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Whether a novel drug delivery system can overcome the problem
of biofilms in respiratory diseases?
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Abstract Biofilm comprises a community of microorganisms
which form on medical devices and can lead to various threat-
ening infections. It is a major concern in various respiratory
diseases like cystic fibrosis, chronic obstructive pulmonary dis-
ease, etc. The treatment strategies for such infections are difficult
due to the resistance of the microflora existing in the biofilms
against various antimicrobial agents, thus posing threats to the
patient population. The present era witnesses the beginning of
research to understand the biofilm physiology and the associated
microfloral diversity by applying -omics approaches. There is
very limited information about how the deposition of biofilm on
the respiratory devices and lung itself affects the drug delivered,
the delivery system, and other implications. The present mini
review summarizes the basic introduction to the biofilms and its
avoidance using various drug delivery systems with special
emphasis on the respiratory diseases. Understanding the
approaches, principles, and modes of drug delivery involved
in preventing biofilm deposition will be of interest to both
biological and formulation scientists, thereby opening avenues
to explore the new vistas in biofilm research for identifying
better treatments for pulmonary infectious diseases.
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Introduction: biofilms and its association
with respiratory diseases

Biofilms comprise a community of microorganisms which are
embedded in a group of exopolysaccharides, diverse proteins,
and nucleic acids. Such potentially pathogenic bacterial
biofilms have been shown to develop on the surfaces ofmedical
devices, such as endotracheal tubes [1] and tracheostomy tubes
[2], primarily depending on the manufacturing material of these
tubes [3]. These biofilms can lead to life-threatening infections
[4–11] and pose a major concern for the patients with chronic
respiratory diseases, including cystic fibrosis (CF) and chronic
obstructive pulmonary disease (COPD) [12–16]. In cystic fibro-
sis patients, the biofilms have been demonstrated to be non-
attached aggregates [17–19]. Notably, biofilms are also present
on the lungs of patients with chronic pulmonary infections
which are a major cause of morbidity and mortality [20].

The biofilm research in respiratory diseases is still not fully
explored and needs immediate attention in order to maximize
the drug effectiveness and treatment strategies. Most of the
microflora which exists on the biofilms displays resistance
to various antimicrobial agents which further increases threat
to the patients with chronic pulmonary diseases. Moreover,
the mechanisms contributing to this resistance are not illus-
trated, and it is largely phenotypic [9, 16, 21–27]. There are
various factors and characteristics which affect the composi-
tion of microbial flora on the biofilm, some of which are
attachment efficiency, cyclic stage, anti-effective hostile
forces, physicochemical environment, mechanical factors
such as shear forces, substratum, genotypic factors, nutrient
sources, etc. [28].
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The formation of biofilm on the treatment devices also
exposes the patients to severe bacterial infections, thus wors-
ening their disease condition [18]. Various approaches have
been explored and investigated to encounter this problem such
as surface modifications of the devices to alter bacterial ad-
herence and incorporation of various antimicrobials onto the
devices to prevent colonization of microflora [9]. Another
approach includes use of electrical mode where the antimicro-
bials are released from the device surface so as to allow pen-
etration of the antimicrobials through the biofilms [5, 29, 30].

Biofilm resistance: barrier to an effective drug
delivery

There exists a difference of opinion regarding the efficacy of
these approaches probably due to the biofilm resistance
[31–34]. The phenomenon that has been attributed to this
antimicrobial resistance includes the formation of stack of
cells with various aqueous channels over and around the bio-
film that acts as a penetration barrier resulting in impermeabil-
ity [35]. The biofilm usually is coated with a polymer called
the glycocalyx which is anionic in nature [36]. So it is also
speculated that the chemical interaction between the biofilm
polymer and the antimicrobial agent results in the formation of
a penetration barrier which ultimately leads to a very low
degree of antimicrobial absorption and effects [37]. Another
postulated mechanism is heavy production of inactivating en-
zymes such as β-lactamases by the microflora which accumu-
lates within the glycocalyx, thereby protecting the underlying
cells [36, 38, 39]. Some studies have also questioned the mi-
crobial efflux pump system, oxygen deprivation [40–42], and
colonization of anaerobic flora as contributors to the biofilm’s
unresponsiveness to the antibiotics; however, certainly it re-
quires further investigations [43]. Various other factors in-
clude oxygen deprivation [44–47] and enhanced growth of
highly antibiotic resistant Pseudomonas aeruginosa strains
within the airway mucus [48–50] of cystic fibrosis patients.

