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Abstract

The atmosphere is an evolutionary agent essential to the shaping of a planet, while in oceanic science and daily life,
liquids are commonly seen. In this paper, we investigate a generalized variable-coefficient Korteweg-de Vries-
modified Korteweg-de Vries equation for the atmosphere, oceanic fluids and plasmas. With symbolic computation,
beginning with a presumption, we work out certain scaling transformations, bilinear forms through the binary Bell
polynomials and our scaling transformations, N solitons (with N being a positive integer) via the aforementioned
bilinear forms and bilinear auto-Bécklund transformations through the Hirota method with some solitons. In addition,
Painlevé-type auto-Bécklund transformations with some solitons are symbolically computed out. Respective
dependences and constraints on the variable/constant coefficients are discussed, while those coefficients correspond
to the quadratic-nonlinear, cubic-nonlinear, dispersive, dissipative and line-damping effects in the atmosphere,
oceanic fluids and plasmas.
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1 Introduction

The atmosphere has been said to be an evolutionary
agent essential to the shaping of a planet (Farlex, 2021; Li et
al., 2020a; Chen et al., 2020a; Feng et al., 2019; Su et al.,
2019a; Su et al., 2019b). In oceanic science, natural science,
engineering, medical science and daily life, liquids have
been commonly seen (Khorram, 2020; Hu et al., 2019a; Hu
et al., 2019b; Hu et al., 2021; Jia et al., 2019; Deng et al.,
2020a; Liu et al., 2021a, 2021c; Shen et al., 2021a, 2021b,
2021e, 2021f; Ding et al., 2019; Gao et al., 2020a, 2020b,
2021a, 2021b, 2021d; Grave et al.,, 2020; Wang et al.,
2019a, 2019b, 2020a, 2020b, 2020e, 2021b). Plasmas have
been believed to be possibly the most abundant form of or-
dinary matter in the Universe, which are mostly associated
with stars, extending to the rarefied intracluster media and
intergalactic regions (Plasma, 2021; Gao et al., 2020c; Feng
et al., 2020; Deng et al., 2020b; Liu et al., 2020b; Shen et

al., 2021c; Shen et al., 2021d; Ding et al., 2020; Wang et al.,
2020c; Du et al., 2020; Zhao et al., 2021; Chen et al.,
2020b; Liu et al., 2021b).

For certain atmospheric blocking phenomenon, Wang et
al. (2012) have considered a generalized variable-coeffi-
cient Korteweg-de Vries (KdV)-modified Korteweg-de
Vries (mKdV) equation, as follows:

g = 641 (Dt 1 — 6y (DU U+ (Dl — 13 (Dt +

Ha () (Au+ xuy) =0, )]
where u(x,?) is a real function of the variables x and ¢, uy(?),
w1 (), uy(1), p5(t) and uy(r) are all the smooth functions of
the variable ¢, and A # 0 is a constant (Wang et al., 2012).
Eq. (1) has also been seen in Meng et al. (2012); Triki et al.
(2010); Djoudi and Zerarka (2016) and Tang et al. (2016),
and known to arise in many wave problems in fluid mech-
anics, nonlinear optics and plasma physics, where ¢ is the
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time variable (Djoudi and Zerarka, 2016). In Eq. (1), uy(®),
u; (1) and p,(¢) represent the quadratic-nonlinear, cubic-non-
linear and dispersive coefficients, respectively, while
—5(t) + xuy (1) and py(¢)A correspond to the dissipative and
line-damping terms (Meng et al., 2012).

In oceanic/atmospheric fluid mechanics, plasma dynam-
ics and other fields, there have appeared some special cases
of Eq. (1):

(1) When g, (¢) =0, variable-coefficient KdV equation
for the oceanic shallow water waves, or dust-ion-acoustic or
ion-acoustic or dust-acoustic waves in a dusty plasma (pos-
sibly magnetized), or small-amplitude waves in a fluid-filled
elastic or viscoelastic tube, or electromagnetic waves in a
ferromagnetic medium, or nonlinear waves in a mixture of
liquid and gas bubbles (Triki et al., 2010; Tang et al., 2016;
Meng et al., 2012; and references therein).

(2) When p(t) is proportional to u,(f), u;(f)=0 and
A =2, nonisospectral variable-coefficient KdV equation
modelling the shallow water waves, dust-acoustic structures
in a magnetized dusty plasma, and ion-acoustic waves in a
plasma, as well as appearing in a relaxation cylindrical
plasma to describe, e.g., the radially ingoing acoustic waves
(Triki et al., 2010; Wang et al., 2012; Tang et al., 2016; and
references therein).

