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Abstract Women globally need access to multipurpose pre-
vention technologies (MPTs) that prevent human immunode-
ficiency virus (HIV), sexually transmitted infections that in-
crease HIV acquisition/transmission risk, and unintended
pregnancy. Seeking an MPT with activity against HIV, herpes
simplex virus-2 (HSV-2), and human papillomavirus (HPV),
we developed a prototype intravaginal ring (IVR), the MZCL
IVR, which released the antiviral agents MIV-150, zinc ace-
tate, and carrageenan (MZC for short) and the contraceptive
levonorgestrel (LNG). Previously, we showed that an MZC
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gel has potent activity against immunodeficiency viruses,
HSV-2, and HPV and that the MZCL (MZC with LNG) IVR
releases all four components in macaques in vivo at levels
associated with efficacy. Vaginal fluid from treated macaques
has in vitro activity against HIV, HSV-2, and HPV. Herein, we
assessed the ability of the MZCL IVR to protect macaques
against repeated co-challenge with HSV-2 and SHIV-RT (sim-
ian immunodeficiency virus [SIV] containing the reverse tran-
scriptase gene from HIV) and prevent hormonal cycling. We
evaluated in vivo drug release in co-challenged macaques by
measuring drug levels in blood and vaginal fluid and residual
drug levels in used IVRs. The MZCL IVR significantly
prevented SHIV-RT infection, reduced HSV-2 vaginal shed-
ding, and prevented cycling. No non-nucleoside HIV reverse
transcriptase inhibitor (NNRTT)-resistant SHIV was detected
in macaques that became infected after continuous exposure
to MZC from the IVR. Macaques wearing the MZCL IVR
also had carrageenan levels in vaginal fluid expected to protect
from HPV (extrapolated from mice) and LNG levels in blood
associated with contraceptive efficacy. The MZCL IVR is a
promising MPT candidate that warrants further development.

Keywords Multipurpose preventiontechnology - Intravaginal
ring - HIV - HSV-2 - HPV - Contraception

Introduction

The non-curable sexually transmitted infections (STIs)
caused by human immunodeficiency virus (HIV), herpes
simplex virus type 2 (HSV-2), and human papillomavirus
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(HPV), as well as unintended pregnancy, are highly over-
lapping global risks for women’s health that converge
most significantly in sub-Saharan Africa [1]. A safe, ac-
ceptable, affordable, and accessible self-initiated multi-
purpose prevention technology (MPT) that protects wom-
en against these four indications could significantly im-
prove the health of women globally.

A large number of topically applied vaginal formulations
have been developed to meet end-user preferences for HIV
prevention [2, 3]. These formulations can be broadly catego-
rized as short-acting/on-demand (e.g., douches, films, gels,
inserts, nanofibers) and long-acting/sustained release (e.g.,
intravaginal rings [IVRs]). Several gels and IVRs that release
one or more anti-HIV drugs have demonstrated their potential
utility by blocking immunodeficiency virus infection in pre-
clinical models [2, 3] and have advanced beyond Phase 1
clinical testing.

However, the microbicide gels tested in Phase 3 clinical
trials failed to live up to expectations, even though early
clinical phase data looked encouraging (especially for 1%
tenofovir gel tested in the CAPRISA-004 2B trial) [4, 5].
Subset analysis of these Phase 3 gel trials concluded that
poor adherence to gel confounded the results. However,
women who consistently used the gels were at a lower
risk of acquiring HIV infection [6]. The two recently com-
pleted Phase 3 trials of the dapivirine IVR showed that
the TVRs significantly reduced the risk of HIV infections
overall [7]. Similar to the gel trials, poor adherence to
IVR use decreased the overall efficacy of the IVR, and
in some subgroups (notably the youngest women), the
IVR did not protect [7]. These data support the notion
that women who consistently use topical microbicides will
likely be protected from HIV.

Therefore, the next generation(s) of topical microbicides
must be designed to encourage greater adherence to study
product. One avenue to achieving this is to broaden the utility
and appeal of the product by expanding its indications to in-
clude other STIs and unintended pregnancy. IVRs are unique-
ly able to address multiple sexual and reproductive health
needs as they are the leading sustained release platform to
deliver multiple drugs vaginally, have high acceptability, and
are already on the market for contraception as well as hormone
replacement therapy and preparation for in vitro fertilization
[8, 9]. MPT IVRs that prevent pregnancy and STIs may im-
prove microbicide usage, increasing coverage and effective-
ness and significantly reducing global health burdens. An
MPT IVR that covers multiple indications, including HIV,
other STIs, and contraception, may have added value and also
reduce the overall cost of prevention by providing the multiple
indications from one product. Although IVRs are more expen-
sive than some other forms of pre-exposure prophylaxis
(PrEP) per unit, the overall cost savings and impact on global
public health through increased adherence and sustained

delivery will likely reduce costs long-term and make IVRs
competitive with other dosage forms.

The Population Council has developed the MZC combina-
tion microbicide as an MPT to simultaneously prevent HIV-1,
HSV-2, and HPV infections. It is composed of three antiviral
drugs: MIV-150, a non-nucleoside HIV reverse transcriptase
inhibitor (NNRTI); zinc acetate (ZA), a small molecule metal
salt; and carrageenan (CG), a high molecular weight naturally
occurring sulfated polysaccharide. MZC blocks HIV, HSV-2,
and HPV through multiple mechanisms of action [10]. MIV-
150 targets different clades and drug-resistant isolates of HIV
[10], and ZA targets HIV and HSV-2 [10-14], potentially
recognizing an RT site in HIV distinct from that recognized
by MIV-150 [11]. CG potentiates ZA’s anti-HSV-2 activity
[12, 14], potently blocks HPV in mice and macaques [10,
15—-17], and reduces the prevalence of HPV in women [18].
Formulated as a semisolid aqueous gel, the MZC combination
significantly reduces (i) macaque SHIV-RT infection after
SHIV-RT or SHIV-RT/HSV-2 challenge [10, 19-21], (ii)
HSV-2 shedding in macaques after repeated SHIV-RT/HSV-
2 challenge [13], and (iii) infection of mice with HSV-2 and
HPV [10]. Levonorgestrel (LNG) is used in many licensed
contraceptives, is on the WHO list of essential medicines
[22], and is currently the top contender for inclusion in vagi-
nally applied microbicide/contraceptive products [9]. Thus,
MZCL could prevent the three viral infections and unintended
pregnancy. Both the MZC and MZCL IVRs could have better
adherence due to their multiple indications.

We tested the MZC and MZCL IVRs in a repeated SHIV-
RT/HSV-2 co-challenge rhesus macaque model that we re-
cently developed [20]. Non-depot medroxyprogesterone ace-
tate (DMPA)-treated macaques received twice-weekly vaginal
challenges containing 200 TCIDs, SHIV-RT and 10 pfu
HSV-2 for 10 weeks (wks). Both viruses infect the animals
at a frequency similar to that observed in DMPA-treated ma-
caques co-challenged once with 1000 TCIDs, SHIV-RT and
2 x 10® pfu HSV-2 [20]. This dosing regimen results in a
similar pattern of SHIV viremia but more frequent HSV-2
shedding in the vaginal fluid, which provides power to detect
effects of the microbicide on HSV-2 shedding in infected ma-
caques as well as on outright infection.