Approaches to prevent biofilm formation

Currently, treatment of respiratory diseases involves various
drug delivery systems. Among all, inhalers (metered dose and
dry powder) [51–55] are one of the most important and

commonly employed drug delivery devices, which also sig-
nificantly increase the chances of biofilm formation. This may
lead to clinical complications, longer duration of treatment,
and reduced patient compliance. Thus, it is crucial to regularly
check biofilm formation, i.e., avoiding its deposition and sub-
sequently dealing with any complications and potential haz-
ards arising once the biofilm has established. Prevention of
colonization and microflora deposition on diagnostic and drug
delivery appliances remains the primary concern, followed by
developing strategies for increasing accumulation of antimi-
crobials at the biofilm surface and also enhancing drug pene-
tration into the biofilm [5]. Notably, the material properties of
the medical device play a crucial role in preventing the forma-
tion of biofilms (Fig. 1).

Several recent reviews have shown that bacterial biofilm-
associated chronic sinusitis in cystic fibrosis (CF) patients is
primarily caused by P. aeruginosa infections and there is a
lack of available treatments for such condition where the dis-
ease pathology is accompanied by opportunistic infections. It
was also shown that the challenges with providing a suitable
treatment include (i) identification of a suitable antimicrobial
compound; (ii) selection of a suitable drug delivery device;
and (iii) optimizing formulation variables to achieve effective
targeted drug delivery (sinuses and nasal cavity) [5, 18, 56,
57]. One of such investigations involved the preparation of a
novel inhaled combination powder containing amorphous co-
listin and crystalline rifapentine with enhanced antimicrobial
activities against planktonic cells and biofilm of P. aeruginosa
for respiratory infections [58]. Another research study has
demonstrated the potential of amphibian AMP esculentin
[1–21] as a new antibiotic formulation to treat infections
caused by P. aeruginosa in sepsis and pulmonary infections,
primarily by disrupting biofilms [59]. Remarkably, the results
have also shown that esculentin [1–21] indeed prolonged sur-
vival of animals in both sepsis and pulmonary infection
models [59].

Recent advances in controlling the biofilms are not only
restricted to the material modifications of the drug delivery
device but also include ultrasound enhancement of the antimi-
crobial transport that has been demonstrated to be effective
against various microorganisms existing in the biofilms in-
cluding Escherichia coli, P. aeruginosa, and Staphylococcus
epidermidis [60–63]. In addition, various photodynamic ap-
proaches are highlighted to disrupt biofilms by generating
reactive oxygen species [64]. Photodynamic approaches are

Fig. 1 Approaches in biofilm
prevention
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most commonly employed for the pathogens associated with
the oral cavity and skin [63, 65].

Formulation and drug delivery approaches
to combat biofilm

Jones and colleagues have extensively investigated the
capacity of liposome drug delivery in preventing growth
and deposition of various pathogens [66–71]. They have
explored various mechanistic insights into how the inter-
action between the liposomes and bacterial biofilms can
avoid biofilm generation. Liposomal drug delivery appli-
cations have also been shown to be effective for the
intracellular infections particularly with the reticulo-
endothelial system where various pathogens like
Francisella tularensis and Streptococcus pneumoniae
[72, 73] were targeted. One of the advances with liposo-
mal drug delivery includes stealth liposomes which are
employed to deliver antibiotics such as gentamicin and
have been demonstrated effective in a rat model of
Klebsiella pneumoniae [74]. Other novel drug delivery
approaches include polymer-based antimicrobial drug de-
livery including nanoparticles [75], microspheres and mi-
croparticles [76], hydrogels, micelles, fibrous scaffolds,
and thermo-reversible gels [77–80].

In order to have effective delivery of antibiotics to the lungs
for various pulmonary diseases, aerosolized systems are the
best and effective approach for treatment and prophylaxis of
pulmonary infections [81, 82]. Bacterial resistance in patients
with cystic fibrosis is overcome by using high endobronchial
concentration of tobramycin [83, 84]. Also, the antibiotic can
be aerosolized in mechanically ventilated patients [85].

To design an effective drug delivery for pulmonary dis-
eases, various critical factors need to be considered like phys-
icochemical and mechanical characteristics of drug, intrinsic
device characteristics and its performance, etc. The applica-
tion of high-frequency ultrasound is another merit to be in-
cluded on the aerosol systems which can help in eradicating
the biofilms and delivering the drug with targeted approach
and maximum therapeutic efficacy [86].

