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Abstract Process control and optimization is a critical aspect
of process analytical technology (PAT), quality by design
(QbD), and the implementation of continuous manufacturing
procedures. While process control and optimization tech-
niques have been utilized in other manufacturing industries
for decades, the pharmaceutical industry has only recently
begun to adopt these procedures. Micronization, particularly
milling, is a generally low-yield, high-energy consumption
process that is well suited for a process optimization mindset.
This review discusses optimization of the pharmaceutical
milling process through design space development, theoretical
and empirical modeling, and monitoring of critical quality
attributes.
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Introduction

A manufacturing process can be considered a black box, in
which the inputs must be understood and controlled to create a
product with the desired quality attributes. Process optimiza-
tion involves the identification of the constraints of a system
and adjustment of input variables within the system to reach
the desired quantitative performance attributes of the opera-
tion, which may be defined by cost, yield, or certain material

characteristics of the final product. The goal of process opti-
mization is to develop an understanding of the fundamental
behavior of the system, which is achieved through statistical
design of experiments, modeling based on first process, and
empirical approaches, and monitoring of the product quality
attributes in response to variations in input through off-line, at-
line, and in-line techniques [1]. The end result is creation of a
predictive model that details the relationship between control-
lable factors and process responses, and how these may be
manipulated to reach certain quality characteristics.

While heavily utilized in other manufacturing industries
such as chemical engineering, the incorporation and deploy-
ment of process optimization has been somewhat delayed in
the pharmaceutical industry. However, the quality by design
(QbD) approach that is now recommended by regulatory
agencies such as the Food and Drug Administration (FDA)
[2] and International Center for Harmonization (ICH) [3–5]
has rendered process optimization a critical component of
pharmaceutical product development. Two of the primary ob-
jectives of the QbD approach are to increase process capability
and efficiency and to reduce process variability through en-
hanced understanding and control of the process [6, 7]. In this
way, critical quality attributes of the product are ensured by
building quality into the design of the process, rather than
through testing of the final product [3]. The QbD approach
requires the design of robust processes that can tolerate known
or expected variability in inputs without compromise in the
system performance or product quality. One method of ensur-
ing a robust process is outlined by the FDA’s Process
Analytical Technology (PAT) guidance [2], which provides a
framework for the design, analysis, and control of manufactur-
ing processes through real-time, in-process measurements of
critical attributes to ensure final product quality [2]. Initiatives
outlined in this guidance document focus on the development
of a mechanistic understanding of formulation and process
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factors in order to design effective and efficient manufacturing
processes that ensure pre-defined product quality and perfor-
mance. Process optimization is also a critical component of
pharmaceutical process scale-up [8] and implementation of a
continuous manufacturing setup [9]. In both cases, a detailed
understanding of the constraints and interactions of critical
process parameters coupled with the application of various
control systems is needed to ensure a final product with the
desired quality.

Micronization is an example of a pharmaceutical process
that can greatly benefit from a process optimization approach.
Micronization is a particle engineering technique that involves
the transformation of coarse active pharmaceutical ingredients
and excipients into micron-sized particles, typically in the
submicron to tens of microns range. Micronization allows
for user control over critical drug powder parameters such as
particle size distribution, particle morphology, and surface ar-
ea, and is critical for the improving the dissolution and bio-
availability of poorly water-soluble drugs [10–13], the gener-
ation of respirable particles for pulmonary delivery [14–16],
and ensuring manufacturing reproducibility and content uni-
formity in blending and tableting [17, 18]. As such, it is likely
to be included at some point in the manufacturing process of a
pharmaceutical product. Micronization techniques are further
classified as either bottom-up or top-down process. Bottom-
up micronization refers to constructive particle formation pro-
cesses and includes spray-drying and anti-solvent precipita-
tion approaches. Top-downmicronization refers to the particle
size reduction of large particles into smaller particles through
the application of compression, shear, or impact forces [19]
which leads to fracture of the particles. Examples of top-down
micronizat ion include mil l ing and high-pressure
homogenization.