Herein, we performed basic pharmacokinetics (PK) testing
on a larger sample size than that reported before to substantiate
the efficacy results and to inform future IVR optimization,
evaluated antiviral efficacy against the acquisition of SHIV-
RT and HSV-2 infections, assessed vaginal HSV-2 shedding,
examined correlates of the contraceptive activity of LNG, and
looked for the emergence of drug resistance in macaques that
became infected during the study. Sustained use of an MZC or
MZCL IVR by an HIV-infected woman who is either unaware
of her HIV status or interested in the additional protection
provided by the IVR could potentially lead to the emergence
of common NNRTI-resistance mutations. We provide the first
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evidence that an IVR delivering the unique broad-spectrum
MZC combination microbicide and the contraceptive LNG
significantly protects macaques against repeated vaginal chal-
lenge with SHIV-RT without leading to NNRTI resistance in
breakthrough infections, significantly reduces HSV-2 shed-
ding, produces vaginal levels of CG associated with protection
from HPV, and suppresses macaque menstrual cycles. An
MPT IVR that significantly reduces the sexual transmission
of HIV, the transmission and viral burden of STI co-factors for
HIV acquisition like HSV-2 and HPV, and the risk of unin-
tended pregnancy could improve the sexual and reproductive
health of millions of women worldwide.

Materials and methods
IVRs

A complete description of the design, manufacturing, and
characterization of the core-matrix MZC and MZCL IVRs
and the matrix placebo and LNG IVRs has been published
[23]. Briefly, MZC(L) IVRs (20 mm x 4 mm) consisted of a
solid compressed core of ZC encased by an ethylene vinyl
acetate (thermoplastic) ring body/matrix that contained MIV-
150 and LNG (in MZCL IVRs). A pore was drilled into the
IVR matrix to allow ZC gel (formed by the influx of vaginal
fluid via the pore to hydrate the solid ZC core) to exit. MIV-
150 and LNG diffused through the thermoplastic. All IVRs
were subjected to quality control testing prior to use in the
animals. The tests included microscopic examination of the
pore to determine pore size and also to ensure that the pores
were not obstructed in any way due to the fabrication process.
The quality control procedures are described in Ugaonkar
et al. [23]. A graphical representation of the IVR is shown in
Fig. 1a, b. MZC and MZCL IVRs with two pore sizes—500
and 800 pum—were tested.

Viruses

SHIV-RT for macaque in vivo challenges was grown in
phytohaemagglutinin (PHA)-activated rhesus macaque
PBMCs and titered on 174xCEM (CX1) cells as described
[21]. This stock, previously used in another study [19], had
a wild type RT gene sequence in 32 of 32 clones sequenced
(not shown). In drug-resistance studies, PBMC virus from
macaque EJ42 was expanded by 8 days (d) of co-culture with
CX1 cells (5 x 10° PBMC:5 x 10° CX1) in 24-well plates. The
culture supernatant was clarified by centrifugation (10,000 xg
for 15 minutes [min]) and frozen at —80 °C before titering
using the TZM-bl assay [24]. For comparison, SHIV-RT was
expanded alongside EJ42 PBMC virus by spinoculation of
CX1 cells with 400 TCIDs,/10° cells in 96-well flat-bottom
plates (1700 xg, 100 min, 23 °C) followed by 8 d of reculture
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in 24-well plates. Virus was collected in the culture superna-
tant and titered on TZM-bl cells as described above. HIV-
Inpas 1178V was constructed by site-directed mutagenesis
(Genewiz, South Plainfield, NJ) on the HIV-1y; 43 plasmid,
and the virus was generated by transfection of 293T cells and
titered on TZM-bl cells as above. The virus stock was titered
using 3 x 3 activated human PBMCs [25]. TCIDs, was cal-
culated using the Reed and Muench formula. Aliquots of virus
stock were stored at —80 °C. HSV-2 strain G (ATCC) was
grown and titered in Vero cells as previously described [26].

Macaque studies
Ethics statement

The TNPRC Institutional Animal Care and Use Committee
(IACUC) board granted approval for the macaque studies.
Adult female rhesus macaques (Macaca mulatta) were housed
and cared for at Tulane National Primate Research Center
(TNPRC, Covington, LA) in accordance with the policies of
the TNPRC Animal Care and Use Committee (OLAW
Assurance A4499-01), which is accredited by the
Association for Assessment and Accreditation of Laboratory
Animal Care (AAALAC 000594). All procedures complied
with the Animal Welfare Act [27], the Guide for the Care and
Use of Laboratory Animals [28], and TNPRC standards for
minimizing animal distress. Macaques were socially housed
indoors in climate-controlled conditions with a 12/12-light/
dark cycle and monitored for their welfare continuously
throughout the study. Macaques were anesthetized with
ketamine-HCI (10 mg/kg) or tiletamine/zolazepam (6 mg/
kg) before all procedures, and pre-emptive and post-
procedural buprenorphine (0.01 mg/kg) were given for proce-
dures that would likely cause more than momentary pain or
distress in humans undergoing the same procedures. One ma-
caque (CT31) stopped eating and lost weight 6 wks after the
last co-challenge and was euthanized using methods consis-
tent with recommendations of the American Veterinary
Medical Association Panel on Euthanasia; it was anesthetized
with tiletamine/zolazepam (8 mg/kg intramuscularly [im]) and
given buprenorphine (0.01 mg/kg im) followed by an over-
dose of pentobarbital sodium. Death was confirmed by aus-
cultation of the heart and pupillary dilation. All other ma-
caques remained healthy and were released at the end of the
study to be enrolled in other microbicide studies.

Study design

As described in Table 1, there were four major groups of
macaques for comparison in this study: those that received
placebo IVRs (n = 4), LNG IVRs (n = 4), MZC IVRs
(n = 12), and MZCL IVRs (n = 12). In the test groups
(MZC and MZCL), we compared IVRs with a 500 pm pore
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Fig. 1 Design of the macaque MZCL IVR study. (a, b) Graphical
representation of the MZCL IVR. The thermoplastic matrix containing
MIV-150 and LNG encompasses the compressed core of CG and ZA. A
pore (500 or 800 pum) drilled through the matrix to the core exposes the
core to incoming vaginal fluid, allowing hydration of the core and release
of CG and ZA. (c) A repeated SHIV-RT/HSV-2 co-challenge model was
used for testing the MZCL IVR. IVRs were inserted into rhesus macaques
not treated with DMPA for 21 d before they were exchanged for new