One of the recent advances include an infection-responsive
system where the antibiotic is released from the drug delivery
system once it receives the signals from the occurring infec-
tion such as the release of mediators, cytokines, etc. This ap-
proach is suitable for both prophylactic and prolonged use of
antibiotics which in turn can avoid the associated side effects.
One such investigation involves the delivery of gentamicin
which was prepared as a drug delivery using polyvinyl alcohol
as a drug-polymer conjugate for the treatment of wound in-
fection where the signals appear in the form of levels of
thrombin-like activity. The drug delivery system releases the
gentamicin when it is incubated with thrombin and leucine

aminopeptidase together, but not with any of the components
alone. This system was found suitable and effective against
Staphylococcus aureus in an animal model of infection [87].
Khun et al. investigated various conventional and new anti-
fungal agents (triazoles, amphotericin B lipid (AMB) formu-
lations, and echinocandins) for their antifungal activity against
Candida albicans and C. parapsilosis biofilms which were
grown on a bioprosthetic model where they demonstrated that
Candida biofilms show unique susceptibilit ies to
echinocandins and AMB lipid formulations [88]. Also, formu-
lations for managing bacterial infections, comprising
taurolidine in the form of gels, liquid, thixotropic gels, colloi-
dal mixtures, dispensal suspensions, injectable polymers, or a
microparticle, were prepared and were found effective for lo-
calized bacterial infections [89].

Various mathematical models and approaches have
been established to understand the physiology of
biofilms [90–94] and to investigate various novel drugs,
antibiotics, antimicrobials, or biocides [95–100].
Khassehkhan and Eberl [101] guided the development
of a robust mathematical modeling study that served as
a platform for future models and numerical experiments
to help in understanding the effect of probiotic cultures
on the pathogenic films. Cipolla and colleagues [102]
have shown the development of ciprofloxacin liposomal
formulations (Lipoquin and Pulmaquin) which are in
clinical trial for the treatment of lung infections. These
liposomal formulations are believed to improve tolerabil-
ity, increase patient compliance by reducing the dosing
frequency, enhance penetration of biofilms, and promote
treatment of intracellular infections [102]. Likewise,
Halwani et al. [103] co-encapsulated gallium with genta-
micin in liposomal formulation and demonstrated the
combination to be more efficacious than the antibiotic
alone, in eradicating antibiotic-resistant P. aeruginosa
isolated from a growing planktonic or biofilm communi-
ty [103].

Alhajlan et al. [104] have demonstrated the efficacy and
safety of liposomal formulations containing clarithromycin
with different surface charges against clinical isolates of
P. aeruginosa from the lungs of cystic fibrosis patients [104,
105].

To develop a patient-compliant, effective drug delivery and
treatment strategy to combat the bacterial colonization on the
biofilms in the respiratory tract, various approaches like neb-
ulization can be employed where the active moiety is aerosol-
ized by inhalation to the respiratory tract [18]. Various com-
pounds which are under investigation include antimicrobials
[43, 106–112], silver efflux inhibitors, and certain enzymes
[109, 113, 114]. These compounds mechanistically act on
the extracellular polymeric substances (EPSs)/glycocalyx
and various other structural components of the biofilms.
This can be achieved by preparing the formulation in both
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aqueous solutions which can easily absorb and penetrate
through the biofilm or in the form of various polymeric drug
delivery systems [115] like nanoparticles and nanospheres
[116–118], liposomes [119–122], microspheres [123, 124],
hydrogels [125–127], micelles [128, 129], fibrous scaffolds
[130–132], thermo-reversible gels [133, 134], etc., which
can infiltrate through the cracks and consequently release the
therapeutically active moiety over the passage of time [135,
136] (Fig. 2). Thomas et al. developed a new approach in the
form of a dry aerosol where a blend of dispersion compound
disintegrates bacterial colonies. One of such formulations in-
cludes ciprofloxacin HCl and glutamic acid as dispersion
compound with L-leucine as an excipient. Live/dead assay
along with confocal microscopy confirmed higher efficacy
of the drug delivery system in eliminating biofilms in vitro
in comparison to traditional antibiotic treatments [137].

