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Abstract

The control synthesis of the high-speed underwater vehicle faces many technical challenges due to its inherent
structure and surrounding operational environment. In this paper, the dynamical behavior is firstly described through
a bifurcation analysis to give some insights for robust control synthesis. Then a novel adaptive fractional-order
sliding mode controller (AFOSMC) is realized to effectively manipulate the supercavitating vehicle against payload
changes, nonlinear planing force, and external disturbances. The fractional order (FO) calculus can offer more
flexibility and more freedom for tuning active control synthesis than the integer-order counterpart. In addition, the
adaptation law has been presented to directly handle the payload change effects. The stability of the controlled
vehicle system is proven via Lyapunov stability theory. Next, the dynamic performance of the proposed controller is
verified through extensive simulation results, which demonstrate the control accuracy with faster responses
compared with existing integer-order controllers. Finally, the proposed fractional order controllers can provide higher
performance than their integer order counterparts with control algorithms.
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1 Introduction

There has been a growing interest in developing control
system design for autonomous underwater vehicles (AUVs)
with time-varying parameters and unmodelled dynamics
(You, et al., 2011; Zhao, et al., 2019). The speed of tradi-
tional underwater vehicle is limited by intense skin friction
drag on the hull of the surrounding fluid with multiphase
flow. Recently, high speed underwater bodies have over-
come the design limitation imposed by fluid dynamics with
supercavitation technology. Then, the speed of a supercavit-
ating vehicle can be extremely increased with respect to
conventional underwater vehicle. In order to exploit this
emerging technology with proper design, a supercavitating
vehicle must be implemented with a sharp-edge cavitator at
its nose (Mao and Wang, 2009) which can provide rotation
around an axis. When the supercavitating body is moving at
an extremely high speed, the cavitator causes local pressure
drops to form low-density gaseous cavities. If a single
gaseous cavity is maintained big enough to envelop most of
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the rapid vehicle body, except control surfaces such as the
cavitator and the elevators, the hydrodynamic drag is dra-
matically reduced and the underwater vehicle can achieve
very high speed (Jafarian and Pishevar, 2016). A develop-
mental technology will give undersea vehicle with new cap-
abilities in speed and maneuverability.

The dynamic models of supercavitating vehicles have
been reported in many papers (May, 1975; Rand et al.,
1997; Kulkarni and Pratap, 2000; Dzielski and Kurdila,
2003). One of the well-known models is the one proposed
by Dzielski and Kurdila (2003) which has four state vari-
ables to describe the dive-plane dynamics. As illustrated in
Fig. 1, this model is well defined and is suitable for the con-
trol synthesis. In fact, the uncontrolled dynamics of this rap-
id vehicle is highly unstable. Even though a linear-feedback
controller was proposed in their research, it could not
smoothly stabilize the underwater vehicle and its dynamical
behavior clearly shows oscillatory motions. There have been
several papers investigating the bifurcation behavior of the
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vehicle. Most of them studied the bifurcation in term of the
cavitation number to give stability analysis. However, there
is almost no paper working on the bifurcation behavior that
considers the vehicle mass change. It is noteworthy that the
vehicle weight and the planning force can be major causes
of the dynamic instability (Mao and Wang, 2009). In this
paper, the bifurcation analysis is performed respecting to the
vehicle mass variations to explain the stability issue and to
suggest a more suitable vehicle design.
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Fig. 1. A simplified vehicle configuration with reference frame.

Robust control synthesis can solve various challenges
for high speed vehicle design. The vehicle controller should
deal with not only its highly unstable structure, but also
many other factors such as insufficient lift force, highly
coupled dynamics, and model uncertainties. Those are
mainly caused by hydrodynamic effects, nonlinear forces,
and unpredictable external disturbances (Kirschner et al.,
2002). Besides control robustness, due to the high-speed
maneuver, the vehicle dynamics should be regulated with
fast transient performance with accuracy while minimizing
any possible overshoot or undershoot. Thus, control syn-
thesis will be one of the most challenging parts in a com-
plete supercavitating vehicle design. There have been vari-
ous control methods presented for the supercavitating
vehicle dynamics ranging from simple to advanced
schemes, such as receding horizon control (Vanek et al.,
2007), switch control (Lin et al., 2008), sliding mode con-
troller (SMC) (Mao and Wang, 2009; Lv et al., 2010, 2011;
Fan et al., 2010; Zhao et al., 2011), adaptive control (Mao
and Wang, 2015), model predictive control (Fan et al,
2011), backstepping control (Lin et al., 2006; Han et al.,
2010), linear parameter varying control (Mao and Wang,
2009; Vanek et al., 2010), robust control (Mao and Wang,
2009; Anukul, 2005), and g control (Zhao et al., 2014).
Among the existing controllers, SMC strategy is particu-
larly considered as high applicability in undersea reality
against uncertainties (Utkin, 2008).