(n =6 MZC and 6 MZCL) and an 800 um pore (n = 6 MZC
and 6 MZCL). As we previously reported [23], [IVRs with the
800 pum pore had the pore plugged with ZA/CG mix to pro-
vide a continuum between the IVR core and the vaginal fluid.
In the placebo and LNG control groups, 500 and 800 wm pore
were included but without plugging since these IVRs were of
matrix design and did not contain a core; thus, the pore was
superficial. The study was conducted during the October to
April breeding season for rhesus macaques when the animals
are cycling. Macaques were confirmed negative for SIV, sim-
ian type D retroviruses, simian T cell leukemia virus-1, and
herpes B and were assigned to unblinded treatment groups
that were not randomized since there was no screening data
on their human leukocyte antigen types or intrinsic antiviral
gene alleles. Staff used visual inspection with a speculum at
every challenge and time point to confirm that each animal
retained the IVR. MZC and MZCL IVRs were compared to pla-
cebo and LNG IVRs by using a modified version of our recently
published, repeated (weekly for 20 wks) SHIV-RT/HSV-2 co-
challenge model in non-DMPA-treated rhesus macaques [20].
Based on data from the published PK study on these IVRs [23],
we modified the co-challenge regimen to focus on a challenge
window when vaginal fluid drug levels were >25 pg/ml CG (ef-
fective against HPVand HSV-2[10, 17, 29]) and >50 ng/ml MIV-
150 (effective against SHIV without being at peak levels [19, 21]).
IVRs (IVR-1) were vaginally inserted into cycling macaques with
the pore facing the cervix, and on d7 post-insertion (PI), the ma-
caques were co-challenged with 200 TCIDs, SHIV-RT and
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IVRs for a total of 5 IVR cycles over 105 d. Co-challenge with 200
TCIDso SHIV-RT and 107 pfu HSV-2 occurred on d7, 10, 14, and, 17
of'each IVR cycle. PK time points were on d9 and d16 of'the first (IVR-1)
and fifth (IVR-5; this corresponds to d93 and d100 of the entire study for
IVR-5) IVR cycles as well as post-removal (PR) of IVR-5 (0 h PR).
Blood was collected at additional time points post-insertion of IVR-1
and IVR-5 and also 4 h PR of IVR-5

107 pfu HSV-2. Additional co-challenges were administered on
d10, 14, and 17. On d21, the used IVRs were replaced with fresh
IVRs (IVR-2), and co-challenge was initiated again on d7, 10, 14,
and 17 post-insertion. This regimen was repeated for a total of 5
IVR cycles and 20 co-challenges over 105 d. Vaginal fluid was
collected for PK only on d9 and d16 of the first IVR-1) and fifth
(IVR-5) cycles as well as immediately post-removal (PR) of TVR-
5 (0 h PR) to minimize disturbances to the vaginal environment;
this corresponds to d9, d16, d93, and d100 of the entire study.
Blood was collected at additional time points after insertion of
IVR-1 and IVR-5 and also 4 h after removal of IVR-5. Cervical
and vaginal pinch biopsies were collected 9 wks after the last co-
challenge. The study design, including these PK time points, is
illustrated in Fig. 1c.

Sampling

Blood (<10 ml/kg/month), vaginal fluid, and cervical and vag-
inal pinch biopsies were collected as previously described [30]
and shipped overnight from TNPRC to the Population
Council’s NYC laboratories. Vaginal fluid was collected using
a swab, which was subsequently immersed in 1 ml saline. This
sample contained vaginal fluid and cells since it was not cen-
trifuged to prevent CG from settling. As we previously de-
scribed [30], plasma and peripheral blood mononuclear cells
(PBMCs) isolated from blood and vaginal fluid samples were
mixed, aliquotted, and frozen at —80 °C.

@ Springer
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Table 1 Macaques treated with

MZC and MZCL IVRs Animal ID IVR Pore SHIV-RT HSV-2 infection”
Size (um), +plug Infection Ab?

CT31 LNG 500, no plug Ch 5° Ch9 +
GDS55 LNG 500, no plug Ch 6 Cho +
HAS1 LNG 800, no plug Ch3 Ch6 +
HDS87 LNG 800, no plug Chs Ch8 +
HHO1 MZCL 500, no plug - - +
GIl1 MZCL 500, no plug - - -
FC81 MZCL 500, no plug - - +
FI10 MZCL 500, no plug - - -
GK45 MZCL 500, no plug Wk 3 Wk 8¢
GA17 MZCL 500, no plug - -
GCO05 MZCL 800, plug Wk 4 Wk 8¢ -
D23 MZCL 800, plug - - -
IC87 MZCL 800, plug Wk 1 Wk 3¢ +
HI81 MZCL 800, plug - - +
HN43 MZCL 800, plug Ch13 Ch 14 +
EL86 MZCL 800, plug - - -
FH29 Placebo 500, no plug - - +
HH78 Placebo 500, no plug - - +
GB85 Placebo 800, no plug Ch16 Ch 17 +
EA90 Placebo 800, no plug Ch5s - +
GP71 MzC 500, no plug - - +
Fv47 MZC 500, no plug - - +
HN94 MZC 500, no plug - - +
HT57 MZC 500, no plug - - +
DT20 MZC 500, no plug - - +
EJ42 MZC 500, no plug Chs Ch7 +
HBI13 MZC 800, plug - - +
GI81 MZC 800, plug - - +
IT26 MZC 800, plug Ch 19 Wk 3¢ +
1T36 MZC 800, plug - - +
HVS50 MzZC 800, plug - - +
GA74 MzC 800, plug - - -
 Antibody

® Infection status determined from HSV-2 DNA in vaginal fluid and vaginal and cervical tissues

©CT31 was euthanized 6 weeks post-last co-challenge because it met TNPRC TACUC endpoint criteria

9 Preceding week’s sample not available

Pharmacokinetics

MIV-150 in vaginal fluid was measured by radioimmunoas-
say (RIA, LLOQ = 1 ng/ml) [10] and in plasma by using
liquid chromatography with tandem mass spectrometry
(LCMS/MS, LLOQ = 20 pg/ml) [21]. CG in vaginal fluid
was measured by ELISA (LLOQ = 40 ng/ml) [10]. LNG in
serum was measured by RIA (Immunometrics Ltd., London,
UK) at the Oregon National Primate Research Center
(ONPRC), Endocrine Technology and Support Core
Laboratory (ETSC, Beaverton, OR) [23]. The range of
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detection of the LNG RIA was 23-375 fmol/sample with a
sensitivity of 36-47 pg/ml. Samples were analyzed in dupli-
cate. ZA in vaginal fluid was not quantified due to the lack ofa
validated assay. However, residual ZA remaining in IVRs
after 21d in vivo was quantified as described in the next
section.

Drug levels in used IVRs

Amounts of the four drugs remaining in IVRs 1 and 5 after
21d in vivo were quantified as previously described [23].
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Briefly, IVRs were cut in half and core material was eluted
with 10 ml acetate buffer, which was analyzed for CG and ZA
content. Residual MIV-150 and LNG in the [IVR matrix were
extracted with dichloromethane, which was analyzed via
high-pressure liquid chromatography (HPLC).

Endogenous hormones

Serum levels of estradiol and progesterone were determined at
the ONPRC ETSC using a chemiluminescence-based auto-
matic clinical platform (model Cobas e411, Roche
Diagnostics, Indianapolis, IN) validated for estradiol (sensi-
tivity, range 5-4300 pg/ml) and progesterone (sensitivity
range 0.03—60 ng/ml) in monkey serum [31].