(3) When p(t) =0, variable-coefficient mKdV equa-
tion for the oceanic shallow water waves, or dust-acoustic
waves in a magnetized dusty plasma, or ion-acoustic waves
in an inhomogeneous magnetized plasma, or interfacial
waves in a two-layer liquid with gradually varying depth, or
weakly nonlinear waves in a fluid-filled elastic tube, or elec-
tromagnetic waves in a size-quantized film, or phonons in
an anharmonic lattice (Triki et al., 2010; Wang et al., 2012;
Meng et al., 2012; Tang et al., 2016; and references therein).

(4) When p,(7) = 0, variable-coefficient Gardner equa-
tion for the internal solitary waves in such coastal zones as
the north-west shelf of Australia and that of the Baltic, or
for a variety of the waves in plasma physics, quantum field
theory and solid state physics (Meng et al., 2012; Tang et
al., 2016; and references therein).

(5) In addition, when p(f) = constant, u,(f) = constant,
Uy (t) = constant, us(f) = uu(t) = 0, Gardner equation for the
internal/ interfacial waves in a shallow sea or atmosphere, or
dust-acoustic waves or ion-acoustic waves in a plasma with
negative ions (Wang et al., 2012; Meng et al., 2012; Triki et
al., 2010; and references therein).

Wang et al. (2012), Meng et al. (2012); Triki et al.
(2010) and Tang et al. (2016) have said that Eq. (1) can
model the weakly nonlinear long waves in a KdV-type me-
dium that is characterized by the varying dispersive and
nonlinear coefficients. For Eq. (1) itself, certain Lax pair,
infinitely-many conservation laws and soliton/breather/
double-pole solutions have been obtained (Wang et al,
2012); some Painlevé-integrability consideration, Lax pair,
bilinear forms, multi-soliton/breather solutions and Backlund
transformations have been derived (Meng et al., 2012);
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types of the solitary-wave solutions have been constructed
along with the formation conditions (Triki et al., 2010);
kinds of the traveling-wave solutions have been found
(Djoudi and Zerarka, 2016); certain soliton solutions, trian-
gular periodic solutions and Jacobi-type solutions have been
obtained via an auxiliary equation (Tang et al., 2016).

To our knowledge, however, the following issues for
Eq. (1) have not been investigated in the existing literatures
as yet, which we will discuss next: In Section 2 of this pa-
per, with symbolic computation (Jia et al., 2021; Li et al.,
2020b; Ma et al., 2021a, 2021b, 2021c; Wang et al., 2020d;
Wang et al., 2021a; Du et al., 2019; Liu et al., 2020a; Zhang
et al., 2019, 2020; Chen et al., 2019, 2020c; Tian et al.,
2021a, 2021b; Yang et al., 2021a, 2021b; Zhao et al., 2020;
Wang et al., 2021c; Yang et al., 2020, 2021c; Zhou et al.,
2021), we will begin with a presumption, which is different
from those presented in the existing literatures, and work
out the corresponding scaling transformations, bilinear
forms with the binary Bell polynomials and one/two/three/N
solitons for Eq. (1), where N is a positive integer. In the Ap-
pendix, Bell-polynomial preliminary will be given. In Sec-
tion 3, the aforementioned presumption will also lead to
some bilinear auto-Bécklund transformations with the
Hirota method for Eq. (1). In Section 4, Painlevé-type auto-
Bécklund transformations will be symbolically computed
out with some solitons for Eq. (1), which have not been ob-
tained in the existing literatures, either. Conclusions will be
given in Section 5, with respect to the atmosphere, oceanic
fluids and plasmas.

2 Scaling transformations and bilinear forms with the
binary Bell polynomials and N solitons for Eq. (1)
Bell-polynomial preliminary can be seen in the Ap-

pendix, with the definitions of the relevant symbols there

(Bell, 1934; Lambert et al., 1994; Matveev and Salle, 1991;

Wadati, 1975; Cariello and Tabor, 1989; Wang et al., 2017).
Motivated by the work in Lambert and Springael (2001)

as well as Lambert and Springael (2008), we can now

present the scaling transformations,
X — (z)lx, r— (0Kl, u— (o’lu,
1o(t) = 2ue(0), (1) = (1),

2
10 = 9>y (1), (1) — 0 u3(1), @)
14(0) = ¢y (0),
which lead to our assumption
u(x,1) = T(1)px(x,10), 3)

where K is an integer, ¢ is a positive constant, Y(¢) is a dif-
ferentiable function, while p(x,7) can be seen in the Ap-
pendix.