Also, Sans-Serramitjana et al. prepared and evaluated
nanocapsu l e s con t a i n i ng co l i s t i n su l f a t e . The
nanoencapsulated charged colistins have shown higher anti-
microbial efficacy against biofilms comprising P. aeruginosa
clinical isolates from CF patients as compared to the pure
drug, colistin sulfate [104, 105]. Cheow et al. [138] demon-
strated that inhaled formulations of levofloxacin-loaded poly-
meric nanoparticles have better antibacterial efficacy against
the E. coli biofilm, thus likely to be a better treatment for
respiratory infections with higher patient compliance and ther-
apeutic activity [138]. Similarly, Loo et al. [139] presented
that the combination of silver and curcumin nanoparticles

possesses enhanced anti-biofilm activities against both
P. aeruginosa and S. aureus [139].

One of the recent advancements to target the
multidrug-resistant bacterial infections includes phage
therapy, where the liposomal entrapment of phage has
been shown to be highly effective in vitro as well as
in vivo by overcoming the hurdles related to the clinical
use of phage [140].

There are various lipid-based antibiotic delivery systems
under experimental investigation which include drugs like
ticarcillin [141], tobramycin [142], gentamicin [143],
amikacin [122], ciprofloxacin [144], moxifloxacin [145],
polymyxin B [146] colistin [147], vancomycin [148],
clindamycin [149], and ceftaroline [149]. To overcome the
challenges associated with oral antibiotic therapy in biofilm-
related chronic pulmonary infections, especially in CF, several
drugs are being assessed as potential candidates for inhalation-
al antibiotic therapy which are currently in clinical trials,
which include vancomycin and levofloxacin solution, vanco-
mycin powder, liposomal amikacin [12], etc. These recent
advances in optimizing the mode of antibiotic administration
would certainly enhance the targeted and efficient delivery of
antibiotics at high pulmonary concentrations necessary for
disrupting complex biofilms.

Apart from the chemical moieties and drugs, the biofilms
can also be targeted using natural compounds. Verkaik et al.
have demonstrated comparable in vitro efficacy of various
natural antimicrobials and chitosan-based formulations

Fig. 2 Various approaches and drug delivery systems preventing biofilms
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(toothpaste) with chlorhexidine against the bacterial flora
comprising biofilms [150]. Such advances can further im-
prove and strengthen the understanding of biofilm testing
and designing of an ideal drug delivery system [151].

The choice and selection of the therapeutic moiety are very
crucial as sometimes the active drug acts as both preventing
the formation of biofilms and showing its therapeutic effec-
tiveness in the treatment of disease pathology. However, in
certain cases, a blend of active drug and a compound
inhibiting the formation of biofilm can be employed which
can be aerosolized simultaneously, exhibiting their application
as an effective drug delivery system [86]. Recent develop-
ments indicate the application of high-frequency ultrasound
as an effective addition to the aerosol systems, which would
indeed improve targeted therapeutic effects.

Conclusions and prospects

Biofilm is a major concern in various respiratory diseases
as well as associated medical devices and can cause life-
threatening infections. The treatment strategies have var-
ious limitations that can be attributed to the antimicrobial
resistance of the microflora comprising the biofilms, as
well as the permeability of antimicrobials across the rea-
sonably efficient barrier formed by biofilm. This leads to
an unmet need of various advances, both in terms of
treatment and prophylaxis, which can be utilized for the
prevention of biofilm deposition and its associated ef-
fects. Preventive approaches to disrupt biofilms include
development and validation of drugs that could induce/
enhance pathways of biofilm self-destruction, such as en-
ergy limitation of microflora through inhibitors of oxida-
tive phosphorylation. However, the major limitation is
the lack of in-depth knowledge in the mechanisms in-
volved in biofilm formation and persistence, which re-
stricts the translation of the currently available technolo-
gy into a clinically effective drug delivery system that
can significantly overcome the complications due to
biofilms in respiratory diseases. Various novel drug de-
livery systems such as nanoparticles, liposomes,
niosomes, implantable matrices, fibrous scaffolds, mi-
celles thermoreversible gels, etc., can be successfully
and safely employed to target the biofilms. Also, recent
discoveries like the infection-responsive system and ap-
plication of high-frequency ultrasound with various aero-
solized systems further open the horizons to develop in
understanding advanced respiratory drug delivery sys-
tems with effective measures to overcome biofilm-
associated problems. These novel approaches of drug de-
livery may open new vistas in the pulmonary clinics en-
suring improved clinical outcome.
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