The scope of this review will focus on milling, as it is
widely used in the pharmaceutical industry for a variety of
applications, and is ideally suited for a process optimization
approach (Fig. 1), as milling is generally a high-energy, low-
efficiency process [20, 21] which may be improved through
enhanced understanding of the systems involved.
Furthermore, while various reviews have been published on
equipment selection and predictive modeling for milling, the
scientific literature lacks a comprehensive review that de-
scribes and links the various components of a process optimi-
zation approach as applied to milling. The milling process
involves many interacting variables derived from raw material
and equipment parameters, deviations in which could result in
both manufacturing inconsistences and sub-optimal therapeu-
tic effects. Certain quality standards must be evaluated and
met in the milled product, including powder flow, stability
of crystalline form, particle shape, particle size distribution
(PSD), surface area, and surface energy [22–24]. Selection
of milling conditions tends to be highly empirical [25], and
development of in silico models to describe breakage

mechanics coupled with a statistical design of experiments
approach could increase the overall understanding of this
micronization process and increase the robustness of proposed
operation. This review will present a guide for a stepwise
approach to achieve pharmaceutical milling optimization
(Fig. 1).

Technology overview of milling

Particle size reduction in milling is achieved by subjecting
particles to collisions with the equipment or each other,
resulting in particle fracture. The milling process may utilize
a gaseous continuous medium (dry milling) or liquid contin-
uous medium (wet milling). Three potential fracture mecha-
nisms are possible: impaction, in which force is rapidly ap-
plied normal to particle surface; compression, in which force
is slowly applied; and attrition, in which force is applied par-
allel to the solid surface [20]. Additionally, shear and cavita-
tion forces act upon particles if liquid medium is used [25].
The type of stress applied to a particle and the resultant size
distribution of the product is dependent upon the type of mill
used and the mill operating conditions such as solid feed rate,
milling duration, temperature, air flow rate, and revolution
rate, while the particle response to the stress is dependent upon
the innate properties of the material [20, 25–27]. Fluid energy
mills (also known as air jet mills) and media mills (also known
as ball mills) are commonly used in the pharmaceutical indus-
try [28], as they are capable of producing very fine, under
5 μm material [20, 29, 30]. This review will therefore focus
on these technologies.

Fluid energy mills are a type of dry mill in which fracture of
particles occurs through the application of high-velocity air jets,
which results in turbulence and inter-particle collisions. Fluid
energy mills include spiral jet mills (also known as pancake
mills) and fluidized jet mills. In general, spiral jet mills are
better suited for soft raw materials (Mohs hardness less than
3), while fluidized jet mills are better for harder materials [19,
31]. Fluid energy mills are beneficial in that they contain no
moving metal parts, which results in a reduced risk of contam-
ination and less heat generation, an advantage in the processing
of heat-sensitive materials. These mills can also be easily ster-
ilized and operated with sterile air. Fluid energy mills contain
an internal classifier [32] which helps ensure a narrow PSD.
However, a disadvantage of fluid energy mills is that powder
build-up and caking within the mill can impact performance,
and this is more likely to occur if a high solids concentration is
present. Critical process parameters of fluid energy mills in-
clude grinding pressure, number of grinding nozzles, feed pres-
sure, and feed rate [7].

Media or ball milling can be performed in dry or wet con-
ditions, though wet grinding generally results in a finer prod-
uct due to the reduction in particle strength and the dispersing
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effect of the liquid medium [27]. Wet media mills are espe-
cially useful for the micronization of particles into the

submicron range [13, 33, 34]. The starting material is placed
inside a cylinder with one or more spherical particles (referred
to as grinding media) and either gaseous or liquid continuous
medium. In the case of liquid medium, stabilizing agents may
be included to improve particle dispersion. The grinding me-
dia are typically constructed ofmetal, glass, plastic, or ceramic
and can vary in size from 0.2 to 130 mm. The cylinder may be
rotated, mechanically stirred, or agitated by vibration.
Micronization results from the compression and attrition of
particles between the tumbling grinding media, as well as
through generation of high-energy shear forces [33]. Liquid
nitrogen can be additionally included to cool the material and
lessen degradation by heat, as well as increase brittleness of
material and improve fracture capability by decreasing plastic
deformation of the material [29]. Critical process parameters
include the speed of the grinding media, the amount of grind-
ing media present, the solids concentration, the size of the
starting material, the milling time (ranging from hours to days
for nanosize formulations), and the nature of the continuous
media. Importantly, the grinding media in the ball mill must
not exceed the critical speed, which is the point at which the
media undergo centrifugal motion, as this will result in the
media being held against the wall of the cylinder and prevents
impacts between the grinding media and the particles. The
critical speed is inversely related to the cylinder size [20].
Additionally, the contamination risk secondary to wear of
the grinding media as well as degradation of the drug second-
ary to long milling times and heat generation must be

Fig. 1 Schematic approach to
process optimization of milling

Fig. 2 Schematic illustration of particle breakage process in milling

1742 Drug Deliv. and Transl. Res. (2018) 8:1740–1750



considered when developing the range for these process pa-
rameters [20, 33]. Though outside the scope of this review,
formulation parameters also play an important role in deter-
mining the characteristics and quality of the final product in
wet media milling [33].