Virus detection

Quantitative reverse transcription-polymerase chain reaction
(qRT-PCR) was used to measure SIV gag RNA in plasma
(LLOQ = 15-30 copies/ml) [30]. ELISA was used to measure
antibodies directed to SIV in plasma [13]. Viral DNA for
HSV-2 detection was extracted from the cell/fluid vaginal flu-
id mixture using the QIAamp DNA blood mini kit (Qiagen,
Valencia, CA) or from cervical or vaginal biopsies using the
DNeasy blood and tissue kit (Qiagen) according to the manu-
facturer’s instructions and as previously described [13]. Six
independent nested PCRs on a segment of the gD gene were
performed for each macaque at each time point and run on
agarose gels. The number of positive reactions of 6 total was
scored. The identity of the HSV-2 gD amplicon was con-
firmed by sequencing. Time points at which HSV-2 DNA
was not detectable in any nested PCR reaction were subjected
to GAPDH PCR to confirm DNA quality.

RT sequencing

The RT gene from the blood of macaques that became infected
while wearing a MIV-150-containing IVR was sequenced as
described [32]. Plasma virus was sequenced during acute in-
fection or a time point after the conclusion of all challenges
when the tested volume contained >10,000 copies of virus,
unless no such sample was available. From macaque EJ42,
we also sequenced PBMC virus from chronic infection. All
viruses tested in vitro against NNRTIs were sequenced prior to
testing.

Antiviral properties of active pharmaceutical ingredients
in the presence of biological fluids

The antiviral activity of diluted macaque vaginal fluids (see
Sampling section) was tested in the TZM-bl assay as previ-
ously described [30]. Virus inoculum for the assay was pre-
pared in cell culture medium plus or minus 25% whole pooled

human semen (Lee Biosolutions, St. Louis, MO). The previ-
ously described antiviral assay was used to evaluate the sen-
sitivity of viruses (expanded EJ42 PBMC virus, HIV-1y;43
1178V, HIV-1np43 wild type, and SHIV-RT) to NNRTIs
(MIV-150, rilpivirine, etravirine, and efavirenz) [24].

Statistical analysis

Data were analyzed using GraphPad Prism v5.0c (GraphPad
Software, San Diego, CA) and SAS (Cary, NC). Macaque
SHIV infection frequency was analyzed using the Peto-Peto-
Prentice test to determine significance of treatment with
pairwise comparisons made using Sidak’s adjustment.
Macaque HSV-2 infection and shedding were analyzed with
a logistic mixed model using the F test for overall effect of
treatment and pairwise comparisons made by Scheffé-adjust-
ed ¢ tests. Comparisons between groups in PK studies were
made using a log-normal generalized linear mixed model.
Overall effects were tested with the F' test and pairwise com-
parisons made with Scheffé-adjusted 7 tests. Drugs remaining
in used IVRs were analyzed with a beta generalized linear
mixed model. Overall effects were tested with F' tests and
pairwise comparisons (for MIV-150) made with ¢ tests adjust-
ed by simulation. In vitro anti-HIV activity was analyzed by
Mann—Whitney U test. Associations between variables were
tested with Spearman correlation analysis. Significance was
defined by p < 0.05. For each comparison where possible, the
ratio, odds ratio (OR), or Spearman r value is reported along-
side its 95% confidence interval (CI). Due to small sample
sizes, power in this study is low although unquantifiable due
to the use of generalized linear mixed models incorporating
repeated measures and random effects.

Results
In vitro release of MZCL in vivo from a core-matrix IVR

Fig. 1a, b show the design of the IVRs used in this study, and
Fig. 1c shows the macaque study design. To monitor IVR
function, obtain additional PK data from virus-challenged ma-
caques, and compare data from this study with our initial
results [23], we measured drug levels in blood and vaginal
fluid at select time points during the first (IVR-1) and fifth
(IVR-5) TVR cycles as well as residual drug content in these
IVRs after removal. MIV-150 was detected both in blood and
vaginal fluid, and in both matrices the concentrations dropped
over time (Fig. 2a). LNG blood levels met or exceeded the
target, 0.19 ng/ml [23, 33-35], in all macaques (Fig. 2b), oc-
casionally dropping to >0.09 ng/ml after d10. Low LNG
blood levels were not associated with a particular IVR cycle
(observed during each IVR insertion period except for [VR-4)
and did not correlate with breakthrough bleeding or cycling
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Fig. 2 Drug release from novel core-matrix MZC and MZCL IVRs
in vivo. This figure details the PK profile of the MZCL vs. MZC IVRs
overall (a, b) and per particular IVR design (¢, d, e). (a) At the indicated
times post-insertion (PI) and post-removal (PR) in macaques carrying
MZCL or MZC IVRs, MIV-150 was measured in blood and vaginal fluid
(VF), and CG was measured in vaginal fluid. (b) LNG was similarly
measured in the blood of macaques carrying MZCL or LNG IVRs. To
show the overall difference between MZCL and MZC IVRs, in (a) and
(b), data were pooled from macaques carrying IVRs of different pore
sizes and from IVR cycles 1 and 5. Thus, mean + SEM is shown for 24

except in ID23, which cleared LNG quickly after insertion of
each IVR (Figs. 3, 4). LNG had no effect on the kinetics or
levels of MIV-150 in blood or vaginal fluid (Fig. 2a—e), and
LNG blood levels were unaffected by MZC (Fig. 2b—e).

We evaluated the effects of pore size (500 vs 800 um), IVR
composition (MZC vs MZCL), and repeated administration
(IVR-1 vs IVR-5) on CG and MIV-150 PK. Pore size and
IVR composition affected CG release from the IVR core.
More CG was released through the 800 um pore of MZCL
IVRs (vaginal fluid level p < 0.0001, ratio = 0.03, 95%
CI=0.01-0.15) compared to the 500 wm pore. For IVRs with
the smaller pore size, MZCL IVRs delivered less CG into the
vaginal fluid than MZC IVRs (p = 0.0013, ratio = 13.27, 95%
CI = 2.57-68.60; Fig. 2e). Repeated IVR administration in-
fluenced the PK of MIV-150 but not CG. For the MZCL
IVRs, the total amount of MIV-150 detected in vivo varied
between IVR-1 and IVR-5 (blood, p = 0.0004, ratio = 1.30,
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MZCL IVRs (12 from IVR-1 and 12 from IVR-5), 24 MZC IVRs (12
from IVR-1 and 12 from IVR-5), and 8 LNG IVRs (4 from IVR-1 and 4
from IVR-5). The breakdown by pore size and IVR cycle (n = 6 each) is
shown for (¢) MIV-150 and CG and (d) LNG. (e) The total amounts of
MIV-150, CG, and LNG detected in vivo were determined by analyzing
area under the curve (AUC) of the data in (¢) and (d). For MIV-150 and
LNG, closed symbols represent 500 um pore IVRs and open symbols
represent 800 pm pore IVRs. For CG, closed symbols represent IVR-1
and open symbols represent IVR-5

