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Abstract Growth factors are essential orchestrators of the
normal bone fracture healing response. For non-union defects,
delivery of exogenous growth factors to the injured site sig-
nificantly improves healing outcomes. However, current clin-
ical methods for scaffold-based growth factor delivery are
fairly rudimentary, and there is a need for greater spatial and
temporal regulation to increase their in vivo efficacy. Various
approaches used to provide spatiotemporal control of growth
factor delivery from bone tissue engineering scaffolds include
physical entrapment, chemical binding, surface modifications,
biomineralization, micro- and nanoparticle encapsulation, and
genetically engineered cells. Here, we provide a brief review
of these technologies, describing the fundamental mecha-
nisms used to regulate release kinetics. Examples of their
use in pre-clinical studies are discussed, and their capacities
to provide tunable, growth factor delivery are compared. The-
se advanced scaffold systems have the potential to provide
safer, more effective therapies for bone regeneration than the
systems currently employed in the clinic.
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Introduction

Skeletal injuries from trauma, tumors, infections, and degen-
erative diseases often require a significant intervention, such
as bone grafting, to facilitate healing. While 1.6 million bone
grafting procedures are performed per year in the USA, the
current gold standard—autologous bone grafts—is expensive,
inefficient, causes donor site morbidity, and is limited in sup-
ply and size [1]. Therefore, there remains a critical need for
effective alternatives to bone grafts.

Growth factors are key components in the regenerative pro-
cess leading to scarless bone regeneration. A complex spatiotem-
poral cytokine cascade orchestrates healing following bone frac-
ture [2]. Inflammatory cytokines cause an invasion by lympho-
cytes, plasma cells, macrophages, and osteoclasts. Invadingmac-
rophages clean up necrotic centers in the graft and release tumor
necrosis factor (TNF), which drives increased osteoclast activity.
Osteoclasts resorb fractured bone matrix, releasing incorporated
insulin-like growth factor (IGF) and bone morphogenetic pro-
teins (BMPs), and these cause osteoblastic differentiation of pro-
genitor cells [3, 4]. Neovascularization of the fracture site occurs
early in this process as endothelial cells begin sprouting angio-
genesis in response to vascular endothelial growth factor (VEGF)
and low oxygen tensions in the graft [5]. Endothelial cells are the
primary source of BMPs within the fracture site driving osteo-
genesis of osteoblasts. Osteoid production by those osteoblasts
begins on the outside of the fracture, creating a callus and me-
chanically integrating the bone [6]. Platelet-derived growth factor
(PDGF), transforming growth factor-β (TGF-β), and fibroblastic
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growth factor (FGF) released from plasma cells, macrophages,
and osteoblasts support cellular proliferation and differentiation
[4, 7, 8]. Finally, remodeling into organized continuous bone
progresses over several months according to Wolff’s law.

Several of the key growth factors identified above as hav-
ing critical roles during normal healing (Table 1) have been
utilized in various clinical approaches to treat bony non-
unions. The timing of therapeutic growth factor delivery is
crucial to optimize tissue induction while minimizing adverse
or inhibitory effects. However, growth factors have short half-
lives and rapid clearance rates in vivo, particularly when de-
livered systemically [32, 33]. Bone tissue engineering (BTE)
scaffolds have been used as a feasible treatment methodology
to provide temporary mechanical support for cellular ingrowth
and to actively guide tissue organization. Additionally, 3D
scaffolds can localize and control the temporal delivery of
protein growth factors and/or genes required for optimal in
situ bone development and/or repair. The incorporation of
growth factors into scaffolds has considerable potential to en-
hance healing outcomes. Here, we review growth factor-
eluting technologies that can be employed to produce such
scaffolds.

Growth factor incorporation strategies

Awide variety of factors—ranging from scaffold material and
architecture, to the dosing and release kinetics of the incorpo-
rated growth factors—must be optimized in designing an in-
ductive scaffold-based delivery system for BTE applications.
The scaffold should exhibit suitable mechanical properties
and a biodegradation rate that enables both controlled growth
factor delivery and integration with host tissue. These scaffold
properties are determined by the materials employed and the
processing and biofactor incorporation strategies utilized. De-
cades of research into drug delivery materials have yielded a
broad array of naturally and synthetically-derived biodegrad-
able materials which can be employed to produce 3D scaffolds
of varying architectures (reviewed in detail in [34–36]).

