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Abstract Diabetes and its complications have been linked
to increased levels of free radicals and systemic pro-
inflammatory cytokines and to an altered lipid profile.
Coenzyme Q10 and curcumin are potent antioxidants and
anti-inflammatory agents but are underutilized clinically
because of their poor bioavailability when administered
orally. We have recently developed poly(D,L-lactic-co-
glycolic acid)-based nanoparticles in which we have
encapsulated coenzyme Q10 and curcumin to increase the
oral bioavailability and therapeutic efficacy of the antiox-
idant molecules. These formulations when tested in
streptozotocin-induced diabetic rats demonstrated protec-
tive effects on inflammatory markers as well as lipid
metabolism. Coenzyme Q10 nanoparticulates reduced only
C-reactive protein levels, whereas curcumin nanoparticles
reduced levels of C-reactive protein, interleukin-6 and
tumor necrosis factor-α. Administration of both nano-
particulates resulted in significant reductions of plasma
triglycerides and total cholesterol and an increase in high-
density lipoprotein cholesterol. Together, these data indicate
the promise of coenzyme Q10 and curcumin in diabetes
when delivered through nanoparticulate formulations.
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Introduction

Vascular inflammation and cardiovascular disease are the
leading causes of morbidity and mortality in the diabetic
population [1]. Oxidative stress has been correlated to
inflammatory markers [2] and hyperlipidemia [3], promot-
ing atherosclerosis and subsequent cardiovascular disease.
Reactive oxygen species can activate nuclear factor-κB and
mediate nuclear factor-κB-dependent mitogenic and cyto-
toxic signals of cytokines [4]. Levels of the widely
recognized inflammatory mediators, tumor necrosis factor
α (TNF-α), interleukin-6 (IL-6), and C-reactive protein
(CRP) are known to be elevated in experimental diabetes
[5] and in diabetic populations [6]. Antioxidants and
antioxidant defense mechanisms, which are inherent in
cells and tissues, can inhibit inflammation by intervening in
the pathways mediated by reactive oxygen species. How-
ever, in diabetic patients the antioxidant defense system
weakens due to reduced levels of antioxidants such as
glutathione [7]. Glycation of antioxidative enzymes during
hyperglycemia impairs cellular antioxidant defense
mechanisms, leading to the development of oxidative
stress and progression of complications [8]. Antioxidant
status has a major role on the rate of low-density
lipoprotein (LDL) oxidation and on atherogenicity in
humans [9]. Apart from oxidation of LDL, activity of
lipoprotein lipase, an enzyme involved in lipid metabolism
has been positively correlated with total antioxidant
capacity and the atherogenic index has been negatively
correlated with this capacity in rats [10].

Coenzyme Q10 (CoQ10) is a strong antioxidant that is an
important component in the mitochondrial electron trans-
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port chain. CoQ10 is gaining importance in the treatment of
cardiovascular diseases, neurodegenerative disorders and
diabetes [11]. Although CoQ10 has many applications poor
bioavailability as a consequence of poor aqueous solubility
and high molecular weight remains a limitation [12]. To
improve the oral bioavailability of CoQ10, several new
approaches have been considered and tested in animals or
humans [13]. Micro- and nanoparticle preparations are the
most important approaches being investigated these days to
improve bioavailability and many types of micro- and
nanoparticles of CoQ10 have been formulated for this
purpose [14–16]. The poly(D,L-lactic-co-glycolic acid)
(PLGA) nanoparticles, encapsulated with CoQ10, prepared
for the present study are biocompatible and biodegradable
using the stabilizer didodecyl dimethyl ammonium bromide
(DMAB) which gives smaller particles (around 100 nm in
diameter).

Curcumin (the active ingredient of the spice turmer-
ic), on the other hand, is a natural plant-derived
antioxidant mainly found in the rhizomes of Curcuma
longa. Curcumin is also known to possess various
pharmacological applications in cardiovascular diseases,
neurodegenerative disorders and diabetes. After oral
administration, only very low amounts of curcumin reach
the systemic circulation; thus curcumin shows poor
activity in clinical trials. Clinical development of oral
forms of curcumin has been hampered because of its very
low bioavailability, which is attributed to its poor
solubility, instability and tendency to undergo first-pass
metabolism [17]. Curcumin decomposes when exposed to
sunlight, in ethanolic and methanolic extracts, in neutral-
basic pH conditions, and as a solid [18]. The present study
employs curcumin-encapsulated PLGA nanoparticles
using poly(vinyl alcohol) (PVA) as the stabilizer, which
were previously been reported to improve the oral
bioavailability of curcumin [19].