95% CI = 1.12-1.51; vaginal fluid, p = 0.017, ratio = 3.94,
95% CI = 1.23-12.65), and this was independent of pore size
(Fig. 2e). For the MZCL and MZC IVRs, the total amount of
CG detected in vivo varied by pore size but not IVR cycle
(Fig. 2¢). Regardless, sufficient CG was released, on average,
to meet the target vaginal fluid concentration (>25 pg/ml).
Release of all four drugs in vivo was verified by measur-
ing residual drug levels in used (21d) IVRs. We examined
only IVR-1 and IVR-5 because we had PK data from the
same [VR cycles. Not more than 40% of MIV-150, 50% of
ZA,30% of CG, and 25% of LNG remained intheused IVRs
onaverage (Fig. 5a). More ZA (p=0.007,ratio=1.761,95%
CI=1.189-2.608) and CG (p = 0.001, ratio = 2.170, 95%
CI=1.418-3.321) remained in MZCL and MZC IVRs with
a 500 um pore compared to IVRs with an 800 um pore, as
expected, and residual CG and ZA levels were independent
of the IVR cycle (Fig. 5b). Residual MIV-150 and LNG
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Fig.3 Levels of LNG released from MZCL IVRs were not impacted by
MZC. Levels of LNG in blood resulting from in vivo release from LNG
and MZCL IVRs are shown. Arrows indicate times IVRs were inserted/
exchanged. Open triangles represent LNG levels between 0.10 and
0.19 ng/ml. Open inverted triangles represent LNG levels between 0.09

correlated (p < 0.0001, Spearman r = 0.8467, 95%
Cl =0.666-0.933), as did residual ZA and CG
(p < 0.0001, Spearman r = 0.776, 95% CI = 0.624-0.872;
Fig. 5c). CG remaining in the IVRs correlated inversely
with in vivo fluid levels (p = 0.0004, Spearman
r=-0.493, 95% CI = —0.686-0.235; Fig. 5d). However,
no correlation was seen for either MIV-150 or LNG
(Fig. 5d).

Efficacy of the MZCL IVR in macaques against repeated
limiting-dose SHIV-RT/HSV-2 co-challenge

The MZCL IVR significantly protected macaques against
SHIV-RT acquisition (67% protection, log rank p = 0.046,
Fig. 6a,b) in the context of repeated co-challenge with SHIV-
RT and HSV-2 (see study schematic in Fig. 1¢). Four of 12
macaques (33%) wearing MZCL IVRs became infected vs.
four of four (100%) macaques wearing LNG [VRs (Table 1).
The protection was more significant (67%, log rank

and 0.10 ng/ml. The first STV RNA positive time point for each animal is
shown in red with red asterisks indicating that plasma virus RNA was
only detected after challenges were concluded. Blue asterisks indicate
times of noticeable vaginal bleeding

p=0.003) when comparing a combined MZC/MZCL group
(6 of 24 infected, 25%) vs. an LNG/placebo control IVR
group (6 of 8§ infected, 75%), even though more macaques
inthe LNG vs. placebo IVR group became infected (4/4 vs. 2/
4infected; logrank p =0.15) and macaques in the LNG group
became infected earlier. The MZC and MZCL IVRs
protected even when MIV-150 levels in vaginal fluid
dropped below target (>25 ug/ml) in some animals 14 d after
IVR insertion (Fig. 2¢). MZCL and MZC IVRs protected
similarly (4 of 12 and 2 of 12, respectively, log rank
p =1.00). During IVR-1 and IVR-5, protection did not cor-
relate with levels of CG and MIV-150 in vaginal fluid or
systemic MIV-150 levels in individual macaques at the few
PK time points tested. LNG serum levels, which were mea-
sured throughout all IVR cycles and at multiple time points
(Fig. 3), also did not predict time of infection (Fig. 3 and
Table 1). Infections in three of four macaques wearing
MZCL IVRs were detected 1-4 wks after the IVR was re-
moved. Macaque GC05 (MZCL IVR group) was the last
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SIV RNA positive time point for each animal is shown in red with red
asterisks indicating that plasma virus RNA was only detected after challenges
were concluded. Blue asterisks denote noticeable vaginal bleeding
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Fig. 5 Residual drug levels in MZC and MZCL IVRs after removal. (a)
The percentage of each drug remaining in the IVRs was determined by
dividing drug content after removal by what was loaded. IVRs are shown
individually from IVR-1 and IVR-5 cycles and both pore sizes from all
macaques in each group. (b) The percentage of ZA and CG remaining in
used IVRs by pore size and IVR cycle. Closed symbols represent IVR-1;

macaque to become SHIV positive in plasma (at 4 wks post-
last challenge) and exhibited a truncated viremia. Macaque
CT31 (LNGIVR group) had to be euthanized 6 wks post-last
challengebased on its sustained high SHIV plasmaload and a
poor SIV-specific antibody response. In all macaques except
for GCOS5, plasma viral loads were identical regardless of
treatment or time of infection (Fig. 6b). SIV-specific antibod-
ies arose in all but one, EA90, of the infected macaques
(Fig. 6¢). EA90 was drug-naive and became infected
during an early challenge (first positive in plasma at
challenge 5, Table 1).

Only one macaque, EJ42 from the MZC IVR
group, had virus that contained an RT mutation:
178V (Table 2). EJ42 became infected early during
the study and had mutant virus with 1178V replicating
in plasma during acute and chronic infection (100%
of clones) as well as in PBMCs from chronic infec-
tion (91% of clones). 1178V was not present in the

20 40 60 80 100
% remaining

T T T T ) 14
0 20 40 60 80 100 0
% remaining
open symbols represent IVR-5. (¢) Spearman correlations between resid-
ual drug levels of the matrix (MIV-150 vs. LNG) and core (CG vs. ZA)
components. (d) Correlations are shown between the total amounts of

MIV-150, CG, and LNG detected in vivo and the amounts remaining in
used [VRs post-removal

inoculum (Table 2 and not shown). Although 1178V
does not arise preferentially with NNRTI use in
humans [36], we previously found the 1178V mutation
in SHIV-RT-infected macaques under systemic MIV-
150 pressure [32]. We examined the susceptibility of
[178V-containing viruses to inhibition by MIV-150 or
NNRTIs used in therapy like efavirenz, etravirine, and
rilpivirine. SHIV-RT grown from co-cultures of EJ42
PBMCs with CX1 cells (100% 1178V, Table 2) and
HIVyr43 engineered by site-directed mutagenesis with
1178V both remained susceptible to the four NNRTIs,
which indicates that 1178V does not confer resistance
to those NNRTIs (Table 3).

MZC and MZCL IVRs decreased HSV-2 infection but not
significantly (Fig. 7a). However, they did significantly reduce
vaginal fluid HSV-2 shedding frequency (p = 0.02, OR = 0.38,
95% CI = 0.16-0.88) and the levels of HSV-2 DNA detected
at shedding time points (p < 0.0001, OR = 0.14, 95%
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Fig. 6 Anti-SHIV-RT activity of
MZC and MZCL IVRs in
macaques following repeated co-
challenge with SHIV-RT and
HSV-2. (a) The percent of ma-
caques remaining SHIV negative
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monitored over time
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CI = 0.06-0.31) (Fig. 7a,b), which could result in decreased
infectivity of the vaginal fluid of these animals. MZCL and
MZC TVRs also reduced HSV-2 shedding levels compared to
the LNG and placebo controls, respectively (MZCL
p = 0.0029, OR = 0.18, 95% CI = 0.06-0.59; MZC
p < 0.0001, OR = 0.10, 95% CI = 0.03-0.31).

