by reducing the
premature release of doxorubicin.

Dual delivery systems consisting of an anticancer drug
and nucleic acids, that silence the expression of drug efflux
transporters genes, are being developed, as well. Meng et al.
showed that co-delivery of doxorubicin and siRNA, that
knocks down the expression of P-gp, by mesoporous silica
nanoparticles increased intracellular delivery and cytotox-
icity of doxorubicin [173]. Silencing of P-gp gene leads to a
reduction of drug efflux and a decrease in pump-mediated
drug resistance.

At this point, there are 49 clinical trials on the field of
cancer with a term Bnano^ listed on ClinicalTrials.gov
database and most of them are still recruiting or ongoing.
Two liposomal drugs—doxorubicin (Doxil®) and irinotecan
(Onivyde®), one polymeric nanoparticle drug—leuprolide
acetate (Eligard®), and one protein nanoparticle
drug—albumin-bound paclitaxel (Abraxane®)—are
currently approved for clinical use. Although, simple
nanoparticles show higher efficacy and reduced toxicity,
progressive trends towards more complex nanomedicine and
dual delivery systems can be seen in the research field.

Conclusions

Despite various attempts to reverse MDR, it still remains
one of the most important problems of chemotherapy. So
far, neither pH modulators nor ABC transporter inhibitors
or application of ultrasound is applied in clinical practice.
However, novel V-ATPase or ABC-transporter inhibitors,
especially third- and fourth-generation P-gp inhibitors
(such as zosuiqudar, elacridar and resveratrol), show good
efficacy in in vitro and in vivo models. CA and NHE-1
inhibitors or ultrasound in combination with microbubbles
also demonstrate promising results in modulation of anti-
cancer drug penetration. Currently, there are two ongoing
clinical trials (NCT03458975 and NCT02233205) investi-
gating the efficacy of sonoporation on the delivery of anti-
cancer drugs, but the results are not published, yet. Instead
of microbubbles, researchers are developing nanobubbles
as they are smaller and can easier penetrate through blood
vessels [174]. Electrochemotherapy is approved for the
treatment of a few certain types of cancers, but researchers
are still trying to adapt the method for the treatment of can-
cer in body cavities. Besides physical methods, various
nanocarrier systems are gaining a great attention in an anti-
cancer therapy, as well. Incorporation of transport modula-
tors into these delivery systems is an unsaturated research
niche area warrant for further investigation.
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