Nanoparticles are being investigated for oral delivery of
many challenging molecules that are limited in their use
because of their poor biopharmaceutical and pharmacoki-
netic properties. Entrapment of active ingredients in
polymeric nanoparticles results in improved stability [20],
uptake [21], and distribution profiles [22]. Nanoparticles,
upon oral administration, are believed to be absorbed intact
[23] and to circulate for extended periods in the blood
releasing the entrapped agent in a sustained fashion,
resulting in dose reduction [19]. In our previous studies,
CoQ10 nanoparticles showed improved antioxidant and
antihyperlipidemic activities over a suspension formulation
in experimental diabetes [24], and curcumin nanoparticles
showed improved oral bioavailability in normal rats [19].
Based on the advantages of the polymeric nanoparticles, the
current research program aims to evaluate the nanoparticu-
late forms of CoQ10 and curcumin in a rat model of

diabetes by measuring the inflammatory markers and lipid
levels in the blood.

Materials and methods

Materials

PLGA (Resomer R503H; MW 35–40 kDa) was purchased
from Boehringer Ingelheim, (Ingelheim, Germany). PVA
(MW 30–70 kDa), DMAB, and ethyl acetate were purchased
from Sigma-Aldrich (Poole, UK). High-performance liquid
chromatography-grade methanol, ethanol, and acetonitrile
were procured from J.T. Baker (now Avantor Performance
materials, Phillipsburg, NJ). Curcumin and CoQ10 were gift
samples from Indsaff, Punjab, India, and Tishcon Corp.,
Westbury, NY, respectively.

Preparation of CoQ10 and curcumin nanoparticles

Nanoparticles loaded with CoQ10 or curcumin were
prepared by a modified emulsion–diffusion–evaporation
method, previously reported [25]. Briefly, CoQ10 (10 mg)
or curcumin (7.5 mg) and PLGA (50 mg) were dissolved in
2.5 ml of ethyl acetate and stirred at 1,000 rpm for 30 min
under room temperature to obtain a homogeneous solution.
Either PVA (50 mg) or DMAB (50 mg), used as a stabilizer,
was dissolved in 5 ml distilled water. The organic phase
containing the active ingredient and PLGA was then added
in a drop-wise manner to the stabilizer solution during
homogenization. Homogenization was continued for 5 min
at 15,000 rpm. After this step, the emulsion was transferred
to 20 ml water to facilitate diffusion and was stirred
overnight to ensure the complete evaporation of the organic
solvent. After the evaporation step was complete, the
nanoparticle solution was centrifuged at 15,000×g for
15 min to separate free active ingredient and any unbound
stabilizer in the solution. The supernatant was separated and
the pellet was redispersed in 20 ml water. The CoQ10

nanoparticles were stabilized with DMAB and curcumin
nanoparticles with PVA.

Size and zeta potential

All nanoparticles were characterized using a Zetasizer
Nano ZS (Malvern Instruments, Ltd., Malvern, UK) for
size (average of five measurements for one batch) and
zeta potential (average of 20 measurements for one
batch). The size given by the Zetasizer is the measure
of hydrodynamic diameter based on the Brownian
motion of the nanoparticles. The average of three
batch measurements was expressed as mean±standard
deviation.
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Transmission electron microscopy

The morphology of the prepared CoQ10 and curcumin was
analyzed using transmission electron microscopy (LEO 912
Omega, Zeiss, Cambridge, UK). Carbon-coated 200-mesh
copper grids (Polysciences, Inc., Eppelheim, Germany)
were glow discharged, and specimens in distilled water
were dried down to a thin layer onto the hydrophilic
support film. Next, 20 μl of 1% aqueous methylamine
vanadate (NanoVan, Nanoprobes, Yaphank, NY) stain was
applied and the mixture dried down immediately with filter
paper to remove excess liquid. The dried specimens were
imaged with a LEO 912 energy filtering transmission
electron microscope at 120 kV. Contrast-enhanced, zero-
loss energy-filtered digital images were recorded with a 14-
bit/2K charge-coupled device camera (Proscan Electro-
nische Systeme, Germany).