Effect of the menstrual cycle on SHIV-RT infection

Serum progesterone and estradiol levels fluctuated (Fig. 4),
allowing us to calculate the number of menstrual cycles
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(mean = SEM) over the entire 137-d study as follows:
3.75 £ 0.63 for the placebo group, 3.42 + 0.23 for
MZC, 1.00 £ 0.41 for LNG, and 1.42 + 0.45 for
MZCL. These data indicate that LNG-containing IVRs
released sufficient LNG to suppress cycling (p = 0.04,
LNG [mean £ SEM = 1.00 = 0.41] vs. placebo
[mean + SEM = 3.75 + 0.63]), and this was not affected
by MZC (p = 0.95, MZCL [mean + SEM = 1.42 + 0.45]
vs. LNG [mean = SEM = 1.00 £+ 0.41]). The luteal phase
was defined by a progesterone level above 1 ng/ml [37].
And notably, three of the four animals that became
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Table 2 Screening for NNRTI-

resistance-associated mutations in IVR Animal ID Time point tested L100, K101, K103, V108, E138, 1178,
macaques infected with SHIV-RT V179, Y181, Y188, G190, P225
in the presence of [IVRs
MZCL GK45 Wk 8, Wk 12 NA*®
1C87 Wk 6 0(23)°
HN43 Wk 2 0(24)
GCO05 Wk 8 NA
MZC EJ42 Plasma: Ch 5-8, Wk 2, Wk 30 Plasma: 67 (68) 1178V*
PBMC: Wk 30 PBMC: 20 (23) 1178V
1(23) 1178V + K101R
Cultured PBMC: 19 (19) I178V
IT26 Wk 6 0(20)
Stock SHIV-RT 0(32)

*NA indicates that no RNA could be isolated from available plasma samples, likely due to low viral load and/or

volume of plasma

® The number of clones in which amino acid mutations conferring NNRTI resistance were detected. Parentheses
indicate the total number of clones sequenced

°1178V was present in 23/23 clones of plasma virus from acute infection (pooled plasma from challenge 5-8) and
44/45 clones from chronic infection (23/23 at Wk 2 post-last challenge and 21/22 at Wk 30 post-last challenge)

infected with SHIV in the absence of LNG were infected
during late luteal phase, the time of the menstrual cycle
when women (and also cycling rhesus and pigtail ma-
caques) have estrogen/progesterone levels favorable for
HIV infection and are the most susceptible to HIV infec-
tion [20, 38-45] (Fig. 8).

Effect of biological fluids on antiviral activity

The presence of semen neither increased nor decreased the
anti-HIV activity of vaginal fluid from macaques treated with
MZCL/MZC IVRs (p = 0.066, ratio = 0.133,95% CI1=0.018—
0.978, Fig. 9); ECsq values matched that of native MIV-150
(Table 3). Previously, we showed that vaginal fluid and semen
do not interfere with CG’s anti-HPV activities in vitro [ 17, 23].

Discussion

MPT IVR development requires a multipronged approach that
aims to correlate in vivo biological effects in animal models

with PK/PD and with IVR performance measures like in vitro
and in vivo release profiles. This approach becomes even
more challenging when the MPT contains drugs that target
multiple indications, when analytical methods to detect drugs
in all biological matrices are not validated, when absorption of
the drugs differs, and when a single animal model to fully
evaluate multiple biological outcomes is unavailable or unfea-
sible. To overcome these challenges, we used a variety of
methods to correlate IVR performance and PK with biological
effects.

Herein, we have demonstrated that a prototype MZCL IVR
released sufficient quantities of its drug payload to significant-
ly reduce SHIV-RT infection and HSV-2 vaginal shedding in
macaques exposed to repeated SHIV-RT/HSV-2 co-
challenges and shut down hormonal cycling. The study uti-
lized a modified version of our published repeated SHIV-RT/
HSV-2 co-challenge model. For proof-of-concept testing of
the prototype IVRs against both viruses, we modified the
schedule (challenge 4 times in 10 days followed by 11 days
of no challenge) so as to challenge macaques with SHIV-RT
and HSV-2 during a time period in which the animals would

Table 3 NNRTI-resistance

ECs (95% confidence interval)

profile of 1178V NNRTI
SHIV-RT WT
MIV-150 1.1 (0.9-1.3)
Efavirenz ND
Etravirine 3.1(2.5-3.8)
Rilpivirine 0.5 (0.4-0.7)

SHIV-RTg;4, 1178V HIV-1xpa3 WT HIV- 145 1178V
1.1 (0.8-1.5) 0.96 (0.80-1.14) 0.70 (0.61-0.82)
ND 1.22 (1.05-1.42) 0.80 (0.66-0.96)

22(1.3-3.5)
0.3 (0.2-0.4)

0.54 (0.42-0.68)
1.79 (1.48-2.16)

0.23 (0.18-0.29)
0.92 (0.70-1.21)

ND not determined
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Fig. 7 Anti-HSV-2 activity of MZC and MZCL IVRs in macaques
following repeated co-challenge with SHIV-RT and HSV-2. (a) HSV-2
infection and vaginal shedding were assessed by nested PCR in gD on
vaginal fluid and cervical and vaginal tissue biopsies (n =4 LNG, n =12
MZCL, n =4 placebo, n = 12 MZC). Evaluation commenced 4 wks after
the last challenge. (b) Heat map depicting HSV-2 shedding in vaginal
fluid observed over time for LNG, MZCL, placebo, and MZC groups

most likely be protected based on drug concentrations. An
optimized ITVR with stabilized release profile will need to be
tested in a standard challenge regimen (e.g., weekly exposure)
as has been used by other studies of IVR efficacy [46—48].
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Fig. 8 SHIV infection during luteal phase of the menstrual cycle. The
ratio of progesterone (P) to estradiol (E) was calculated for animals not
exposed to LNG that became infected during the study. P/E for each
animal was overlaid beginning 4 wks before plasma virus RNA detection
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from (a). Each row represents an animal. Shedding was measured at wks
4,5,6,7,8,and 9, or 10, and then again at 2, 6, 24, 30, 48, 54,and 72 h
following biopsy. The legend shows the colors representing the fraction
of replicate PCR reactions positive of 6 total with gray indicating not
determined (nd), representing that no sample was available at that time
point

Importantly, the MZCL IVR protected even in the context of
20 twice-weekly co-exposures in contrast to other IVR effica-
cy studies using SHIV alone in a weekly challenge regimen
often with fewer challenges [46—48]. The in vivo antiviral
activity for the MZCL IVR matches our data on MZC gel in
a similar repeated co-challenge model [20] and also matches
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Fig. 9 Effect of biological fluids on the antiviral properties of the MZC
combination. The effect of semen (Lee Biosciences) on the in vitro anti-
HIV activity of MZC released in vivo from MZCL (closed symbols,
n = 3) and MZC (open symbols, n = 6) IVRs was measured in macaque
vaginal fluid. The ECs, values were estimated using the TZM-bl assay
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efficacy data on an MIV-150 IVR that released the drug with
similar pharmacokinetics in vivo [23, 30]. We have previously
found that MZC gel significantly protects mice against HPV
pseudovirus (PsV) infection [10]. In addition, CG reduced
HPV16 PsV infection in macaques [16] and a recent study
of women who used the CG-based lubricant Divine 9 found
that cervicovaginal lavages containing more than 0.4 pg/ml
CG exhibited more than 95% inhibition of HPV16 PsV infec-
tion in vitro [29]. Based on CG levels seen in vaginal fluid in
this study, we expect that the MZCL IVR will also reduce
HPV infection significantly [10, 23], although we were unable
to directly evaluate that herein.