Theory and mechanisms of particle breakage
in milling

After initial equipment selection is performed, understanding
the mechanisms and underlying theory of particle breakage
(Fig. 2) represents the first key step in the control and optimi-
zation of the milling procedure. Data from single-particle frac-
ture studies, much of which has been derived from the mining
industry [35–37], has improved the fundamental understand-
ing of particle breakage events. The insights gained from these
studies regarding material and operational influences on par-
ticle breakage could be applied to the optimized milling of
pharmaceutical powders.

When a particle is stressed by forces applied in milling, the
energy is stored as strain energy and the particle undergoes
reversible deformation. The applied forces propagate along
existing flaws and micro-cracks in the material. If the applied
force exceeds the elastic limit of the material, fracture occurs,
resulting in the formation of progeny particles. For semi-
brittle materials, plastic deformation may precede crack prop-
agation and breakage [38]. Due to the imperfect nature of solid
materials and subsequent uneven distribution of applied forces
through the solid structure, particle fracture results in a non-
uniform size distribution of progeny particles, the size and
number of which is dependent upon the nature of the milling
process as well the properties of the material [20, 35]. From a
thermodynamics perspective, the work to fracture a particle is
dependent upon surface energy, while the yield stress or
strength of the material is dependent upon the rate of strain
and temperature at which deformation occurs [20].

Overall, particle breakage is dependent upon the rates and
types of collisions and the resulting distribution of energy, as
well as the damage sustained to the material in different colli-
sion scenarios and the residence time of the material in the mill
[39]. Energy is not evenly applied to all particles within the
mill. The result of this is that some particles fracture through
excessively forceful impactions while other particles undergo
insufficient, less forceful impacts [20]. Depending on the force
of the collision as well as the properties of the material, colli-
sions may result in body breakage, in which major damage or
fracture of the particle or surface damage occurs, in which
only the surface layer of the particle is damaged or removed,
resulting in a subsequently smoother surface [35, 39]. Lower-
energy impacts result in incremental surface damage rather
than breakage from a single impact, and it has been experi-
mentally confirmed that milling processes are dominated by

these low-energy, incremental damage events which leads to
the overall energy inefficiency of the process [39].Mechanical
energy that is not utilized in the new surface area during par-
ticle fracture is dissipated through friction, heat, vibration,
sound, and elastic deformation of the solid materials [20, 21].

The energy required for particle fracture is inversely pro-
portional to the size of the starting particles [20]. As milling
proceeds and particle size reduces, a depletion in the number
of cracks in the particles occurs and greater stress is required to
cause fracture. The reduction in flaws leads to a greater ten-
dency for the particles to deform plastically rather than elasti-
cally, as the tensile stresses are not of sufficient magnitude to
produce a brittle fracture without the presence of the cracks
[21]. At a certain point, increases in energy expenditure do not
result in further size reduction. This is known as the milling
limit and is dependent upon material characteristics, the type
of mill used, and the operating conditions of the mill [20, 40].
Increasing aggregation also results as particles decrease in size
due to the increase in inter-particle interactions and can be
considered as a competing phenomenon to particle breakage
[33, 41], especially with prolonged milling duration [38].

In addition to equipment and operating parameters, mate-
rial properties are a critical factor in the breakage behavior of
particles. Fracture strength and deformation behavior (elastic
or inelastic) of the material influence particle breakage [35].
Primary properties responsible for breakage of solid particles
are Young’s modulus, which represents resistance to elastic
deformation; hardness, which represents resistance to plastic
deformation; and fracture toughness (known also as critical
stress intensity factor), which represents resistance to crack
propagation [38, 42]. Kwan et al. [43] utilized a single-
particle impact test to determine the mechanical properties of
the material, which could then be used to predict the size
reduction behavior based upon the strain rate exerted on par-
ticles and the impact stresses that occur in milling. They con-
cluded that usage of low strain rates to deduce mechanical
properties resulted in overestimation of milling size limit;
however, in general, breakage propensity data gathered from
single-particle impact testing could be used to predict particle
reduction behavior in bulk milling.