Entrapment efficiency

Entrapment efficiency (EE) of both CoQ10 and curcumin
nanoparticles was calculated by measuring the amount of
free active agent in the supernatant and subtracting it from
the initial amount loaded. EE was determined by centrifug-
ing the nanoparticles loaded with the active ingredient at
15,000×g for 15 min and separating the supernatant. The
supernatant was analyzed for free CoQ10 and curcumin.
CoQ10 was analyzed using high-performance liquid chro-
matography. Separation was achieved using a reversed
phase C18 column (Hypersil GOLD 15×4.6 mm, 5 μm,
Thermo Scientific, Loughborough, UK) fitted with a
guard column (Hypersil 10×4 mm Thermo Scientific,
Loughborough, UK). A ratio of 9:1 parts of ethanol and
methanol was used as the mobile phase at a flow rate of 1 ml/
min with ultraviolet detection at 275 nm. Curcumin was
detected using a fluorescence spectrophotometer (Cary
Eclipse, Varian Ltd, UK) at an excitation wavelength of
420 nm and emission wavelength of 530 nm. The EE was
calculated using the following formula.

EE %ð Þ ¼ Initial amount� amount in the supernatantð Þ � 100

Amount of active agent initially added

Effect of CoQ10 and curcumin nanoparticles
in experimental diabetes

Diabetes was induced in male Sprague Dawley rats (250–
300 g; n=6 per group). All animal experiments were
performed according to a project license under the Animals
(Scientific Procedures) Act 1986 (UK). Upon receiving, all
rats were allowed to stabilize for 15 days and were housed
under 12-h dark–light cycles with access to food and water

ad libitum. Animals were divided into six groups; group I
comprised normal animals (NC); animals in groups II–VI
were made diabetic by a single intraperitoneal injection of
55 mg/kg streptozotocin (STZ) in 10 mM ice-cold citrate
buffer adjusted to pH 4.5. Only the rats with plasma
glucose levels >250 mg/dl after 48 h of diabetes induction
were considered diabetic and were used in the study. Blood
samples were collected by the tail prick method, and
glucose levels were estimated using the Accu-Check Aviva
Nano® Glucometer (Roche Diagnostics, Mannheim, Ger-
many). From the 16th day of diabetes induction, group II
(STZ) diabetic animals received vehicle, group III (STZ
+CoN) received 100 mg/kg/day CoQ10 nanoparticles, group
IV (STZ+CuN) received 100 mg/kg/day curcumin nano-
particles, group V (STZ+BD) received blank PLGA nano-
particles stabilized with DMAB, and group VI (STZ+BP)
received blank PLGA nanoparticles stabilized with PVA.
All formulations were given orally using an oral gavage
needle. After 31 days from the diabetes induction, animals
were sacrificed and blood was collected. Blood samples
were centrifuged at 10,000 rpm for 5 min, and plasma was
separated and stored at −20°C until further analysis.
Evaluation of treatment efficacy was carried out by
assaying the plasma levels of inflammatory and lipid
markers in the blood samples comprised of IL-6, CRP,
TNF-α, triglycerides (TG), total cholesterol (TC), and high-
density lipoprotein cholesterol (HDL-C). These parameters
were estimated using their respective assay kits. Rat TNF-α
kits were purchased from Assay Designs (now part of Enzo
Life Sciences, Inc., Farmingdale, NY), rat IL-6 assay kits
from R&D Systems (Abingdon, UK) and rat CRP assay
kits from BD Biosciences Pharmingen (San Diego, CA).
TG, TC, and HDL-C quantitation kits were purchased from
Source BioScience Autogen (Nottingham, UK). The results
were expressed as graphs. Statistical analysis was carried
out using one-way analysis of variance followed by
comparison of the STZ group to other groups using
Holm-Sidak method and Sigma Stat (Systat Software,
Inc., San Jose, CA).