Controlling growth factor dosage and release kinetics is
key to optimizing tissue induction while avoiding adverse or
inhibitory effects [37–39]. Currently, the growth factor dosage

ranges being used are quite broad, and clinical applications
typically employ supraphysiological concentrations. Al-
though some of this dosage variation is due to differences in
the animal models utilized, there remain many questions re-
garding optimal target doses and release kinetics. In a study
comparing burst release from collagen sponges (100 % over
2 days) to polyurethane scaffolds with slow (~20 % over
19 days) or fast (60 % over 9 days) release of BMP-2 (all
systems loaded with 2 μg), fast-releasing scaffolds showed
the greatest in vivo bone formation (45 mm3) in a rat femoral
critical-sized defect model after 4 weeks, followed by the burst
release collagen scaffold (30 mm3) and the slow release scaf-
fold (10 mm3) [40]. This suggests that an initial burst release
followed by a slow sustained release might be the best means
of delivering BMP-2 for bone formation.

However, the optimal therapeutic dosage and timing of
release will depend heavily on the individual growth factor(s)
and the particular application. One has to account for factors
such as the anatomical location, size, and nature (e.g., trauma
vs. tumor re-sectioning) of the bone defect, the extent of vas-
cularization in the surrounding tissue environment, conjunc-
tive therapies (e.g., chemotherapy or the use of metal sup-
ports), and the health of the surrounding tissues. For example,
in comparing quick and slow release of BMP-2 for induction
of bone formation in orthotopic and ectopic sites in dogs,
Geuze et al. found that while ectopic groups formed more
bones in response to quick BMP-2 release, bone formation
in the orthotopic site was independent of the release profile
[38]. Furthermore, some growth factors are not effective at
low doses, require co-delivery of a secondary agent to be
effective, or are harmful to cells with prolonged exposure.
For example, high doses and/or prolonged exposure to
BMP-2 in anterior cervical spine fusion cases has resulted in
high rates (23 %) of adverse effects in patients [41, 42], while
failure to shut down TGF-β in reparative processes can lead to
a number of fibrotic diseases [43]. Hence, in some cases, only
a transient delivery of growth factor might be needed to po-
tentiate endogenous regenerative responses [36–38].

In native tissues, growth factors are typically encrypted
within the extracellular matrix (ECM) where they are
protected from enzymatic and hydrolytic degradation. Once
they are released from these encrypted sites, the half-life of

Table 1 Clinically applied growth factors for BTE

Factor Action References

Bone morphogenetic proteins (BMP) Bone induction [9–15]

Vascular endothelial growth factor (VEGF) Angiogenesis [16–20]

Platelet-derived growth factor (PDGF) Cell proliferation and recruitment and vascularization [7, 21, 22]

Fibroblast growth factor (FGF) Angiogenesis, proliferation, and osteogenic differentiation [8, 23–26]

Insulin-like growth factor (IGF) Osteogenic differentiation [3, 27–30]

Transforming growth factor beta (TGF-β) Osteogenic, chondrogenic differentiation [4, 28, 31]
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growth factors in vivo is short—on the order of several mi-
nutes—due to enzymatic degradation, chemical and physical
deactivation, and degradation processes such as hydrolysis,
oxidation, isomerization, and aggregation [44, 45]. Therefore,
one of the most critical challenges in scaffold-based growth
factor delivery is maintaining native protein conformation and
bioactivity throughout scaffold loading and for the duration of
in vivo release [46]. The architectural design, processing, and
storage of scaffold materials and the protein loading strategies
must all be optimized to ensure delivery of functional growth
factor for the duration of in vivo release. For example,
Madurantakam and colleagues demonstrated that exposure
of BMP to organic electrospinning solvents during growth
factor loading affected its tertiary and quaternary protein con-
formations and impaired its bioactivity. In contrast using a
50 % dilution in an aqueous buffer retained the bioactivity
of the incorporated BMP [47]. Similarly, degradation products
of scaffold carrier polymers, such as polyesters, can increase
local acidity and lead to protein denaturation or degradation,
while secondary protein-polymer interactions can trigger pro-
tein mis-folding and aggregation [48]. Efforts have also been
made to prevent enzymatic degradation of growth factors by
tailoring scaffold pore size to reduce protease penetration into
scaffold [45]. Employing a more biomimetic approach, hepa-
rin binding is commonly used to maintain and enhance BMP
presentation and bioactivity and increases the half-life of BMP
in culture medium nearly 20-fold [49–51].