The control requirements of the high-speed supercavitat-
ing vehicle include fast transient response with ensuring
small overshoots as well as settling time, and high robust-
ness to disturbances with no chattering. Owing to those re-
quirements, the underwater vehicle needs a robust control-
ler against disruptions. In this paper, a new AFOSMC is
proposed to regulate the vehicle robustly as well as to gain

more flexibility in dealing with uncertainties. AFOSMC
scheme is realized by SMC based on fractional-order calcu-
lus (FOC) instead of an integer-order SMC. In fact, FOC is
a branch of mathematical analysis that extends derivatives
and integral to an arbitrary order so that it can provide bet-
ter descriptions of diverse nonlinear phenomena. Further-
more, it provides a greater degree of freedom for dynamical
behavior and flexibility for control synthesis. Nowadays,
most of the fractional-order controllers utilize simple pro-
portional-integral-derivative (PID) algorithm (Podlubny et
al., 1997; Podlubny, 1999; Xue and Chen, 2002) or CRONE
algorithm (Oustaloup et al., 2000a, 2000b) due to their suf-
ficient supporting algorithms. In addition to FOC strategy,
the proposed controller contains adaptation scheme. The ad-
aptive control can update their parameters to effectively re-
act to external disturbances as well as vehicle’s inherent
varying factors such as nonlinear planing force or payload
changes. The extensive simulation results show that the pro-
posed AFOSMC provides good transient responses as well
as high robustness in dealing with external disruptions while
eliminating most of the uncertainty effects. Finally, the ob-
tained results show that the proposed control algorithm out-
performed super-twisting sliding mode controller (STWS-
MC) as well as the other existing controllers in the literat-
ure.

2 Vehicle dynamics and qualitative behaviors

As illustrated in Fig. 1, the dive-plane motions of a su-
percavitating vehicle are described with a body-fixed refer-
ence frame. In this reference frame, the origin is located at
the center of gravity (CG), the x-axis is along the vehicle ax-
is of symmetry, the y-axis points to the starboard, and the z-
axis points downwards. The four state variables for the
vehicle model include the vertical position z, the vertical
speed w, the pitch angle 6 and the pitch rate ¢g. The dynam-
ical behaviour of the supercavitating vehicle is controlled
through the deflections of the elevator angle J. in the aft and
the cavitator deflection angle J. in the front part. The
vehicle is assumed to move forward with a constant speed,
V, where L is the vehicle length and R is the body radius.
There are totally four forces acting on the underwater
vehicle body, including two lift forces by the cavitators and
elevators, the gravity force F, and the planing force F,
which is not always present. By applying Newton-Euler for-
mulation, the nonlinear differential equations describing
vertical vehicle dynamics can be written in the compact
state-space form as follows (Han and Geng, 2012):

X=Ax+Bu+G+F. )

In this representation, the vector of state variables is de-
scribed as x (€ R*) and the control input vector is represen-
ted as u (€ R?),

x=[z w 0 q]T;

w]" =[5, o1 )

u=[u
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and the system matrices and vectors are given as:

o 1 -v 0 0 0

|0 an 0 axn _| bu by
A= 0O O 0 I B= 0 0 3)

0 arr 0 au by by

G=[0 F, 0 0]", F=[0 &F, 0 dsF,]". (4)

The detailed elements of 4, B, G, and F are clearly giv-
en in Appendix A. The interested readers can refer to some
references (Dzielski and Kurdila, 2003; Han and Geng,
2012; Phuc et al., 2019) for further details. For the dynamic-
al analysis and control synthesis, the related vehicle para-
meters are also described in Table 2 in Appendix B.