Design space development and design of experiments
for process optimization of milling

A key aspect of process optimization is the identification and
exploration of the design space. The design space of a process
is defined by the parametric boundaries within which the
product can be produced without alteration of critical quality
attributes. The benefit of this from a risk analysis standpoint is
that it is possible to determine in what manner the process can
compensate for the presence of disturbances in the environ-
ment, equipment settings, or raw material. Rather than the
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designation of a single operating point for each variable, the
result of design space definition is the development of an
operating range for each processing variable in which opera-
tion of the process under all possible combination of condi-
tions results in acceptable product [44]. When coupled with
in-process monitoring and real-time adjustment of variables,
this enables creation of a robust process.

The definition of a design space, which continuously
evolves as new information and technology becomes available,
involves developing knowledge of the process based upon lit-
erature and experience, and application of experimental data
and in silico modeling to fully understand the behavior of the
process [7, 45, 46]. A critical step in development of a design
space is a statistical design of experiments (DoE), in which
levels of different input variables are manipulated at the same
time to assess for interactions between variables and determine
optimal operating conditions. Utilization of multivariate math-
ematical approaches found in DoE is preferred over traditional
one-factor-at-a-time approaches due to the necessity of under-
standing the multi-factorial relationships that exist between
product and process, and the manner in which these relation-
ships influence quality attributes. One-factor-at-a-time ap-
proaches are not able to address the potentially significant in-
teractions that occur between product and process variables [2].

A successful experimental design requires the knowledge-
based exclusion of variables based upon risk analysis and
previous knowledge and experience that defines the range in
which the experiments should be performed [47]. DoE typi-
cally begins with a set of screening experiments to provide an
overview of the system under investigation, the results of
which determine which variables should be investigated fur-
ther, and the levels at which they should be investigated. This
will determine the final number of experiments performed.
While a full factorial design (2k, for two levels) enables the
investigation of both main and interaction effects, it can great-
ly increase the number and cost of experiments. The number
of experiments can be reduced by applying fractional factorial
design (2k-p, where 1/p is size of fraction). Replication of ex-
periments can be incorporated to further explore variability.

In general, size reduction in milling is influenced by both
material properties and equipment parameters, which vary with
the type of mill used. The DoE approach has been widely used
for the optimization of both fluid energy and media milling
based upon the critical parameters in each respective process.
In fluid energy milling, a DoE is typically built using grinding
pressure, pushing pressure, and feed rate as input variables, and
the size distribution of the product as the response. Generally,
for fluid energy milling, a finer particle size is obtained by
reducing the feed rate of material into the mill and by using
higher pressures [20]. To avoid fluctuations in end PSD, these
parameters should be kept constant in the milling process.

Vatsaraj et al. [30] optimized a lab-scale fluid energy mill
using the DoE approach and two solids with varying hardness

(sucrose and lactose). Setting the grinding pressure at 110 psi
and the pushing pressure at 65 psi, or vice versa, resulted in the
smallest particle size. Though a small particle size could be
achieved if both grinding and pushing pressures were set at
110 psi, the process consumed more nitrogen and was thus less
efficient. Very low pushing pressure in response to grinding
pressure resulted in material kick back from the mill and less
yield. In contrast, using the same mill, Yazdi and Smyth [48]
implemented a circumscribed central composited design to es-
tablish the optimal settings for grinding and pushing nozzle
pressures within the mill for high-dose nonsteroidal anti-
inflammatory drugs (NSAIDs) for pulmonary delivery. A close
agreement between grinding pressure and pushing pressure (75
and 65 psi, respectively) resulted in the highest product yield
and lowest D50 and D90 of the two NSAIDs assessed. This is in
agreement with results found byMidoux [31, 49] for a spiral jet
mill, in which optimal results were obtained when the injector
pressure was fixed higher than nozzle pressure to avoid back
flow, but only slightly higher (+ 0.5 bar or 7 psi) so as not to
disturb the grinding circle. Saleem and Smyth [29] incorporat-
ed a full factorial design for the optimized air jet milling of a
soft material, Pluronic® F-68, and also compared the results to
micronization with a cryogenic ball mill. Grinding and pushing
nozzle pressures were varied between 50 and 100 psi.
Response factors were PSD and yield. The most significant
impact on geometrical size reduction was the feed rate. A high
pusher pressure and low grinding pressure also helped achieve
a smaller particle size. Overall, particle size reduction wasmod-
est with the air jet mill, with an inability to reduce the D50

particle size to less than 24 μm. The main parameter influenc-
ing PSD in the cryogenic media mill was duration of milling,
with all samples reduced to less than 10 μm after 15 min of
milling, from a starting D50 of 70 μm. The inclusion of liquid
nitrogen in the media milling process was hypothesized to de-
crease the elasticity of Pluronic® F-68, resulting in a lower
energy requirement for fracture. These varying results demon-
strate the importance of the input material characteristics in the
optimization of equipment parameters, as what works for one
material may not necessarily work for another.