To date, a variety of methods have been explored to incor-
porate drugs, protein growth factors, and DNA into 3D poly-
meric and composite scaffold systems and control their deliv-
ery. These approaches encompass bulk incorporation strate-
gies and surface modification techniques, with the current
trend moving towards hybrid approaches to produce tissue
engineering systems capable of multiagent delivery and/or
stimuli-responsive release (Fig. 1, Table 2).

Physical entrapment strategies

One of the simplest approaches to producing inductive tissue
engineering systems is bulk incorporation, whereby the
biofactors to be delivered are blended directly into hydrogels
or within solid scaffold polymers and physically entrapped.
Protein and/or DNA release kinetics from these bulk incorpo-
ration systems is typically characterized by an initial burst
followed by slower release that is controlled by the diffusion
and degradation rates of the matrix, which are in turn depen-
dent on such properties as matrix, porosity, swelling behavior,
polymer cross-linking density, and polymer chemistry (i.e.,
molecular weight, hydrophobicity/hydrophilicity, charge den-
sity). Loading efficiencies within bulk incorporation systems
are generally high and are determined by factors including
polymer and biofactor interactions, solubility, and concentra-
tion ratios, as well as the types of cross-linking interactions

and processing times and temperatures employed. These pa-
rameters can be specifically tuned (within limits) for various
localized, controlled release applications via careful design of
polymer composition and scaffold processing techniques.

Solid scaffold polymer blending

In solid polymer or composite scaffolds, biofactors can be
directly blended with core polymers via formation of
polymer-solvent and biomolecule-water emulsions and subse-
quent freeze-drying [52], or via gas foaming [53], which elim-
inates the need for organic solvents that can potentially dena-
ture or degrade proteins. For example, supercritical CO2 pro-
cessing was used to incorporate rhBMP-2 within PLA scaf-
folds (96 μg BMP-2) yielding systems, which released low
amounts (674 ng over the first 48 h, followed by 100 ng/mL
per 72 h) over a period of at least 24 days. Although less than
5 % of the initially loaded BMP-2 appeared to be released
cumulatively, subcutaneous implantation in a rat model result-
ed in bone formation at 6 weeks (~12 mm3) and persisted until
at least 26 weeks [54, 55]. Growth factors can also be directly
incorporated within the strands of electrospun fiber-based
scaffolds via blending prior to electrospinning, emulsion
electrospinning, or coaxial electrospinning (reviewed in
[94]). Srouji and colleagues used coaxial electrospinning to
produce scaffolds composed of core-shell fibers with an inner
rhBMP-2/PEO core and outer PCL/PEG shell. They found
that the degree of porosity of the outer shell determined the
BMP-2 release rate, and that slower releasing scaffolds (which
released 12–15 % of the loaded BMP-2 in 27 days, with 5 %
released in the first 4 h) resulted in greater in vivo bone for-
mation in a rat cranial defect model (80 % coverage vs. 55 %
at 8 weeks), than faster releasing scaffolds (76 % in 27 days,
with ~67% released in the first 4 h) [56]. BMP-2 has also been
successfully incorporated into a variety of electrospun scaf-
fold architectures composed of natural and synthetic poly-
mers, including silk, PCL, PLLA, and PLGA, as well as
polymer-ceramic composite fibers which integrated hydroxy-
apatite nanoparticles [56–60]. These direct blending strategies
are limited in the scaffold architectures that can be produced,
and generally display initial diffusive burst release. Care must
be also taken to ensure that processing conditions for the scaf-
folds do not reduce the bioactivity of the incorporated growth
factors.