It is worth noting that the vehicle dynamics in Eq. (1) is
particularly suffered from planing force F, which is not well
understood yet. The main difficulty comes from the com-
plex nonlinear interaction among solid body, sea water, and
gaseous phase, in which its identification is of great import-
ance. This force typically occurs in a nonlinear discontinu-
ous manner, and exists only if the magnitude of the vertical
velocity w is larger than a certain value w,, where the
vehicle aft end pierces the supercavity and contacts with
water. Once occurred, it has the tendency of pushing the
vehicle aft end toward the center of the supercavity. If the
magnitude of the planing force is too high, the vehicle tail
will be over-pushed to the opposite side of the supercavity
and the planing force on the other side will occur. This re-
peating process is the so-called tail-slap phenomenon, which
is one of the main sources for the vehicle instability, mak-
ing the control design and maneuvering more difficult. As-
sume that the vehicle body has a uniform density p, = mp,
where the relative density m is compared with that of the
surrounding water p. It can be observed from Appendix A
that the relative density m is the main constituent of vehicle
mass and moment of inertia. Note that the vehicle mass M is
calculated by (Dzielski and Kurdila, 2003)

7
M= §man2L, (5)

where L is the vehicle body length and R denotes its radius.
In order to analyze the effects or variation of relative dens-
ity m on the vehicle mass and inertia as well as the whole

. . . 7 "
vehicle dynamics, by letting Ky = §an2L, it is known as:
M =mKy, (6)

while the moment of inertia /,,, is given as:

1, 1933, 4
I,, = —R’'L ———R°L . 7
wEe0 TP gsze0 " T ™
11 1933
By letting Ky = —R*Lpn+ ———R*L3pm, i -
. y letting Ky 0 P+ 15360 pm, it can be de
scribed by
Iy = mKp. ®)

During vehicle maneuvering, its mass can be reduced
due to fuel consumption; or the payload which contributes

to the whole vehicle mass may vary in each launch. Accord-
ing to Eq. (5), the vehicle mass changes will occur when the
relative density m changes. When m is varying, it will af-
fect both system matrices 4 and B as described in Ap-
pendix A (details are given in Egs. (Al) and (A2)). Note
that the free system has no equilibria and could be highly
unstable. The basic control attempt in the original work has
been realized by a state feedback control law which can
keep the vehicle stable from instability (Phuc et al., 2020).
However, the state feedback controller cannot completely
eliminate the planing force, which still has a strong effect on
vehicle dynamics. By investigating dynamical behaviors re-
specting to its mass change, a bifurcation diagram is illus-
trated in Fig. 2. Based on the original work with the vehicle
mass of about 23 kg, there are bifurcations in its vertical ve-
locity w, according to the stability analysis. While w is the
main factor that causes the planing force, this stability ana-
lysis leads to bifurcating planing force and may cause the
periodic motion. From the bifurcation analysis, the under-
water vehicle is designed with the total mass in the range
from 25 kg to 27 kg, which will obviously produce no bi-
furcation.
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Bifurcation diagram of the supercavitating vehicle as its mass

Besides the nonlinear planing force and uncertain mass,
the undersea maneuvering of the supercavitating vehicle
will also face another significant challenge which is the ex-
ternal disturbance. Since the vehicle operates in underwater
environment, the disturbances can be described in currents,
obstacles or salinity. Therefore, an active robust controller is
always necessary to stabilize the vehicle dynamics while
providing accurate vehicle maneuver against undersea en-
vironmental uncertainty. A novel controller should be im-
plemented for the supercavitating vehicles to ensure robust
performance and stability against the payload effect, plan-
ing force and external disturbance.

3 Control synthesis for underwater vehicles

3.1 Fraction order calculus
Fractional order calculus provides control system to en-
hance the overall performance including dynamical behavi-



314

or, safety, stability, and flexibility for realization. For the
control synthesis, the fractional order o can be an arbitrary
complex number. In fact, fractional order calculus is a gen-
eralization of integration and differentiation to non-integer
order operator ,Df defined as follows (Oustaloup et al.,
2000b):

%, Re(a)) > 0
DE=1 1, Re(a) =0 )

fl(dr)_a Re(a) <0

where Re(a) >0 corresponds to differentiators while
Re(a) < 0 yields integrators; a and ¢ are the boundaries. In
this study, the fractional order o is assumed to be real num-
ber (a€R*) for simplicity. There are various types of
definition for the fractional derivative of arbitrary order.
There are some definitions for the general fractional operat-
or, in which the common ones include Caputo and
Riemann-Liouville definition. They are given as follows, re-
spectively

IA(s)

1 t
DO T )

dé; (10)

(A 1 0

where n— 1< n; n is the smallest integer that is equal to
or larger than S. Here by using £, which is non-integer or-
der, the mathematical model can possibly capture more dy-
namics of the underwater vehicle system. I" is the Gamma

function defined as I'(n) = ft”‘le_’dt. It is noted that the

difference between the two definitions is in the order of
evaluation. In this paper, the Oustaloup recursive algorithm
is implemented to approximate the fractional orders by clas-
sical integer order. More details of Oustaloup recursive ap-
proximation technique can be found in the work of Pod-
lubny (1999).