Results

Nanoparticles with encapsulated CoQ10 and curcumin have
been prepared successfully using the emulsion diffusion
evaporation method. The particle Z-average sizes of CoQ10-
and curcumin-encapsulated nanoparticles were 115±12 and
237±6 nm, respectively (Fig. 1). The electron micrographs
indicated the spherical shape of all nanoparticles (Fig. 1).
The zeta potential values (at pH ∼6) were 75.4±9.5 mV for
CoQ10-loaded nanoparticles and −10.8±1.9 mV for
curcumin-loaded nanoparticles. The EEs of CoQ10 and
curcumin nanoparticles were determined to be 70±3% and

450 Drug Deliv. and Transl. Res. (2011) 1:448–455



66±3%, respectively, with 20% w/w and 15% w/w initial
loading of the polymer PLGA. Both CoQ10 and curcumin
nanoparticles were studied using a 100 mg/kg dose of the
active ingredient. Based on the initial loading and the EE,
the polymer content associated with curcumin was higher
than that of CoQ10.

At the end of the experimental period, IL-6 and CRP
levels in the STZ group were not significantly different
from those of the normal group (Figs. 2 and 3). After
1 month, STZ rats were found to have elevated levels of
TNF-α (Fig. 4), plasma TG (Fig. 5), and TC (Fig.6) in
comparison with the NC rats. HDL-C levels were signifi-
cantly decreased in the STZ group in comparison to the NC
group (Fig. 7).

Although IL-6 and CRP levels were not significantly
raised in the STZ group in comparison with the normal
group, CRP levels were significantly lower in the STZ
+CoN group, and both IL-6 and CRP levels were lower in
STZ+CuN group compared with the STZ group (Figs. 2
and 3). TNF-α levels were significantly lower in the STZ
+CuN group (but not the STZ+CoN group) in comparison
with the STZ rats at the end of the study (Fig. 4). After
15 days of treatment with CoQ10 and curcumin nano-
particles, plasma TG and TC levels were reduced signifi-
cantly in the STZ+CoN and STZ+CuN groups, in
comparison with the STZ group (Figs. 5 and 6). Plasma

HDL-C levels were significantly higher in the STZ+CoN
and STZ+CuN groups in comparison with the STZ group
(Fig. 7). Diabetic rats treated with blank nanoparticles,
stabilized with either DMAB (STZ+BD group) or PVA
(STZ+BP group), showed similar levels as the diabetic
control (STZ) showing no effect of the blank nanoparticles
on all the measured parameters (Figs. 2, 3, 4, 5, 6, and 7).
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Fig. 1 Size distribution (left panel) and transmission electron microscopy images (right panel) of a CoQ10 nanoparticles and b curcumin
nanoparticles

Fig. 2 Plasma interleukin-6 levels. NC non-diabetic negative control,
STZ diabetic positive control developed by injecting STZ, STZ+CoN
CoQ10 nanoparticle-treated diabetic rats, STZ+CuN curcumin
nanoparticle-treated diabetic rats, STZ+BD DMAB stabilized blank
nanoparticle-treated diabetic rats, STZ+BP PVA stabilized blank
nanoparticle-treated diabetic rats. Values are depicted as mean±S.E.
M. *p<0.05 vs. STZ group
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Discussion

Coenzyme Q10- and curcumin-loaded nanoparticles

The present study illustrates the use of a novel delivery
strategy using polymer nanoparticles for peroral adminis-
tration of CoQ10 and curcumin, which otherwise are poorly
bioavailable [26, 27]. Owing to this shortcoming, these
compounds were tested by a non-oral route of administra-
tion [26, 28]; however, the oral route is preferred for such
compounds until therapeutic efficacy and doses are estab-
lished. The simplest approach is to use oil-based formula-
tions of CoQ10 and curcumin [13, 27]; these result in only
slight increases in bioavailability [12], but show better
efficacy than suspension formulations. Although the nano-
particle approach is not new for delivering drugs, it is new

for antioxidants and is slowly gaining importance. Polymer
nanoparticles offered enhanced uptake of CoQ10 in com-
parison to the solubilized form of a commercial CoQ10

formulation in studies of in situ uptake in rodents [14].
Curcumin nanoparticles showed a ninefold increase in
bioavailability compared with curcumin plus the absorption
enhancer piperine [19]. Together, these results paved the
way for evaluating these formulations in a disease model.