Hydrogel encapsulation

Hydrogel encapsulation of drugs and biomolecules is one of
the simplest and most popular strategies for producing 3D-
controlled delivery systems for tissue engineering. Direct
physical entrapment of proteins, drugs, and DNA within
hydrogels can be achieved via blending with matrix polymers
prior to chemical or physical cross-linking. One of the key
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advantages to using hydrogels for controlled growth factor
delivery is the wide array of stimuli-responsive polymeric
hydrogels, which can be employed to produce on-demand
release systems. However, hydrogel systems are severely lim-
ited in the scaffold architectures and mechanical properties

that can be produced and are thus often used in hybrid strate-
gies where they are infused into other scaffold structures. Fur-
thermore, the hydrogel cross-linking strategy employed in
growth factor encapsulation must be chosen so as to minimize
any chemical or physical modifications of protein structure
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Fig. 1 Methods of growth factor
delivery. a Bulk incorporation of
GFs (blue) released with
degradation of the bulk (black)
material (BPhysical entrapment
strategies^). b Hydrogels (green)
can be modified for increased
biomimetic affinity (red) to
increase binding of GFs (black
dots) and natural presentation to
cells (blue) (BHydrogel
encapsulation^). c Growth factors
(blue dots) can directly adsorb to
the scaffold surface (gray)
without specific chemical
modification (BSurface
adsorption^). d Biomineralization
traps GFs (black dots) in the
crystal formation (mediated by
Ca++ in white) in simulated body
fluid (SBF), and released as the
crystals degrade in vivo
(BBiomineralization^). e
Multilayer coating can facilitate
multiagent (GF1, black dot/GF2,
blue dots) delivery and staggered
release of GFs over time
(BPolyelectrolyte multilayer film
coating^ and BMultiagent
delivery^). f Nano and
microparticles can deliver GFs
(blue dots) to cells (blue) and can
be functionalized with adhesion
molecules (red) (BNanoparticles
and macroparticles^). g Cells can
be genetically engineered (red) to
secrete GFs (black dots) to
surrounding cells (blue) BCells as
drug-eluting systems^)

Table 2 Advantages and disadvantages of different drug-eluting technologies

Method Advantages Disadvantages References

Bulk incorporation Highly tunable Processing may affect GF, burst release [52–60]

Biomimetic binding Increased capacity and prolonged release Complex loading [23, 49, 61–67]

Surface adsorption Simple loading Poor capacity and release kinetics [68, 69]

Multilayer coating Temporal release, multiagent Processing may affect GF [70–77]

Particles High payloads, release control, multiagent Complex loading [9, 24, 78–80]

Genetically engineered Cells Enduring, bioactive delivery Regulatory and safety concerns [31, 81–85]

Biomineralization Increased osteoconductivity, biomimetic Requires cell-mediated material degradation [86–93]
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(e.g., oxidation reactions, photodegradation, or cross-linking
with polymer chains).

A variety of Bsmart^ hydrogel systems have been devel-
oped that respond to changes in temperature, pH, mechanical
forces, electromagnetic fields, irradiation, ultrasound, or the
presence or absence of certain solutes by dramatically altering
properties such as their swelling behavior, network structure,
or degradation rate (reviewed in [95]). Similarly, biochemical-
ly responsive hydrogels, which incorporate enzymatically
cleavable peptide linkage or cross-linking groups, such as ma-
trix metalloproteinases (MMPs), result in cell-based enzymat-
ic degradation and release of encapsulated growth factors.
Holloway and colleagues developed such MMP-sensitive,
cell-degradable hyaluronic acid hydrogels for BMP-2 encap-
sulation (100 ng BMP-2) and demonstrated that faster
degrading gels (100 % mass degradation and BMP-2 release
in 6 days in the presence of collagenase in vitro) resulted in
improved bone formation in a rat cranial defect model com-
pared to slower degrading gels (100% degradation and release
in 10 days) [96].

Chemical and affinity binding strategies

Protein growth factors can also be covalently bound or linked
via biomimetic interactions to the polymers that make up the
hydrogel matrix in order to more precisely control their load-
ing, distribution, presentation, stability, and delivery. Such
chemical and affinity binding strategies generally reduce burst
release and prolong growth factor delivery. However, care
must be taken in designing the linkage strategy so that growth
factor bioactivity is preserved.