DoE has also been extensively utilized in the optimization
of media milling, with a focus on size and number of grinding
media, input energy (i.e., stir frequency), and feed size. Cho
et al. [50] utilized a full factorial design to determine the op-
timum mixture of ball sizes to be used in a media milling
process. Response in the experiment was mill production rate.
A binary mix of large- and small-diameter balls was deemed
most optimal. The optimal ratio of large to small was deter-
mined by 1) feed size, in which a larger feed size required a
greater proportion of large-diameter balls; 2) product size dis-
tribution, in that if a finer product size was needed, a greater
proportion of small balls was required; and 3) mill diameter, in
which a larger mill required a greater ratio of small balls.
Based upon the results of an initial screening study, Singh
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et al. [34] found that milling time and milling speed were the
main equipment process parameters contributing the end-
points of particle size and zeta potential in a glyburide
nanosuspension. Milling speed, coupled with ratio of polymer
to drug, contributed significantly to zeta potential, while mill-
ing time and milling speed contributed significantly to particle
size distribution. Zeta potential increased at high milling
speed, while mean particle size (represented by D90) de-
creased as milling time and speed increased, likely due to
the larger shear forces generated. Milling speed did not appear
to influence crystallinity, as assessed by X-ray diffraction
(XRD).

In silico modeling of milling

Utilization of in silico models improves understanding, effi-
ciency, and scale-up of processes. The goal of modeling is not
to necessarily provide an accurate description of a process, but
to gain understanding on the effect of parameters on system
behavior and thereby improve the fundamental scientific un-
derstanding of the process [47]. Simulations are advantageous
because they can be used to predict the effect of operational
parameters and material variability without performing exten-
sive and expensive experiments.

Models may be based upon first principles, experimental
data, or a combination of both. While first principle modeling
is based upon the fundamental thermodynamic and rate pro-
cesses, empirical and semi-empirical modeling, in contrast, is
based upon large amount of experimental data that is typically
obtained through DoE. These types of models are useful in the
case of processingmethods in which first principles are not yet
available, and are also beneficial for process monitoring and
control for the design space in which experimental data was
collected. Caution must be taken, however, in application of
these models to other formulations or equipment outside of
that used to obtain experimental data, due to the lack of un-
derlying physics understanding. Examples of empirical and
semi-empirical modeling include artificial neural network,
multivariate analysis, Monte Carlo, Kriging methodology,
and response surface methodology (RSM) [46]. Frequently
utilized empirical and semi-empirical modeling techniques
for particle breakage and material interaction in milling in-
clude discrete element method (DEM), population-based
method (PBM), computational fluid dynamics (CFD), or com-
binations of these. In all cases, models should be verified with
experimental data to eliminate ambiguity.

Modeling based on energy laws (Rittinger, Kick,
and Bond)

Historically, there exists three different empirical models by
Rittinger [51, 52], Kick [52], and Bond [52, 53] that describe

the grinding process. In all three models, the energy required
for the milling process is dependent upon the size of the par-
ticles, but the models differ in their assumptions regarding
how energy is utilized in the breakage process. Rittinger’s
model [21, 51, 52, 54] is based upon the assumption that
energy required for breaking a particle is proportional the
new surface area generated per unit mass of the particle, and
does not consider energy absorbed during elastic deformation
of the particles. Kick’s model [52, 54], in contrast, assumes
that particle fracture occurs when particles are deformed be-
yond their elastic limit. Kick’s equation describes the energy
required for plastic deformation before fracture occurs. It
therefore considers energy absorbed in elastic deformation,
but disregards energy absorbed by the fractured particles.
Bond’s model [52–54] is a compromise between Rittinger’s
and Kick’s models in that it incorporates energy absorbed by
fractured particles as well as energy absorbed during elastic
deformation. Chen et al. [54] applied these three models to the
vibrational, single-ball milling of alpha-lactose to determine
which best fit the experimental data. It was found that best-
fitting theoretical model varied according to the process pa-
rameters. Rittinger’s model was most suitable for milling with
the lower powder loads, or milling at high frequencies, as in
these cases, most of the energy in the system was used in
particle fracture rather than elastic deformation, due to the
increased opportunities for direct impact of the milling ball
on individual particles. For the higher powder loads or milling
at low frequencies, Kick’s model wasmost suitable, as in these
cases the ball was more likely to be in the rolling mode across
the powder bed, resulting in energy dissipation through the
powder bed and deformation, rather than individual particle
breakage. In both cases, Bond’s model had an intermediate fit.
These results make it apparent that the best choice of energy
model is highly dependent upon the mechanism of particle
breakage.