(11)

3.2 Adaptive fractional order sliding mode control

The robustness of the supercavitating vehicle requests
the control system to effectively deal with the planing force,
payload changes, and external disturbance. Depending on its
robust level and applicability, SMC strategy is chosen to
combine with adaptive terms to directly adjust the control
parameters to the changes in vehicle mass during the opera-
tion or in each launch. The fractional calculus can be real-
ized to enhance the flexibility and effectiveness of the con-
trol scheme. Since the underwater vehicle is maneuvering in
vertical plane, the actual feedback signals of z and 8 should
track the desired signals z4 and 6y, respectively. Thus, track-
ing errors are defined as:

o [el] B z—zd]

e l=|o-0, (12)
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where e; and e, are the tracking errors for the vehicle’s
depth and pitch angle. For the control synthesis, the sliding
variables are selected as

_[s17_ é1+/11€1]
s_[s2]_[é2+/12€2

(13)
where the parameters 4, and A, are real constants (€ R). The
sliding surface is defined as:

|2+ hz-za) [ _[0

- [é—éd +42(9—9d)} h [0]
where the gains (1; and 1,) are selected so that the solutions
of the first order differential Eq. (14) exponentially con-
verge to zero. Correspondingly, z and @ should track to the
desired targets zq and 64 exponentially. A vehicle model
from Eq. (1) is considered as an uncertain dynamical sys-
tem. Since the planing force is typically not continuous with
large magnitude, it will be considered as one of the leading
disruptions to the vehicle maneuvers. This is mainly caused
by strong nonlinear interaction of the high speed vehicle
body and the cavity by multiphase flows. By replacing the
term F by @ representing all uncertainties including extern-
al factors, planing forces and parameter variations, the per-
turbed nonlinear supercavitating vehicle dynamics in Eq. (1)
can be modified as:

(14)

X=Ax+Bu+G+®. (15)
In this formulation, the uncertainty term @ =

[q51 0 &, O]T is unknown but bounded as follows:

|D(x, 1) <L, (16)

where 2 = [Ql 0 O]T is a vector of boundaries with
each element (€ R™").

By applying fractional order calculus, the time derivat-
ive of the sliding variables in Eq. (14) corresponding to the
nominal vehicle system without disturbance term will be
given by

W—VO-7%+A1é

[
s = S‘z:I: B =
G—04+Arer
C1—C» +C1LC—C2Le s C s C s
w _
mKyV mKyV mKy ¢ mKy T8
Vg—24+ 10D} Pe
—C\Le+CoLe  CL2-CaL2 Cché C2Le5
mKgV mKgV mKy © mKy ©
Hd + /lzthl _’862 1
(17)

Then the control problem is equivalent to solving the fi-
nite-time stabilization of the following system:

§=As+B;u, (18)
where the feedback controller # includes an equivalent part
and a reaching part. The controller # is introduced to drive

the sliding variables to converge to zero as follows:
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w]' =AB;' [-Ag+u,],

where some matrices are given by

u=[u

(19)

C1—C,  C1L.—CoLe . 1-5
+ +g-Vqg-Z4+ 19D
kv "t kv 48 VaTZat b T
A2 oL aR-on
—ClLe 2Le 1L —L2L, o l—ﬁ
— 8¢+ 2D
mKoV mKgy 14Tt e
(20)
Cq Cy
mK mK
B=| " @1
Cch C2Le
mKy mKy
w, = [P 51 kwgmso] @)
[ —7120D; Sz—kzsgn(sz)
_ [
A—[O (23)

In this formulation, & and &, are the estimated paramet-
ers provided by adjustment mechanism in the closed loop
system. Specifically, their dynamics are given as follows:

A I [(C1-C)  (CiL:.—CrLe)
a1 = —Y181 w+ q+
mKM \%4 |4
Ci6e +C25C]

(CiL+CoLy  (CiLE-Cal)
w
Vv Vv

&y = —y2s _
2 Y2 Zng q

CiL:6e + CzLeéc]

(24)

In this controller, A is the vector of the update terms by
adaptive law corresponding to the variations of the vehicle
payload. Consequently, the AFOSMC scheme in Eq. (19)
can drive the uncertain vehicle dynamics in Eq. (1) to the
sliding surface under appropriate control parameters as
stated in Theorem 1.