Covalent binding

A variety of covalent binding strategies can be
employed to attach protein growth factors to matrix
polymers thus enabling on-demand biofactor release.
Such linkage strategies can be designed such that re-
lease is mediated either by hydrolysis, reduction reac-
tions, or enzymatic degradation of the covalent bonds.
For example, BMP-derived peptides functionalized with
azide groups were covalently conjugated to PEG-based
hydrogels via click chemistry, and the resulting system
was found to induce osteogenic differentiation of bone
marrow stromal cells in vitro [97]. In designing such
covalent protein-binding systems, however, one must
ensure that the linkage process does not affect the bio-
logical activity of the proteins by blocking active sites
or causing denaturation, and that those growth factors
which require cellular internalization for proper function
are bound via cleavable linkage strategies.

Biomimetic binding interactions

In strategies which mimic the natural interactions between
proteins and glycosaminoglycans (GAGs) within the extracel-
lular matrix (ECM), electrostatic and affinity interactions can
be employed to aid in hydrogel growth factor loading. In
addition to retaining and delivering the growth factor over a
longer period of time, one of the key advantages to utilizing
such biomimetic strategies is that ECM- and GAG-bound
growth factors are maintained in a more bioactive form than
when diffusively released or presented via covalent tethering
strategies [23, 61]. Thus, ECM binding might allow for the
use of more physiologically relevant quantities of growth fac-
tors rather than the currently employed supraphysiological
concentrations.

Modification of hydrogel polymers with GAGs, such as
heparin, which has been shown to bind protein growth factors,
including BMP-2, FGF, and TGF-β [62, 63], can increase
growth factor loading, and prolong growth factor release, as
well as protect encapsulated proteins from thermal degrada-
tion and proteolysis. Jeon and colleagues developed heparin-
modified PLGA scaffolds which demonstrated ~99 % BMP-2
loading efficiency and prolonged in vitro release over at least
14 days (19 % day 1, steady rate until day 14) compared to
similar unmodified PLGA scaffolds which demonstrated burst
release (~100 % over 4 h). These heparin-modified scaffolds
subsequently demonstrated ninefold higher bone formation at
8 weeks compared to unmodified BMP-loaded scaffolds (both
loaded with 1 μg BMP-2) in an ectopic bone formation rat
hind-limb muscle model [49]. In stark contrast, Bhakta et al.
found that hyaluronan-based hydrogels modified with heparin
and loaded with BMP-2 (5 μg) resulted in less in vivo bone
formation in a similar rat hind-limb muscle model than un-
modified BMP-loaded hydrogels, and theorized that it was
due to a lack of early burst release (~14 % during day 1 and
a total release of ~68 vs. ~26 % release on day 1 and a total
release of ~84 %) [64]. These disparate results utilizing differ-
ent core scaffolds (i.e., PLGA solid scaffolds vs. hyaluronan
hydrogels) but the same growth factor imply that growth fac-
tor dosage and release kinetics alone may not dictate success-
ful in vivo bone formation, but that scaffold architecture, po-
rosity, and mechanical properties likely play key roles.

Another widespread biomimetic strategy for controlling
biofactor delivery from hydrogels involves the incorporation
of ECM peptide sequences. For example, Hubbell et al. mim-
icked the blood clot microenvironment that forms after skele-
tal fractures by replicating fibronectin subdomains and
attaching them to fibrin gels, thus resulting in improved reten-
tion of growth factors, such as PDGF, FGF-2, and TGF-β,
over time and improved bone healing outcomes [65, 66]. Sim-
ilarly, Hamilton and colleagues screened a phage display li-
brary of peptide sequences to identify BMP-2-binding peptide
sequences that they then incorporated within injectable
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collagen matrices along with BMP-2, resulting in more than
tenfold higher BMP-2 loading, and increased bone formation
and maturity in vivo in a rat ectopic bone formation model,
compared to collagen matrices containing only BMP-2 [67].