The smaller size of the CoQ10 nanoparticles in compar-
ison to curcumin nanoparticles can be attributed to the
characteristics of the stabilizers used (Fig. 1). DMAB was
found to be superior to PVA in minimizing interfacial
tension [29]. However, not all compounds are compatible
with DMAB; in the case of curcumin, it was not possible to

Fig. 3 Plasma C-reactive protein levels. NC non-diabetic negative
control, STZ diabetic positive control developed by injecting STZ,
STZ+CoN CoQ10 nanoparticle-treated diabetic rats, STZ+CuN curcu-
min nanoparticle-treated diabetic rats, STZ+BD DMAB stabilized
blank nanoparticle-treated diabetic rats, STZ+BP PVA stabilized blank
nanoparticle-treated diabetic rats. Values are depicted as mean±S.E.M.
*p<0.05 vs. STZ group

Fig. 4 Plasma TNF-α levels. NC non-diabetic negative control, STZ
diabetic positive control developed by injecting STZ, STZ+CoN
CoQ10 nanoparticle-treated diabetic rats, STZ+CuN curcumin
nanoparticle-treated diabetic rats, STZ+BD DMAB stabilized blank
nanoparticle-treated diabetic rats, STZ+BP PVA stabilized blank
nanoparticle-treated diabetic rats. Values are depicted as mean±S.E.
M. *p<0.05 vs. STZ group

Fig. 5 Plasma triglyceride levels. NC non-diabetic negative control,
STZ diabetic positive control developed by injecting STZ, STZ+CoN
CoQ10 nanoparticle-treated diabetic rats, STZ+CuN curcumin
nanoparticle-treated diabetic rats, STZ+BD DMAB stabilized blank
nanoparticle-treated diabetic rats, STZ+BP PVA stabilized blank
nanoparticle-treated diabetic rats. Values are depicted as mean±S.E.
M. *p<0.05 vs. STZ group

Fig. 6 Plasma cholesterol levels. NC non-diabetic negative control,
STZ diabetic positive control developed by injecting STZ, STZ+CoN
CoQ10 nanoparticle-treated diabetic rats, STZ+CuN curcumin
nanoparticle-treated diabetic rats, STZ+BD DMAB stabilized blank
nanoparticle-treated diabetic rats, STZ+BP PVA stabilized blank
nanoparticle-treated diabetic rats. Values are depicted as mean±S.E.
M. *p<0.05 vs. STZ group
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formulate the particles with DMAB because of the
precipitation of curcumin during the nanoparticle prepara-
tion process in the presence of DMAB. Nanoparticles with
curcumin loading more than 15% w/w resulted in larger size
distributions of the nanoparticles because of the limited
solubility of curcumin in ethyl acetate, which is used as the
organic phase in the nanoparticle preparation process. Other
researchers have also encountered similar problem when
initial loading of curcumin more than 17% w/w was
attempted while preparing curcumin-loaded poly (ε-capro-
lactone) nanofibers [30]. The differences in EEs of CoQ10

and curcumin nanoparticles can be attributed to the
properties of the stabilizers used and the antioxidant
physicochemical properties per se. CoQ10 is highly soluble,
but curcumin has limited solubility in ethyl acetate.

The stabilizer is believed to form a coat around the
particle [31] and thus to exert a major effect on the surface
charge. The zeta potential of CoQ10 nanoparticles was
positive and that of curcumin nanoparticles was negative,
depending on the stabilizer’s characteristics. Owing to its
cationic nature, DMAB gives a high positive charge to the
nanoparticles [32]. PVA, on the other hand, is a polymer
without any charge and gives the nanoparticles a slight
negative charge.

Protective effects of CoQ10 and curcumin nanoparticles in
experimental diabetes

Oxidative stress is correlated to the increase in inflamma-
tion and dyslipidemia in humans [2, 3]. Increased oxidative
stress is also associated with the increased oxidation of
LDL in humans [9]. Together, oxidative stress, inflamma-
tion and dyslipidemia work in a complex way to foster the
rapid development of atherosclerosis leading to cardiovas-

cular disease in diabetes. The variable increase in inflam-
matory markers in diabetic rats is perhaps due to the short
duration of the present study (i.e., 4 weeks); however, with
longer durations (7 weeks or more) after diabetes induction,
IL-6 and CRP levels also increase significantly in experi-
mental diabetes [5, 27]. The development of diabetes in
humans is more closely mimicked by rodent models using
feeding of high-fat diet and injection of a low dose STZ.
The use of a rodent model developed this way can be an
effective tool in pharmacological screening of therapeutic
agents [33, 34].