Theorem 1. Consider the uncertain vehicle dynamics in
Eq. (18). If some positive control parameters (#,, #,) are
properly selected, then the AFOSMC algorithm in Eq. (19)
guarantees the rate of convergence of the perturbed dynam-
ical system in Eq. (1) to the sliding surface described in Eq.
(17).

Proof. First, a Lyapunov function candidate is selected

as:
V(l, s)=Vi+ Vs, (25)
where
1o, & 1, &
V= +—— Vp = . 26
1Tah 2yt 2 2 2ysa2 (26)

This is an energy-like function with ensuring positive
definite (V > 0). The time derivative of this function be-

comes

: a1 @

V=518 +5080+—+——.
Yiar Y2

By applying the fractional calculus, the time derivative

of the Lyapunov function can be written in the following

forms:

27

Vi=s (oD,z+B€1(l)+/l1é1)+ 2l
Yiaq
. ) a1l
s (0D€€1(1)+/11€1)+ @
o (28)
Vo=, (thz+ﬂ€2(f) + ﬂzéz) 4222
. , >
52 (onez(t) + /1262) +—
Y22
Then it can be described by,
c,-C CiL.—C,L, C
Vl—sloDﬁ - 2W+ 12 Ean + ! U+
K 1% mKMV mKM
C ~ A
2 u2+g—Vq—Zd)+/llé1 L a
mKy viag
. —C1L.+CyL, Cng—Cng
Vs = 55| oD” -
2 SZ[O ’( mKqV mKeV
C|L CyL . Gy
! “u 2 euz—ﬁd)-i—/lzéz +_aga2
mKy mKy Y22
(29)

Suppose that the nominal mass of vehicle is given by M,
in which the corresponding nominal relative density is de-
scribed by m. The real relative density is given by /m which
can be estimated by using two controlled channels as
my = oym and My = apym, where a; and a; are positive con-
stants (€ R*). With the updated values of relative density,
Eq. (29) further becomes,

v = Sl[oDﬁ(a'l (Ci1- Cz)

a1 (C1Le — G Le)
q+
ny KMV

mKyV

~ A

a1ay
Y1

a1Cy a1Cy

Ky

— u2+g—Vq—Zd)+/11é1 +
leM

(C1L2-C,12)

. CiL:.+CyL @2
v, =Sz[()D'B(a,2( 1 2 e)w+

I/HQK@V ﬁ12K9V -
C\L CoL . G &y
af — —a% 2 euz—9d)+/12éz + 222
iy Ky iy Ky Y22
(30)

In order to obtain the optimal parameters, some para-
meters (aj, ap) are replaced by their estimations (&g, &)
utilizing adjustment mechanism, where & = a;+&; and
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&y = ap + &. Then Eq. (30) can be rewritten as follows:

. @) ((C-C

V1 =51 on ﬂ ( ! 2)W+
aq mKMV

C> " (C1-C)
mKM mKMV

L.—C)L,
(Cl C C2 e)q+ Cl g+

mKyV
(C1L.—CyLe) Cy

+ q+

mKMV

mKM

ul+
mKM

, a
+/1161} + —
Yiaig

C ..
2w +g-Vq-Za
mKy

o e(ararn | (QLE-GL)

=g —= —

2EMO o\ T kv mkgv 1

(Ci112-Ca12)
mKyV

CiL. CorLe
ui— up
ng ng
CiL, ChLe
— U —
ng : ng

(_Cl Lc + C2Le)

mKyV
ﬂ}ﬁ
Y22

uz—éd

€2))

. a1 {C1—-C
Vi = Sl{ODf{[ﬂ( L2
]

mKyV
@( Cy Cy

CiL.—C,L,
mKyV

— G+

1-B
———0¢|—A10D —
Ky, o c) 10D, "er

aj

, a1
+A1é1 p+——
Y

101
. i (—CiLe + CoL C\L}-C,I2
V2=520D€% 1Lc 2eW+ 14¢ 2Lg _
a mKyV

mKQV
ar( C C _
® —1L056+—2Le5c —/lzthl B82—
ar \mKy mKy

mth_ﬁﬂ —kysgn(sy)

, @,
+ /1262} + —
Y2a2

nzoD{ﬁ 52 —kosgn(s2)

(32)

The updated dynamics of the correcting factors &; and

&, are also modified with respect to the sliding surfaces and

payload changes. If the adaptive law in Eq. (24) is em-

ployed for their derivatives, then the constituents of the Lya-
punov function can be obtained by,

{Vl =~ 57<0

, 33
Vo =—ip55<0 33)

By checking Theorem 1, it can be realized that
V =V, + V>=<0 (negative semi-definite). Then the stability
with convergence to the sliding surfaces will be accom-
plished.