Under the variable/constant-coefficient constraints,

A=1; (4a)

(1)

T 5
by virtue of the substitution of Assumption (3) back into Eq.
(1), Bell-polynomial procedure and symbolic computation

(0 =~ (4b)
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help us to obtain

Y(0) = +i VA,

and correspondingly, to reduce Assumption (3) to

u(x, 1) = +i Vapy(x, 1), 5)

where / is a positive constant, while i = V-1.

It is noted that Presumption (5) is different from those
presented in Wang et al. (2012) and Meng et al. (2012).

For the Bell-polynomial format, we hereby introduce
q(x,1), Y, etc., from the Appendix, and integrate Eq. (1)
with respect to x with the integration constant vanishing, so
that

Y(p) + 1,0 Y3:(p, @) — 13O Yx(p) + x4 (O Y(p)—
3Up) [t OUa(p, @) £ Viug®Y(p)] = 0,

in which we may further assume that

Yi(p) + 1O Usx(p, @) — 13O Y (p) + x5O Y(p) = 0;  (6a)
1 (OUa(p.q) £ Vigy(OYx(p) = 0. (6b)

Next, in line with Eq. (63) in the Appendix, we make
use of

8D
p(x,t)—ln[ ol (7a)
q(x,t) = In[f(x,0g(x, 0], (7b)

and reduce Eq. (1), through System (6), into the following
two branches of the bilinear forms with the binary Bell
polynomials:

| Di +12(DD3 = 3 (DD + x4 (OD- | g - f = 05 (8a)

120D i VoD, |- £ =0, (8b)

where f(x,f) and g(x,¢) can also be seen in the Appendix.

In terms of the real differentiable functions a(x,t) and
B(X, t)’ i'e's
g(x, ) =alx,n)+if(x,1) and f(x,1) = a(x,t)—if(x,1),
Bilinear Forms (8) become

[Dt + 1D} — 3 (DD + x,u4(t)Dx] a-p=0; (%a)

1D (o a+ B ) +2Vu(Dx a- f =0, (9b)

while

u(x,t) =12 VA {arctan[w}} ) (10)
a(x,0) |},

The reason for the existence of two branches of Bilinear
Forms (8) or (9) with the binary Bell polynomials is that
there appear the “+” signs. We also call the attention that
each branch of Bilinear Forms (8) or (9) through the binary
Bell polynomials is

(1) under Variable/Constant-Coefficient Constraints (4);

(2) dependent on (1), 1(1), p3(1) and py(1).

Expanding a(x,f) and f(x,¢) in Bilinear Forms (9) with
respect to a formal expansion parameter ¢ as
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N
a(x, ) =1+ Cay(x,1);

(11a)
o=1
N

Bx,t) =1+ Z B (x,0), (11b)
w=1

and then setting ¢ = 1, under the variable-coefficient con-
straint

po (1) = mopu(r)e™ 1@, (12)

we obtain the N-soliton solutions for Eq. (1) according to
Bilinear Forms (9) as follows:

u(x,t) = Expression (10),

with
N (N)
ar= Y expd Y plOx+u®dl+ Y pipjwi(n) +
p,v,pj:O,l i=1 1<i<j
N)
Z Pip ip1OijI() + <=+ o (13a)
I<i<j<l
N
pn= > exp {Z A x +T(0) + i ()] +
p,,p/-:O,l i=1
(N) ) (13b)
Z pip j0ij(t) + Z Pip PO+ - s
I<i<j I<i<j<l
ent - £ NImo+m;, (130)
i\/ﬂ_.l’l’lo—m,'
(1) = j[mi,u3(t)e_f 1Ol (e IO dr; - (13d)
(1) = mye™ J Fa0%, (13¢)

(mi - mj)2 (/Im(z) F \/Imim() F \/Imjmo - m,-mj) '

wij(H) _
e/ — (mi+mj)2(i\/j.m0—m,-)(i\/sz_mj) ;
(13)
200 = (m,» B mf) ? (im(z) + Vimimo = Nimjmo — mimj) )
(mi+mj)2(i \/Zmo+m,-)(i \/Im0+mj) ’
(13g)
eoiill) = (= Vo = mi) y
(/lmg F Vimmo ¥ \Amjmo — mimj)
(i \/Zmo - mj)
(’1’"(2) F Vimimo ¥ Vimymo — m,-mz) 8
(”—“ Vimo - nn)

X
(lmg T \/ijmo T Vimmg — mjml)
(1/13/2m3 —/Im,-m(% —/lmjm% - Amlmé F ‘/Zm,'mjmo$