Surface modification strategies

In contrast to bulk incorporate strategies, surface modification
techniques enable growth factor incorporation while preserv-
ing underlying scaffold architecture and properties. While sur-
face modification strategies generally result in lower levels of
growth factor incorporation, they enable delivery from amuch
wider variety of scaffolds and implant systems and materials,
particularly those with increased mechanical strength. Tech-
niques used to functionalize biomaterial surfaces with pro-
teins, peptides, drugs, and/or DNA include simple surface
adsorption, Bgrafting-to^ and Bgrafting-from^ strategies, in-
corporation within electrostatic layer-by-layer films, and
biomineralization.

Surface adsorption

Simple surface absorption of biofactors onto scaffolds via dip-
ping or incubation is one of the most commonly utilized tech-
niques to produce localized delivery systems. Biofactor ad-
sorption onto biomaterial surfaces is governed by a combina-
tion of non-specific physical forces, such as electrostatic in-
teractions, van der Waals forces, hydrophobic/hydrophilic in-
teractions, and hydrogen-bonding interactions, which in turn
are determined by a complex interplay of factors including the
species and concentrations of biomolecules present in the
incubation/dipping solution, the temperature, pH and ionic
strength of the solution, and material surface properties such
as topography, chemistry, charge, and wettability [68]. BMP
surface adsorption onto various polymeric and composite
scaffold systems, particularly collagen-based matrices, has
been widely investigated, with varying strategies utilized to
maximize the amount of adsorbed BMPs, such as increasing
incubation time, altering the pH and ionic concentration of the
solution, and introducing charged functional groups to the
scaffold surface [69]. Non-specific surface adsorption onto
scaffold surfaces typically results in low levels of biofactor
loading and poor control of release kinetics. Better control of
biofactor release from scaffold surfaces, meanwhile, is more
easily achieved via surface immobilization methods.

Surface immobilization

Direct immobilization of proteins and gene delivery vectors to
scaffold surfaces, via covalent cross-linking or strategies in-
volving antibody/antigen or biotin/avidin binding, has been
widely studied [98, 99]. In the case of covalent surface immo-
bilization, chemically or physically based methods are often

employed to introduce reactive functional groups onto scaf-
fold surfaces in order to activate them for subsequent grafting.
Once a scaffold surface has been chemically functionalized,
via partial surface hydrolysis, oxidation, aminolysis, or plas-
ma treatment, various reactions targeting primary amines and
carboxylic acids can be utilized to immobilize protein growth
factors, such as BMPs. Such surface conjugation of growth
factors tends to increase protein loading and stability and pro-
long release compared to surface adsorption strategies. For
example, when BMP-2 was immobilized onto the surface of
aminolyzed PCL scaffolds via sulfosuccinimidyl 4-(N-
maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC)
cross-linking, the resulting scaffolds demonstrated increased
loading efficiency (~38.5 vs. ~9%), slower release (7 vs. 27%
over 15 days), and increased in vitro osteogenic differentiation
of bone marrow stromal cells, compared to similar PCL scaf-
folds with surface-absorbed BMP-2 [100]. As in the case of
covalent linkage of biofactors within bulk hydrogels, covalent
surface immobilization strategies must be sure to preserve
protein confirmation and bioactivity and enable the release
of growth factors which require cellular internalization for
function.

Polyelectrolyte multilayer film coating

Deposition of polyelectrolyte multilayer films has beenwidely
investigated for surface-based controlled release of drugs, bio-
active proteins, and plasmid DNA (reviewed in [70]). A sim-
ple and versatile technique developed by Decher and col-
leagues [71] electrostatic layer-by-layer (LbL) deposition in-
volves the sequential surface adsorption of alternating layers
of oppositely charged polyelectrolytes (PEs) on nearly any
charged substrate surface. Careful selection of the polyelec-
trolytes used and the layer architecture and chemistry
employed enables both the tailoring of release kinetics and
sequential delivery of several different proteins and/or genes
[72, 73]. LbL films can be generated from a wide variety of
synthetic and natural polymers, and bioactive proteins; DNA
and gene delivery vectors can be incorporated within PE mul-
tilayers without any need for covalent attachment [74] and
without any significant changes to their native conformation.
The deposition of PE multilayers onto 3D scaffolds has en-
abled scaffold-based delivery of both genes and proteins
[75–77]. For example, 3D printed β-tricalcium phosphate/
polycaprolactone scaffolds coated with LbL films consisting
of a poly (β-aminoester) (Bpoly 2^), chondroitin sulphate
(CS), and BMP-2 resulted in a system that successfully in-
duced in vivo bone formation when implanted intramuscular-
ly in rats [76]. Meanwhile, Hammond et al. developed LbL
nanolayer coatings of BMP-2 and PDGF on PLGA mem-
branes and found that low-dose dual delivery resulted in better
outcomes (healing rate, bone volume, mechanical prop-
erties, and histology) in a rat calvaria defect model than
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BMP-2 delivery alone (at both 200 ng and 2 μg doses
of BMP-2) [101].