It can be seen that the AFOSMC has the same structure
as the STWSMC but AFOSMC scheme has more flexible
structure due to fractional orders of the sliding variables and
the adaptive parameters. Hence AFOSMC strategy effect-
ively deals with the disturbances such as the payload vari-
ations. The comparative results between AFOSMC and
STWSMC will be shown in the numerical simulation, where
the graphical results, as well as some performance criteria
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will be provided for evaluation.

4 Simulation results and discussions

The numerical simulations have been conducted to val-
idate the proposed vehicle design methods. Since the pitch
angle changes will finally affect the vehicle depth which
defines its vertical trajectory, the maneuvering performance
related to the vertical plane is only demonstrated in numer-
ical simulation. By comparing with the other results on su-
percavitating vehicle, the control system must comply with
the following strict requirements:

* Settling time less than 0.4 s for a step reference of 3 m;

* No overshoot with a short rise time;

* Smaller than 5% steady-state error when the vehicle
mass changes;

* Low or no chattering of actuating signals in the steady
state;

* Disturbance attenuation guaranteeing at least 70%.

With the design specifications mentioned above, the
AFOSMC algorithm has been successfully implemented
with some parameters selected as follows: y, =0.01,
y, =0.005, 11 =16, A, =20, n; =12, and 5, = 10. Firstly,
the transient response for a step input reference of 3 m depth
is illustrated in Fig. 3. The depth response is depicted in
Fig. 3a and the other states in the dive plane are shown in
Figs. 3c and 3d. It can be observed from the results that the
vehicle responses guarantee very fast and precise diving
with settling time less than 0.4 s, and no overshoot with zero
error at steady state. The other corresponding states pose
some fluctuations during transient period and become
asymptotically stable afterward. For performance comparis-
on, the well-known STWSMC strategy is also simulated and
illustrated in Fig. 3a as the dashed line. It can be seen that
the proposed AFOSMC clearly outperforms its typical in-
teger-order counterpart of STWSMC with offering superior
results in terms of time-domain responses.

4
Z 2
=
—AFOSMC|| T
STWSMC -
d 2
1 2 3 0 1 2 3
Time (s) Time (s)
(a) Depth (b) Vertical speed
0.0 10
£ 02 2o
0.4 10
0 1 2 3 0 | 2 3
Time (s) Time (s)
(c) Pitch angle (d) Pitch rate

Fig. 3. Transient responses of the controlled vehicle system: (a) depth, (b)
vertical speed, (c) pitch angle, and (d) pitch rate.

As illustrated in Fig. 4, it can be easily observed that the
actuating signals of the proposed AFOSMC are more active
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Fig. 4. Control actions corresponding to the step responses.

than STWSMC in the transient time. The AFOSMC control
actions are alternatively changing angles of the actuators up
to their saturated values, to drive the vehicle tracking the
reference as soon as possible. In fact, one can make the con-
trol signals of the STWSMC more active by increasing the
control gains to obtain a faster response. However, this will
lead to boosting the existing overshoot as shown in Fig. 3a.
Note that for high speeds of the supercavitating vehicle, a
little overshoot and oscillation may result in unfortunate ac-
cidents and catastrophic system failures. Furthermore, the
saturations are harmful to the actuators if they occur often.
However, actuator saturation in very short transient time to
achieve fast response is not a serious problem but is an evid-
ence for the activeness of the proposed AFOSMC.

The high flexibility with performance superiority of the
proposed AFOSMC is accomplished by fractional order of
p =0.05. In fact, different levels of vehicle performance can
be achieved by selecting different values of the fractional
orders. It is worth noting that the fractional-order § provides
one more degree of freedom to tune the vehicle controller.
Fig. 5 shows the system performance of the AFOSMC
scheme with different fractional orders. It can be observed
that the lower order scheme starts to produce overshoots
while the higher orders will yield slow responses.