Population-based method approaches

For brittle materials, it has been experimentally determined
that milling follows a first-order law [20, 55, 56]. Therefore,
milling can be modeled as rate process. This is the basis for
population-based method (PBM) modeling approaches,
which simulate the time and space evolution of the PSD dur-
ing the milling process by considering the breakage rate, de-
fined as the rate at which the particles fragment, as well as the
breakage distribution, which is defined as the resultant mass-
based PSD of the broken particles. The breakage rate may be
modified to enable the incorporation of equipment-specific
inputs, such as feed rate or operating parameters [39]. The
benefit of this is that if the characteristics of a material as well
as the mill are inputted into the model, it was possible to
determine the resultant PSD without running multiple exper-
iments. The limitations of PBM models are that they are
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developed for specific comminution devices under specific
operating conditions and therefore cannot be applied to pa-
rameters outside of those operating conditions, or in cases
where there are changes or additions to equipment, for in-
stance, in a continuous processing procedure [39].

PBM may incorporate a linear or non-linear model. In the
time-continuous linear PBM (TCL-PBM) model, time is used
as a continuous variable. This model assumes first-order
breakage kinetics, meaning that the breakage rate function Si
is independent from the population mass density distribution.
The disappearance of particles from any given size class will
therefore be proportional to the mass fraction of that time class
[57]. Annapragada et al. [41] developed a linear PBM model
for the micronization of dextrose in a wet media mill which
was verified experimentally. This model was based upon col-
lision rate of particles in a dilute system and assumed a rate of
particle break-up that was proportional to the rate of collisions
in the mill. Experimental data showed good agreement with
the simulation for particles between 10 and 20 μm. However,
this was not the case for particles below 4 μm, which was
hypothesized to be due to use of the Fraunhofer diffraction
method, which could under-predict mass fraction of small
particles, or the fact that more energy is required to fragment
smaller particles, which is not accounted for in the simulation.
Though TCL-PBM models are widely used, the assumptions
of first-order breakage kinetics may not hold in the dense-
phase systems typical of milling operations [58]. In the case
of dense-phase milling, the breakage rate and breakage prob-
ability of particles of a given size are not solely dependent
upon the particle size, as the increase in number fines will lead
to redistribution of collision forces and a cushioning effect
[57, 59, 60]. Therefore, there is a dependency of the breakage
rate on the continually evolving particle population. Time-
continuous non-linear PBM (TCNL-PBM) expands upon the
linear model by considering the weighted interactions of par-
ticles into the breakage rate function [57, 61] and is experi-
mentally demonstrated to provide a better prediction of dense-
phase milling systems [62].

Discrete element method approaches

Discrete element method (DEM) is a Lagrangian model, and
therefore, it tracks the positions, velocities, and accelerations
of each particle individually. This is achieved by solving
Newton’s equations of motion to determine particle motion
and by using a contact law to account for particle-particle
collision forces and subsequent integration of these forces to
determine the material response. All particles are given a de-
fined position and velocity, and the algorithm determines all
particle-particle and particle-wall contacts and the forces de-
rived from these. The resultant translational and rotational
accelerations are calculated by Newton’s second law.
Accelerations are integrated according to a time step to find

the new particle positions. The entire process is then repeated.
Advancements in computing powder have also allowed for
the consideration of attractive forces, such as Van der Waal
(VdW) forces in the model, which can affect milling efficien-
cy and yield.

Numerous sub-types of DEM are used, a review of which
is provided byWeerasekara et al. [39]. In short, a hard-particle
or soft-particle approach may be used for DEM. The hard-
particle approach, in which it is assumed that collisions be-
tween rigid particles are instantaneous and binary, is best suit-
ed for dilute flows, whereas the soft-particle approach, which
does not assume instantaneous contact and therefore allows
for multiple and long-lasting contacts as well particle defor-
mation (modeled as particle overlap), is better suited for dense
models [47, 63].

The advantage of DEM is that it provides more detailed
description of the particle-level behavior such as agglomera-
tion or segregation and allows for the modeling of particle
distributions. Material properties, such as PSD, friction coef-
ficient, density, and mass, as well as equipment properties, can
be used as inputs into the model. However, DEM simulations
generate a significant amount of data, which must be extract-
ed, analyzed, and summarized to provide useful information
and generate a predictive model. The handling of these
datasets is an area of continued research [39]. Additionally,
the computational power required by DEM limits the number
of particles that can be included in the model, though this is
become less of an issue as technology expands.