CoQ10 showed anti-inflammatory activity only in terms
of CRP, although these levels were not elevated signifi-
cantly in diabetic rats (Fig. 3). CoQ10 has been shown to
possess anti-inflammatory activity in other disease models
with systemic inflammation, for example it lowered
elevated CRP levels in a model of hypertensive rats
developing metabolic syndrome [35] and in a mouse model
of diet-induced obesity [36]. IL-6 and TNF-α levels were
slightly reduced with CoQ10 nanoparticle treatment; how-
ever, these levels were not significantly different from those
of untreated diabetic rats (Fig. 4), which was also the case
with the supplementation of CoQ10 in humans [37]. The
anti-inflammatory effect of CoQ10 was shown to be
independent of its activity on lipid peroxidation in obese
mice [36].

Our results are in agreement with reports in the literature
in which curcumin has shown its strong anti-inflammatory
effects against TNF-α and IL-6 release in a diabetic rat
model as well as in cultured monocytes subjected to high
levels of glucose [27]. The inhibitory effect of curcumin on
TNF-α and IL-6 release was found to be dose dependent in
cell cultures. The studies conducted in diabetic animals
employed a similar dose of curcumin as in our study
(100 mg/kg). It was proposed that the anti-inflammatory
effects of curcumin can be mediated through both oxidative
stress-dependent (through generation of reactive oxygen
species) and independent pathways (through induction of
GSH) [38, 39].

In the present study, CoQ10- or curcumin-encapsulated
nanoparticles showed statistically significant reductions
in plasma TG and TC levels and increased the HDL-C
levels in diabetic rats (Figs. 5, 6, and 7). We recently
developed co-encapsulated antioxidant nanoparticles that
use CoQ10 and ellagic acid together for synergistic effects
and the evaluation involved the measurement of lipid
peroxidation, plasma insulin, glucose, and TG levels in
diabetic rats [24]. CoQ10 alone nanoparticle-treated group
in that study, which was used as control, showed decreases
in TG and TC [24]. In humans 150 mg/kg CoQ10 in
combination with fenofibrate increased the effect of
fenofibrate in lowering the massive hypertriglyceridemia
[40]. The lipid-lowering effects of CoQ10 can be attributed

Fig. 7 Plasma HDL levels. NC non-diabetic negative control, STZ
diabetic positive control developed by injecting STZ, STZ+CoN
CoQ10 nanoparticle-treated diabetic rats, STZ+CuN curcumin
nanoparticle-treated diabetic rats, STZ+BD DMAB stabilized blank
nanoparticle-treated diabetic rats, STZ+BP PVA stabilized blank
nanoparticle-treated diabetic rats. Values are depicted as mean±S.E.
M. *p<0.05 vs. STZ group
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to its direct effect on mitochondria to increase fatty acid
oxidation, an antioxidant effect that could decrease
oxidative stress, and/or a direct vascular effect that might
have led to increased lipolysis of TG-rich lipoproteins [26,
40]. The literature supports the notion that curcumin is
effective against hyperlipidemia developed in the STZ-
induced diabetic rats [41] and in hamsters fed a high-fat
diet [42]. The hypolipidemic action of dietary curcumin is
believed to be mediated by the increase in activity of
hepatic cholesterol-7a-hydroxylase suggesting a higher
rate of cholesterol catabolism [41]. Blank nanoparticles
were used as controls in the present study and showed
similar results to that of the STZ group in all the
parameters studied, suggesting that the polymer PLGA
and stabilizers DMAB and PVA had no significant effect
on any of the parameters studied.

Conclusion

This study describes the protective effects of nanoparticu-
late coenzyme Q10 and curcumin on inflammatory markers
and lipid metabolism, which can be beneficial in diabetic
conditions. Curcumin nanoparticles were effective on all
the inflammatory markers studied, such as CRP, IL-6, and
TNF-α, whereas CoQ10 nanoparticles reduced only CRP
levels. Plasma TG, TC, and HDL-C were normalized by
both CoQ10 and curcumin nanoparticles.
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