[7%]

- 2
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= | — p=0.01
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Fig. 5. Transient responses of the controlled system with fractional orders.

The nonlinear planing force is one of the challenging is-
sues for vehicle controller design. As stated earlier, the
state-feedback controller could not effectively eliminate the
planing forces that lead to periodic motion (Dzielski and

Kurdila, 2003; Phuc et al., 2020). However, the proposed
AFOSMC can completely reject the planing forces occur-
ring during turning maneuvers, as proven in Fig. 6. The pro-
posed AFOSMC is an efficient approach for dealing with
the tail-slapped planing force, which results in the smooth
vehicle motions with safety as illustrated in Fig. 3.

300

¢ (N)

200

100 ¢

Planing forc

0 1 2 3
Time (s)

Fig. 6. Controlled planing force due to the step response.

The major goal of this research is to design a robust con-
troller that can effectively cope with vehicle payload mass
changes. To verify this ability of the proposed controller,
the vehicle mass is assumed to be changed randomly around
its nominal value during maneuvers, as in Fig. 7b. It can be
observed from Fig. 7a that at the transient time period, the
STWSMC produced a high overshoot in its depth response
due to the mass change while the AFOSMC still guarantees
its best response. In the steady-states, at time =5 s and
time =7 s, due to big mass changes, there are some fluctu-
ations in both controllers. However, the variations in the
depth response of the AFOSMC are not noticeable com-
pared with that of the STWSMC with its corresponding con-
trol actions as shown in Fig. 8. From the magnified subfig-
ures, one can interestingly see that the AFOSMC can act on
mass changes more drastically than the STWSMC, by ex-
ploiting the maximized ability of the elevators and cavitator
to quickly stabilize the vehicle motions.

Note that the adaptation mechanism in the proposed
AFOSMC mainly deals with the payload changes to im-
prove the dynamical response. The updated law for correct-
ing components &; and &; in this algorithm will adjust their
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Fig. 7. Time histories of the controlled systems due to payload mass changes: (a) transient responses, and (b) payload masses.

(]

0.2

T S Plrfl

5.1

()'L_ (rad)
=3
wn b
=

------- STWSMC

0 2 4 6 8
Time (s)
(a)

0.1} I

LT o0 1
-0 N ‘

s 02]__Jf-HHfo
E 0 50 51 52 ]
oy . ‘—'r‘: AT e e __}— oce--4
I AFOSMC 1

STWSMC

It : | ]
0 2 + 6 8

Time (s)

(b)

Fig. 8. Control actions under payload mass changes.

values which respect to the current value of vehicle mass
and corresponding sliding variables. The updated paramet-
ers of these correcting actions can be illustrated in Fig. 9. In
this figure, their values have big variations during the transi-
ent time when the sliding variables are far from zero and
keep the fixed values in the steady state. The magnified sub-
figures at time =5 s show that the adjusted parameters (&
and &) have slightly updated their values to adapt to the
new payloads. Although the adaptations are slight, they play
very important role in how to improve the robustness for the
complete control algorithm.

Next, the controlled system should be designed to guar-
antee the ability of disturbance elimination. In this simula-
tion, an external disturbance has been introduced at time =
3 s. The disturbance may be a disturbing force caused by an

4
k.
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undersea current which tends to push the vehicle away from
its normal trajectory. As shown in Fig. 10, it can be ob-
served that both controllers have eliminated disturbance ef-
fect in different levels. The AFOSMC can reject more than
90% of disturbance effect compared with 40% of the
STWSMC. One can realize that the controlled vehicle sys-
tem by AFOSMC has higher robustness and insensitive to
external disturbance. The corresponding control actions of
both controllers are depicted in Fig. 11, where the AFOS-
MC are more active than the STWSMC in reacting to the
disturbance inputs.

In addition to the graphical illustrations, the comparison
between the control performances is also provided by using
time integral criteria. Table 1 shows the performance of the
two controllers in all three simulations including the normal
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Fig. 9. Parameter convergence adjusted by adaptive law.



Bui Duc Hong PHUC et al. China Ocean Eng., 2022, Vol. 36, No. 2, P. 311-321

4
iz
3 —k
\J
E 2 H
1 :': — Disturbance | |
! — AFOSMC
----- STWSMC
“U 2 4 6 8
Time (s)

Fig. 10. Depth responses to the external disturbances.

case, the case with changing mass, and the case with an ex-
ternal disturbance. The performance indices include the in-
tegral of the absolute value of the square error (IAE) and the
integral of the square error (ISE). The smaller values of
these indices of AFOSMC compared with those of STWS-
MC in all the cases confirm the predominance of the pro-
posed control algorithm which provides faster responses and
better regulations against uncertainties.