Computational fluid dynamics approaches

Computational fluid dynamics (CFD) is based on a Eulerian
method in which the material is treated as a continuum, and
the mass, momentum, and energy balances are solved. In a
Eulerian-Eulerian CFD approach to modeling of milling,
solids are assumed to be a second continuous phase.
However, in a Eulerian-Lagrangian CFD approach, the solids
are modeled discretely using DEM and coupled with the CFD
model for the fluid flow, which allows for the determination of
fluid effects on particle behavior.

Brosh et al. [64] utilized a DEM-CFD-coupled simulation
to model micronization in a jet mill. This model incorporated
both breakage and attraction forces, such as Van der Waal
forces, to determine the efficiency of the milling process as
particles became smaller and more prone to caking on the jet
mill components. DEM particle motion component of model
was built by considering particle mass and all the forces acting
the particle that stem from contact interaction (such as
particle-wall and particle-particle interactions), fluid-solid in-
teractions, and VdW forces and how these influenced transla-
tion and rotational movement on the particle. Particle commi-
nution events were modeled by considering the strength of the
particle in each collision event, the breakage of particles into
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fragments if the particle was not strong enough to withstand
breakage, and fatigue of the particle if it was strong enough.
Comminution functions were empirical. Agglomeration and
caking were also considered in the simulation by determining
when particle-particle collisions resulted in a constant contact
point, determined by lack of sliding, torsion, or rolling.
Experimental validation showed good agreement with the
simulation.

Other approaches

Afolabi et al. [65] determined optimized parameters for crea-
tion of nanosuspension using wet stirred media mill by apply-
ing a microhydrodynamic model, in which the impact of stir-
rer speed, bead concentration, and drug loading on breakage
kinetics was assessed by describing the fluctuating motion of
beads in suspension. They determined that as milling time
progressed, the particle breakage rate decreased. This is be-
cause finer particles were produced overtime, which were
harder to capture between the beads and harder to break.
The particle breakage rate increased with stirrer speed. This
is due to increasing fluctuating motion of the beads, which led
to more frequent collisions with drug particles. With higher
bead loading, the number of stress events (i.e., particle colli-
sions) increased, but intensity decreased due to greater energy
dissipation and subsequently reductions in the fluctuating mo-
tion of the beads. Breakage rate slightly decreased with in-
creased drug loading, due to an increase in number of drug
particles captured between beads and a decrease in the com-
pressive forces applied on each particle (energy dissipation).
Based upon these results, if the material is not thermally de-
graded in the process, it is most optimal to set the mill at the
highest stir speed with the highest bead lower, though rapid
breakage still occurs if lower stir speeds and bead loads are
used. As drug loading concentrations increase, duration of
milling should also be increased.

Process monitoring of milling

Monitoring of critical quality attributes is a key aspect to im-
plementation of continuous manufacturing methods, as well
as adherence to a PAT or QbD approach. Particle size distri-
bution, which may be measured through laser diffraction or
image analysis techniques [66], is commonly used as an end-
point, along with measurements of powder flow [22, 67].
Additional powder and particle analysis techniques are listed
in Table 1.

In particular, monitoring of the surface energy and crystal-
linity is important as these can affect the physical and chem-
ical stability of the product [68]. The high-energy inputs gen-
erated through friction and particle fraction in milling can
result in mechanical activation of powders [69] and

subsequent structural changes to the crystal lattice, leading
to creation of amorphous regions or crystalline lattice defects
[70]. Themagnitude of disorder is dependent upon the starting
material characteristics and the milling conditions [33, 69, 71].
X-ray diffraction (XRD) and differential scanning calorimetry
(DSC) are used to determine changes in crystalline structure.
Amorphous regions are associated with a diffuse halo pattern
on XRD, while DSC shows evidence of a glass transition
temperature. Inverse gas chromatography (IGC) may also be
used to determine changes in surface energy associated with
crystalline disorder. Not all cases of crystalline disorder result
in amorphous regions, but may instead correspond to rear-
rangements or defects in the crystalline lattice that still retain
the anisotropy of the crystal lattice [70]. The degree of disor-
der may be influenced by the crystalline habit of the starting
material as well as the type of mill [72]. Chamarthy et al. [71]
utilized the techniques of XRD, DSC, IGC, and thermally
stimulated polarization current (TSPC) to determine if disor-
der in two cryomilled materials, felodipine and griseofulvin,
was due to generation of amorphous regions or the result of
defects in the crystal lattice. Based upon a combination of the
generated data, which was compared against unmilled crystal-
line material and amorphous material, they found that proper-
ties of the milled material were consistent with defects in the
crystal lattice, rather than amorphous regions. Furthermore,
the crystal lattice could be restored through heating of the
cryomilled samples or exposure of the samples to humidity.