Biomineralization

Inspired by the in vivo process by which bone apatite crystals
are formed, surface biomineralization methods can be utilized
to incorporate protein growth factors on scaffold surfaces,
while simultaneously improving osteoconductivity (reviewed
in [86]). Surface biomineralization techniques involve im-
mersing a material in simulated body fluid (SBF), which leads
to formation of a calcium phosphate surface phase similar to
that found in native bone [87]. Biomimetic mineralization has
been used extensively to form coatings on orthopedic and
dental implants, as well as on polymeric and composite tissue
engineering scaffolds, resulting in enhanced osteogenic activ-
ity, and/or bone formation both in vitro and in vivo [88–91].
More importantly, biomineralization has been used to incor-
porate bioactive growth factors, such as bone morphogenetic
proteins (BMPs), within the formed surface coatings, thus
further enhancing bone formation and tissue integration
[92, 93].

Nanoparticles and macroparticles

Polymeric nano- and microparticles can be loaded with GFs
via internal encapsulation, bulk mixing, or surface attachment.
Such particles can then be integrated into 3D scaffold systems
via the bulk- and surface-based incorporation strategies al-
ready discussed. For example, Yu et al. developed hydroxy-
apatite microspheres (3–5 μm diameter), which incorporated
BMP-2 and VEGF by means of a layered mineral coating. By
varying layer thickness, release kinetics could be tailored,
with sustained release profiles of over 50 days possible [78].
Microparticles can also utilize heparin-growth factor binding,
as demonstrated by Xu et al. who altered the heparin content
in hyaluronic acid hydrogel particles (~1.1 μm in diameter,
pore size ~24 nm) and obtained a tunable BMP-2 release
system that demonstrated a constant dosage over 2 weeks
and a near zero-order release profile, which induced highly
efficient chondrogenesis of MSCs [79]. Beyond engineering
to control release and cellular uptake rates [9, 24], these small
particles can be employed to enable multifactor and/or se-
quential delivery, as well as spatially patterned release, thus
enabling the growth of both bone and blood vessels [80].

Multiagent delivery

Natural bone development and repair involve the precise tem-
poral and spatial orchestration of a variety of signaling cas-
cades and cell types. Thus, current trends in scaffold-based
protein and gene delivery are extending beyond controlling
dosage and release kinetics to encompass multiagent delivery

and spatially controlled release. Many groups have created
concentration gradients of growth factors within hydrogels
using a variety of methods (reviewed in [102]), with the most
common being utilization of a gradient maker whichmixes two
or more types of hydrogel precursor solutions (with/without the
growth factor) and then subsequently cross-links them [103,
104]. Meanwhile, zonal protein delivery was demonstrated
employing a scaffold composed of microspheres loaded with
either VEGF or PDGF in an in vivo angiogenesis model, with
VEGF delivery from one scaffold area resulting in formation of
small blood vessels while sequential delivery of first VEGF and
then PDGF in another scaffold zone led to fewer but larger and
more mature vessels [105].