MZC and MZCL IVRs significantly protected macaques
against SHIV-RT even in the absence of 100% infection fre-
quency in the controls, a common result in limiting dose vag-
inal challenge studies in rhesus macaques in the absence of
hormonal treatment (i.e., DMPA [20, 49-51]). Plasma viremia
was delayed in three of four animals from the MZCL group
and zero of two animals in the MZC group, detected only after
IVR-5 was removed. This suggests that those animals likely
became infected on the last or close to the last challenge and
had a low-level infection that only became detectable system-
ically weeks after infection. There are several possible reasons
why animals in the MZCL IVR group, in particular, exhibited
delayed viremia. Because we were not able to look at many
tissue sites in this study, we cannot rule out there may have
been low levels of virus replicating in distal tissues that ulti-
mately gave rise to systemic infection. It is possible that ef-
fects of LNG (delivered by the MZCL IVR) in the vaginal
mucosa allowed low level infections to take hold in this group
but not in the MZC IVR group. It is also possible that residual
systemic or tissue MIV-150 levels may have played a role in
controlling a low level infection until the drug was completely
cleared from the tissues. In support of these possibilities, we
have previously shown that a MIV-150 IVR protected ma-
caques only when it was in place post-challenge [30]. In this
case, had we left the [IVRs in place for longer than 4 d after the
last challenge, we might have seen better protection by the
MZCL IVRs. That the macaques became more readily infect-
ed during TVR-5 vs. IVR-1 could also possibly reflect the
lower levels of MIV-150 detected overall in vivo from
MZCL IVR-5 vs. IVR-1. Both plasma and vaginal fluid
MIV-150 levels were consistently lower during MZCL IVR-
5 compared to IVR-1 despite similar amounts of MIV-150
having been released from the IVRs (as determined by resid-
ual levels of MIV-150 in the used IVRs). Quality control test-
ing showed similar drug loading in the two batches of IVRs,
suggesting that batch-to-batch variability was not the cause.
Lower levels of MIV-150 in vaginal tissues and/or shorter
residence time there could have contributed to the SHIV-RT
infections that occurred post-removal of MZCL IVR-5. In
prior studies, we found that the best correlate of protection
from SHIV-RT infection was concentration of MIV-150 in

genital tissue [19, 30], which we were unable to measure
herein, since sampling of vaginal tissue at or around the time
of virus challenge would have perturbed the mucosal environ-
ment and perhaps increased infection frequencies. Prolonged
exposure to MIV-150 could have led to increased levels of
MIV-150-metabolizing enzymes, as seen with other NNRTIs
[52]. We have also observed that repeated intramuscular dos-
ing of MIV-150 results in lower peak levels post-injection
over time [32]. Finally, since we co-challenged with HSV-2
and SHIV-RT, it is possible that the lag time to systemic in-
fection may be related to the inflammatory environment cre-
ated by HSV-2 co-exposure (regardless of eventual HSV-2
infection). We did not have the samples to check if these
animals in the MZCL group that became SHIV+ weeks after
the last challenge had a greater concentration of inflammatory
mediators in their vaginal fluid or a heightened inflammatory
state systemically.

LNG could have contributed to the observed loss of pro-
tection in MZCL IVR-carrying macaques post-IVR-5 remov-
al. Although the study was not designed or powered to assess
LNG effects on the vaginal microenvironment, LNG released
from the IVRs might have made the vaginal epithelium more
permissive to infection or increased infection frequency
through another mechanism. In turn, this could have increased
the requirement for post-challenge MIV-150 coverage,
resulting in decreased protection after removal of IVR-5.
However, LNG levels in vivo were not associated with time
of infection. The impact of LNG should be explored further
given the widespread use of LNG-containing contraceptives
[22] and development of LNG-containing MPTs [3].
Epidemiological studies suggest that some forms of hormonal
contraception might increase HIV transmission and acquisi-
tion [53-55], but the data so far remain inconclusive, and
more studies, such as the ongoing ECHO trial, are needed to
fully understand the relationship between hormones and HIV
transmission [56]. Recent microarray analyses of cervical and
endometrial tissues taken from women using DMPA or the
LNG intrauterine system revealed that progestins influence
the expression of immune-related genes that could alter sus-
ceptibility to HIV infection and that this was particularly ap-
parent in the endometrial tissues [57]. However, no data are
available on the risk of HIV acquisition when hormones are
delivered in low doses via an IVR, and additional studies
designed specifically to address this are needed. Critically,
LNG did not reduce the overall efficacy of continuously dosed
MZC microbicide.

The MZCL IVR significantly reduced HSV-2 shedding in
infected macaques but not HSV-2 infection outright. The re-
duced shedding could reflect a blunted infection in the muco-
sa, less robust neural infection, and/or control of virus by
mucosal innate immune mediators that were triggered by
sustained release of ZA and CG from the IVRs [58-65].
However, we did not collect data on HSV-2 in dorsal root
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ganglia (via necropsy) and immune mediators in vaginal fluid.
We have previously found that macaques that became infected
after receiving MZC gel vaginally did not develop an HSV-2-
specific T cell response [13], suggesting that adaptive immu-
nity did not play a role in the reduced shedding. The inability
of'the MZCL IVR to protect macaques from infection may be
related to the high dose of HSV-2 used in the co-challenge
model. A large body of data exists for SHIV doses in the ma-
caque, but there are no data on optimal, relevant doses for HSV-
2. The HSV-2 dose in this study is based on our single high-
dose co-challenge model [13, 20, 66]. We administered the
same total inoculum (2 x 10® pfu) spread over 20 challenges
(107 pfu per challenge). This high dose of HSV-2 inoculum
ensures 100% HSV-2 infection in the control groups; however,
it is 3—5 logs higher than that found in infected people [67—69]
and may have overwhelmed the ZC-mediated protection. In
mice, protection from HSV-2 depends on the HSV-2 challenge
dose [10, 12, 14]. Lowering the HSV-2 inoculum and/or opti-
mizing ZC release/content may improve MZC’s anti-HSV-2
activity and reduce HSV-2 shedding further. ZA and CG release
(PK and residual drug levels in [VRs) was more variable overall
than MIV-150 and LNG release. ZA and CG were both re-
leased from the core and may have been more affected by
inter-animal differences in vaginal fluid volume and viscosity.
As evident in Table 1, ZA/CG released through neither the 500
nor 800 wm pore-inhibited HSV-2 infection. Importantly, re-
duced viral shedding in HSV-2-infected individuals could re-
duce subsequent transmission of HSV-2 to partners. And since
HSV-2 infection increases the likelihood of HIV acquisition in
humans and SHIV acquisition in macaques, reduced viral shed-
ding might potentially reduce the acquisition or transmission of
HIV [66, 70].