\/zmimlmo F \/ijmlmo + m,-mjml) ; (13h)
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oS0) _ (i ‘/Zmo + mi) 9
(img + Vimmg = Noimjmo —mm ,-)
(& Vimo + m,)
(imé + Vimimo = Vimmo — miml)
(£ Vimo +my)
(){mg + Vammo = Ndmgmg —m jml)

X

X

(iﬂyzmg + imimg + j.mjm(% +/1m1m(2) F \/Zm,-mjmoi
\/Zmimlmo F \/ijmlmo - mimjmz) , (13i)

my representing a real constant, ¢, @, i, j and [ being the
@<N, i<N, j<N and I<N,

m;'s denoting the real constants with m; # 0, m; +m; # 0 and

positive integers with g<<N,

a(x,t) = m;

X, 1) =
poun=="5 0
For N =2, two branches of the two-soliton solutions:

u(x,t) = Expression (10), with

D) =1-—
a(x,t) T

+ ‘/Zmo —nmy emle_ f”4(’)d’x+flm1/z3(t)e_ f:“4(’)d’—m?/12(t)e_3If‘4<’)d’|dt +1:

+VAmg+my e F a0 i [y g 00 S 1408 iy (13 S 14O gy 1

m; # + Vimy, a(x,1)'s and B, (x,1)'s being all the real differ-
entiable functions of x and ¢, m; and the integration con-
stant from 7;(#) via Eq. (13d) representing the parameters

characterizing the i-th soliton, the sum i =01 taken over
17 ]_ ]
. . . N)
all the possible combinations of p; =0, 1, while E 1<i<j be-

ing the summation over all the possible pairs chosen from
the N elements under the condition i < j.

It is noted that there exist two branches of N-Soliton
Solutions (13) for Eq. (1) because of the “+” signs. Each
branch is

(1) under Variable/Constant-Coefficient Constraints (4)
and (12);

(2) dependent on 1, (2), 5(2) and py(2).

For N = 1, two branches of the one-soliton solutions:
u(x,t) = Expression (10), with

; (14a)

(14b)

my ¥ \/zm() emze_f”4(’)d’x+flm2y3(z)e_ f”4(')d'—m%/12(t)e_3f/‘4(’)d’]dt_

m|F \/Zmo em,e*-ff‘4(’>“’x+j‘[m1y3(z)e’-f/‘4(’>d’—m?y2(r)e’3-f/’4(’)d’]dt_

2m1

(my —myp)? [mlmg —im(z) + \/Z(ml +m2)mo]
X

dmymy (my +my)?

olmi+ma)e” Jua®de gy f l(ml +mz(e” ”40)(1"(”’? +mg)"2(’)e_3 f/l4(t)dtjdt : (152)

Px,t)=1+

2m2

my + VAmg e P a3 ey f gy (e 1409 3y (e fﬂ4(t)dr]d,+

mp x \/Zmo emle—.fy4(t)drx+.j‘[ml'u3(t)e—jy4(t)dr_m?'u2(t)e—3_]‘/44([)dt]dt—

2m1

(my —my)? [m1m2 —/lm(z) F Vi(m +m2)mo]

dmymy (my +my)?

e(m1 +my)e” f”4(’)d’x+f[(m1 +mp)pz(De” f”4(’)d’—(m“;’ +m% )yz (e3 med’Jdt )

(15b)

Via Solutions (10) and (15), Fig. 1a shows the interaction between the two dark solitons, and Fig. 1b displays the inter-

action between the two bright solitons.
For N = 3, two branches of the three-soliton solutions:

u(x,t) = Expression (10), with

a(x,t)
i=1

3
—1+ Z e j‘[e‘ Sra Ot (1)—e=3 J‘/l4(t)dtm? #z(t)]dt +oJHaade, Xy

J"[e_ f”4(’)d’(mi+n1/)/¢g (H)—e3 f'“4(’)d’(m? +m3/ );Lz(t)]dHe_ I"4<’)d’(m;+m/-)xx
e M3 ’ :

1<i<j<3
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(imé F Vimimo ¥ Nimjmo —mim; ) (mi M ) ’
(i \/Imo —mi)(i \/IWZ() —mj) (Ini +mj)2

ef [e’ f/‘4(r)d7(m1 +mo+m3)u3 (l)—tf3 f”4(’)dt(m? +m§+mg ),uz(l)] dr+e”™ J~Mmd’(ml +my+m3)x %

2 _
[m1m2m3 + 13/ m(3) —A(my +my +m3)m(2) F \/Z(m1m2 +m3zmy +m1m3)m0] (my —ma)2 (my —m3)2 (may —m3) >

(J_r Vimg —ml)(i amg —m3)(i Vimg —mz) (m1 +m2) % (my +m3)? (my +m3)?’