Many studies have highlighted the importance of
multiagent delivery in enhancing bone tissue formation and
vascularization within tissue engineering scaffolds. For exam-
ple, dual release of low dose of BMP-2 and TGF-β3 proteins
from hydrogels seeded with bone marrow stromal cells
(BMSCs) induced bone formation when implanted subcuta-
neously in mice, while supraphysiological concentrations of
either factor alone did not induce significant bone formation
[106]. Meanwhile, porous PLGA scaffolds delivering both
VEGF protein and poly-ethyleneimine (PEI)-condensed
BMP-4 plasmid and seeded with BMSCs induced greater
bone formation in critical size rat cranial defects compared
to delivery of any other combination of these factors [107].
Similarly, dual delivery of covalently incorporated BMP and
osteopontin-derived peptides within hydrogels enhanced
in vitro bone marrow stromal cell mineralization, osteogenic
differentiation, and vasculogenic differentiation [108]. Finally,
Yilgor et al. affixed PLGA nanoparticles with release profiles
of 20 days and PHBV nanoparticles with release profiles of
40 days to the surface of chitosan scaffolds to enable the
sequential delivery of emulsified BMP-2 and BMP-7,
resulting in increased alkaline phosphatase activity and min-
eralization of scaffold-seeded rat BMSCs [9, 109]. In
multiagent delivery systems, the timing of growth factor re-
lease can be of even more importance, as the temporal regu-
lation of the influx of each growth factor into the defect site
can be critical to enhancing the sequential steps of bone
healing.

Cells as drug-eluting systems

As cells naturally secrete GFs, osteogenic progenitor cells can
be pre-seeded within scaffolds to provide an inherently bioac-
tive supply of GFs to a defect site. Adipose-derived stem cells
and mesenchymal stem cells naturally secrete relevant GFs for
bone healing in response to cues from the microenviron-
ment—such as hypoxia or ischemia—and reduce secretion
once bone is healed. These cells can also be genetically
engineered ex vivo to maintain an increased secretion profile
of a specific GF through a variety of gene delivery strategies,
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including transfection via nucleofection, and viral and non-
viral delivery vectors [31, 82–84] (reviewed in detail, specif-
ically for BMP gene transfection, byWilson et al. [110]). Such
cell-based therapies are limited by the tendency of the im-
planted cells to migrate away from the defect site or be cleared
by the host.

Alternatively, inductive tissue engineering scaffolds can be
utilized for material-based in situ gene delivery. Naked plas-
mid DNA or DNA complexed with viral, lipid-based, or poly-
meric delivery vectors can be integrated within 3D scaffolds
using the bulk- and surface-based incorporation strategies
discussed previously. A variety of scaffold-based gene deliv-
ery systems have been investigated for bone tissue engineer-
ing. For example, Elangovan et al. developed collagen sponge
scaffolds with surface immobilized PEI-plasmid DNA com-
plexes [encoding PDGF-BB] which demonstrated impressive
healing over 4 weeks, recovering 50 % of lost bone volume
(14-fold greater than empty control and 44-fold greater than a
control scaffold) in a rat cranial defect model [85]. Using a
liposomal vector in a collagen gel, Park et al. delivered the
BMP-2 gene to peri-implant bone defects (defect 10 mm di-
ameter, 7 mm depth) in a pig model. BMP-2-producing cells
were present in increased number (compared to controls) at
1 week and remained at 4 weeks. Bone matrix formation was
accelerated in BMP-2-treated groups at week 1 and resulted in
increased osseointegration and bone regeneration [81].

Conclusion

Effective regenerative outcomes for large non-union bone de-
fects rely on appropriate scaffold properties coupled with op-
timized patterns of cell and growth factor delivery. Indeed, the
controlled delivery of osteoinductive and angiogenic factors
that act in concert to orchestrate the formation of bone tissues
remains a major engineering goal. Currently, delivery of
BMPs to non-union defect sites via collagen sponge carriers
is the clinical standard for growth factor-eluting scaffold tech-
nologies. Although generally successful in promoting fusion,
the poor con t ro l over r e l ease k ine t i c s and the
supraphysiological BMP concentrations required to induce
sufficient bone formation lead to a number of complications
and adverse effects—particularly in the craniofacial area—
that include heterotopic bone formation, edema, seroma, and
even cancer [111, 112]. The emerging technologies described
above can facilitate greater spatiotemporal control of growth
factor(s) released at a bony defect site leading to safer, more
effective scaffolds for use in bone regeneration.
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