There is no established macaque model to simultaneously
evaluate the efficacy of an MPT against HIV, HSV-2, and HPV,
so surrogate markers of in vivo efficacy are typically used. In
our initial report, we showed that vaginal fluid from macaques
treated with the MZCL IVR prevented HPV infection in vitro
[23]. As in that study, in vivo CG levels herein were ~1000
times the in vitro ECsy for CG [10, 17, 71] and sufficient to
block HPV pseudovirus infection in mice [10, 15, 17].

Rhesus macaques have irregular seasonal cycles and are
not the ideal subspecies for modeling women’s menstrual cy-
cles [31]. By contrast, pigtail macaques cycle monthly
throughout the year, and studies evaluating the role of female
sex hormone fluctuations on HIV acquisition have used the
pigtail macaque model [72]. Pigtail macaques are harder to
obtain than rhesus. We have also shown that we can detect
the menstrual cycle of some rhesus macaques [20, 73]. For
those reasons, we use rhesus macaques as our model species.
In the current study, we clearly demonstrated that rhesus ma-
caques were cycling during the ovulatory season, also show-
ing the impact of LNG-releasing IVRs on cycling as a corre-
late of contraceptive effect.

@ Springer

PK and cumulative IVR release data were collected to in-
form on the efficacy data and support the preclinical/clinical
development of a human-sized MZCL IVR. These data en-
abled us to identify drug—drug interactions or combinations
that influenced release of each drug, validate in vitro and ini-
tial in vivo release data, and identify potential design improve-
ments. An important caveat is that in vivo release characteris-
tics of the IVRs in the prior study did not parallel the in vitro
release kinetics and overall profile [23]. Based on the drug
levels remaining in the IVRs, we concluded that the amount
of each drug released in vivo exceeds estimates derived from
in vitro data. We are working to identify the in vitro release
condition that best mimics the in vivo profile, and it will be
used to characterize optimized IVRs before they are tested
in vivo.

As expected, in vivo release of the hydrophilic core com-
ponents ZA and CG but not the hydrophobic matrix compo-
nents MIV-150 and LNG was driven predominantly by pore
size [23]. However, in IVRs with the smaller 500 um pore,
LNG reduced CG (and presumably ZA) release significantly.
This could potentially reflect LNG-driven changes in cervical
mucus [74] that may have impeded hydration of the core
through the smaller pore and/or the spread of hydrated core
components away from the smaller pore opening. Correlation
between drug levels in plasma and vaginal fluid and cumula-
tive release for CG but not MIV-150 or LNG is consistent with
CG being retained in the vaginal lumen and MIV-150 and
LNG being possibly accumulated in tissues, absorbed into
the systemic circulation, and eliminated. Despite having dif-
ferent in vivo ZC release profiles, the 500 and 800 um pore
IVRs effectively prevented SHIV-RT infection and HSV-2
shedding. Although ZA levels in vaginal fluid could not be
measured in vivo due to lack of a validated analytical method,
we verified its release by quantifying the residual drug levels
in the IVRs after removal. As predicted from in vitro release
studies [23], overall ZA release mirrored overall CG release
in vivo. The consistent release of ZC from the MZCL IVRs
likely contributed to the significant reduction in HSV-2 shed-
ding and may also have contributed to the IVR’s anti-SHIV
efficacy, as was seen for MZC gel [10, 19]. However, we were
unable to include the additional IVR groups needed to test this
hypothesis in the current study. And because we could not
identify the time of HSV-2 infection, HSV-2 infection out-
comes and CG (and ZA) levels in vaginal fluid could not be
correlated. Thus, we were also unable to assess if the MZC-
containing [VRs increased the number of challenges needed to
result in HSV-2 infection.

Knowing semen’s potential for enhancing HIV infection
[75] and the suggested link between semen effects and failure
of microbicides in clinical trials [76], we evaluated the effect
of semen on the activity of the antiviral drugs released in vivo
from the MZC and MZCL IVRs. Here, we found that the anti-
HIV activity of vaginal fluid from MZCL/MZC IVR-treated
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macaques was unaffected by semen. This is in line with our
previous report on MZC gel in vaginal explants treated with
seminal plasma [77]. Other experiments not reported here
suggest that biological fluids do not interfere with the anti-
HSV-2 properties of the ZC combination (unpublished).
Seminal plasma actually increased the survival of HEC-
treated mice in the HSV-2 model compared to HEC alone,
consistent with what others had observed [78]. While we were
unable to measure the impact of semen or seminal plasma on
the anti-HPV activity of CG released from MZCL IVRs
in vivo, CG’s anti-HPV activity was previously confirmed in
mice co-exposed with seminal plasma [17].

Topically applied microbicides containing antiretroviral
drugs may induce the development of drug-resistant virus.
Screening for drug-resistance mutations in drug-treated ani-
mals that become infected in preclinical studies gauges the
likelihood of drug resistance emerging in clinical settings.
The 1178V mutation that arose in plasma and PBMC virus
from EJ42 neither resulted in a divergent profile of SHIV
plasma viremia or HSV-2 shedding compared to other animals
nor reduced the susceptibility of either SHIV-RT or HIV to
NNRTI-mediated inhibition. One clone of the PBMC virus
contained the combination of 1178V and K101R. K101E,
K101P, and K101H can reduce susceptibility to NNRTIs
[36], and K101 is an important amino acid in the interaction
of MIV-150 with the hydrophobic pocket of RT [79].
However, K and R both have a positively charged side chain
that provides the H-bonding necessary for MIV-150 to interact
with RT. While the presence of these mutations indicates the
influence of drug pressure on SHIV-RT in this animal, the
concentrations of MIV-150 achieved in vivo did not support
the establishment of NNRTI-resistant virus.

Unlike other MPTs in development, the MZCL IVR is
designed to simultaneously prevent HIV, HSV-2, HPV, and
unintended pregnancy. The data presented herein supports that
notion. MZC delivered from the IVR retained its potent anti-
viral activity in the presence of vaginal fluid and seminal
components, significantly preventing SHIV infection and re-
ducing HSV-2 shedding. Its anti-HPV activity was inferred
from CG levels in vaginal fluid. LNG delivered from the
IVR suppressed cycling in rhesus macaques. By integrating
PK, IVR release, and efficacy data into one model, we can
identify the IVR’s critical performance parameters and inform
development of the optimized MZCL IVR, a product that has
the potential to safely and effectively protect millions of wom-
en worldwide from three incurable viral infections and unin-
tended pregnancy.
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