In summary, the simulation results show that the pro-
posed AFOSMC strategy satisfies all the required criteria
and outperforms the STWSMC as well as the other control-
lers existing in the literature.

5 Conclusions

Underwater vehicles can achieve high speed by exploit-
ing supercavitation technology. Supercavitating vehicle is
traveling at extremely high speeds against parameter vari-
ations with undersea disturbances. It can be a next-genera-
tion marine vehicle capable of changing the paradigm of
modern underwater vehicle. The robust control synthesis of
the supercavitating vehicle is one of the most challenges due
to its structure and maneuver conditions. This paper has in-
vestigated the dynamical behaviors of the underwater

bd
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vehicle model, especially under the effects of the payload
changes with disturbances on vehicle stability. The study
shows that:

(1) There are some ranges of the vehicle mass where bi-
furcation occurs and suggests that the vehicle mass should
be designed in the range of 25—27 kg to ensure better stabil-
ity.

(2) Based on the bifurcation analysis, a comparative
study of the efficacy of the control algorithms is presented
to solve the optimization problem. Specifically, a novel
AFOSMC scheme has been introduced to guarantee the dy-
namic performance with the ability to cope with the nonlin-
ear planing force, payload mass changes, and external dis-
turbance to robustly maneuver and stabilize the underwater
vehicles.

(3) The extensive simulation results show that the pro-
posed fractional order controller offers the fastest response
with accuracy and stability, demonstrated by the comparis-
on study with the STWSMC and by checking the perform-
ances of other controllers in the literature. The dive plane
responses realized by the proposed controller are also very
smooth, and the control system especially guarantees speedy
responses with accuracy without overshoot.

(3) By introducing the update algorithm for correcting
factors in the adaptive terms, the proposed controller be-
comes more effective in dealing with the payload mass
changes and external disturbances. The proposed controlled
system is almost insensitive to the large payload variations
and extreme disturbances, which cannot be handled by the
integer-order counterpart of STWSMC.

(4) By exploiting the fractional calculus, more control
freedoms with design flexibility can be gained so that sys-
tem designers can easily tune the vehicle controllers satisfy-
ing very strict design criteria against extreme undersea en-
vironments.
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Fig. 11. Active control actions under external disturbances.

Table 1 Comparison of control schemes using performance criteria

Criterion AFOSMC STWSMC AFOSMC STWSMC AFOSMC STWSMC

(Normal) (Normal) (Mass changed) (Mass changed) (External disturbance) (External disturbance)
IAE 0.4794 1.1846 0.5161 1.3415 0.5144 1.5867
ISE 0.9475 2.4946 0.9480 2.6109 0.9492 2.6713
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where the intermediate parameters (C;, C,, and C,) are spe-
cifically described as:

C1 =0.5mpR2V?C,,

Cs = 0.5mpR2V2C,n,

Cp =pR*V?. (A4)
The nonlinear planing force is calculated as:
2
R.-R 1+n
Fp=-V*[1- < @, AS
P [ (h’R+RC—R) 1+on (A5)

where the diameter of the cavity at the planing location is
R This diameter can be computed using

1+
Re =Ry +[0.82—2 K. (A6)
o
In addition, /" is the immersion depth given by
R.—R Liw|
0 R ~ RV
’_ A
h Lw| R.—-R . (A7)
—_— = , otherwise
RV R

Moreover, o is the angle of attack defined as:

w—R. w
V.V
w+ R

>0

Ql
Il

(A3)
, otherwise

where the contraction rate of the cavity R, is calculated by

~1.176 (o.szll’)v(l_ﬂ)l{lzam
o

. l+o

R.= . (ﬂ - 3) (A9)
o
provided that the following expressions should hold:
Kr=—n 52 b
r(22-3)
o
K, = \/1—(1—ﬂ)1(140/17. (A10)
l+o
Appendix B
Table 2 Model parameters of the underwater vehicle system
Parameter Value
Cro 0.82
g 9.81 m/s?
1.18 m

m 2
n 0.5
R, 0.0191 m
R 0.0508 m

14 75 m/s
4 0.03
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