In-process monitoring, which enables the real-time or near
real-time adjustment of critical process parameters, is a critical
aspect of the FDA’s PAT approach [2, 47] and should be con-
sidered for the process optimization of milling. In-process
measurements are subdivided into off-line, at-line, on-line,
and in-line depending on if the measurement probe is directly
placed within the manufacturing equipment, and if the sample
is returned to the process stream after measurement [47]. At-
line measurement describes the removal of the sample from

Table 1 Examples of particle and powder characterization techniques
to monitor critical quality attributes

Property Technique

Particle size distribution Laser diffraction

Image analysis

Powder flow Angle of repose

Bulk and tapped density

Surface analysis/surface energy Inverse gas chromatography

Atomic force microscopy

Scanning electron microscopy

Electrostatics (Faraday cage)

Crystallinity/polymorphism X-ray powder diffraction

Differential scanning calorimetry

Hot-stage microscopy
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the process stream, and analysis near the process stream. On-
linemeasurement refers to the diversion and subsequent return
of the sample from the process stream. In-line measurement
refers to the analysis of the sample without removal from the
process stream [2]. In-line measurement can be problematic
due to fouling of the measurement probe, which may be
prevented by application of compressed air or utilization of
scraping systems [73]. Additionally, as with any powder sam-
pling technique, segregation of the powder is a concern, and
the probe must be placed appropriately to avoid this [47].

Much focus has been placed on the development of in-
process techniques for the measurement of particle size and
shape, which include focused beam reflectance measurement
(FBRM) [73, 74], Raman and NIR spectroscopy [75], image
analysis [73, 76, 77], and acoustic attenuation spectroscopy
[78]. However, work remains to be done in the transition from
off-line to in-process monitoring of critical quality attributes.
Silva et al. [73] compared the traditional offline particle anal-
ysis techniques of laser diffraction and sieve analysis to the in-
process techniques of FBRMs, spatial filtering velocimetry
(SFV), photometric stereo imaging, and the Eyecon® technol-
ogy for the measurement of spherical granules and pellets, and
found significant differences in the PSD measurements ob-
tained with each technique, likely due to the theoretical differ-
ences behind each technique. These differences must be care-
fully considered when reporting the results obtained with in-
line versus off-line techniques.

Conclusions and future perspectives

In response to regulatory initiatives such as PAT and QbD, as
well as a trend towards the adaptation of continuous
manufacturing, process optimization approaches from chemi-
cal engineering and mining industries are now being applied
to the milling of pharmaceutical powders. Computational
models such as PBM and DEM coupled with statistical exper-
imental design are increasing the fundamental understanding
of milling operations and the interplay between different pro-
cess parameters. However, a greater understanding of the ef-
fect of starting material characteristics in milling operations,
and how these influence final product quality attributes such
as crystalline disorder, PSD, and milling efficiency, is still
needed. Quantification of these relationships will enhance
the overall predictability of models and robustness of the pro-
cess to variations in input materials and will enable logical
adjustments to equipment parameters to increase the overall
energy efficiency of the process. As computing capabilities
increase, it is anticipated that predictive modeling will play a
greater role in process design, scale-up, and alteration.
Modeling presents an alternative to costly experimentation
and can also lead to a greater understanding of the mechanical
fundamentals of particle breakage. Increased computational

power will enable creation of more realistic models that incor-
porate both single-particle and bulk-powder behavior.
Already, this has been seen with the development of DEM
simulations that consider particle-particle interactions and
their effect on the process as a whole. Lastly, it is likely that
advent of continuous manufacturing will require implementa-
tion of a wide-range of in-process critical quality monitoring
systems. In-process monitoring is currently in its early stages,
and research is still needed to design systems that are able to
accurately and reproducibly measure powder characteristics,
while avoiding issues of powder segregation when collecting
samples. Overall, milling will continue to remain an integral
part of pharmaceutical product development, and as the
manufacturing paradigm shifts to favor PAT regulations and
continuous manufacturing, the importance of process optimi-
zation will continue to grow.
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