(16a)

3
px, ) =1+ Z oS Lem I 10 iy (t)—e=3 S 14O (o) Jdre™ S a0 Vamg +m +
e + Vmo —m;

. f[e—f HADU (e Ny (£)—e 3] ”4(’)d’(ml.3+m§),uz(t)]dt+e_ S @t (e ,—)xx
1<i<j<3
(/lmg + \/Im,-mo + \/ijmo - mimj) (mi - mj) 2
(i Vamg +mi)<J_r Vimg +mj)(m,' +mj)2

I [e_ S 1a® Gy iy iy Yz (t)—e=3 Sra(de (m? +m%+m§ )ﬂz (t)]dt+e_ S 1a®% . vy +my)x %

+

[—m1m2m3 1/13/2m(3) +A(m1 +my +m3)m(2) F \/I(mlmz +mzmy +m1m3)m0]
(i ‘/Zmo —ml)(i ‘/sz —m3)(i \/Zm() —mz)

(m1 —m2) 2 (my —m3)? (my —m3)?

X

(my +my)2 (my +m3)2(my +m3)% (16b)

3 2 2
Fig. 1. Two dark/bright solitons via Solutions (10) and (15) with (a) mo = my = 1, m> = 2, uy(f) = é - t§’ 1y(t) = é (1) = ﬁ and 7. = 100 with the

“_” sign in Expression (10), (b) the same as (a) except for the “+” sign in Expression (10).

3 Bilinear auto-Biicklund transformations with the Hirota method and solitons for Eq. (1)

Beginning with Presumption (5), which is different from those presented in Wang et al. (2012) and Meng et al. (2012),
and according to Bilinear Forms (8), we will hereby construct some bilinear auto-Bécklund transformations with the Hirota
method (Hirota, 1980).

Firstly, according to Eq. (8b), we consider the expression

af £ VgD, & - F+ 10D - F| - 2f [ £ Viug(dDg - f + (D3 - f] =0, (17)
where f(x,7) and g(x, 1) are another set of the solutions of Bilinear Forms (8).

Exchange formulae (Matsuno, 1984),
(D%&- Ngf -af(D2g- )= D(Dsg- ) (ef) + @) - (Drg- NI (18a)
(D:g- fgf —8f(Dxg- ) = Dx(&f) (fg). (18b)
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lead to
0 =u,(OD (D& )+ (gf) + @S- (Drg- P +i ViugOD(Ef) - (fg) =
2 - /) )
D, {#Q(I)ng’ f=x i%#o(t)gf] (8 +Dx(Ef)- [ﬂz(t)ng fx i%#o(t)gf )

from which we can assume that

Al _
Dx{#z(t)ng i i%/_ﬂo(f)gf] (gf)=0;

/) N
Dy(gf)- [ﬂz(t)ng S ljﬂo(t)gf} =0,
so as to further obtain

and

A A .
0D 2103 = (0

- ) - A
1(OD g f + i%/_ﬂo(t)gf = iigé(t)gf,
with {(¢) being a real function.
Secondly, according to Eq. (8a), we consider another expression, which is
0=gf|Dig- f+1m(DD3Z- [~ i3(ODxg - f+ x4 (ODxg - f] -
2f|Dig- f+pm(ODg- f - p3(ODsg- f +x,(DDg - f].
According to the exchange formulae (Matsuno, 1984),
(D:g-Pef-2f(Dig-f)=(D:g- &) ff —88(Dsf - f):
(Dig- Ngf —&f(Dig- f)=(Dig-)f f —88(Dif - f):
(D3z-Pgf -&f(Dig- )= (D3g- &) ff —ge(DLf - ))+3Du(Dig - f)- (Dsg - ),
one can see that
[(Dig-9)ff —88(Dif - NI+ (OID3E- ) ff —88(DLf - ]+ 3ua(DD(DZ - f)- (Dxg - f)-
1 (OUDZ - ) ff —8&(Dif - NI+ xus(OI(DE- ) f = 88(Df - )] = 0.
Then, Eqgs. (22a) and (22b) result in
0= Ff[(Dig- &) +m(O(D3g- &) =3 ()(Dxg - ) + 31y (N(DsZ - 8)|
28|(Dif - 1)+ (DYf - ) = iy (ODof - )+ xug (DL f - )] +
3 /Y /R I I V/) - N
me [¢17,u0(t)gfi176(t)gf} : [117ﬂ0(1)gfi175(t)gf] =
FF(D&- &) +1(0(Dg - 8)~p3(D(D1Z - ) + 3y (DD - 8)] -
A1) — ()]

28|(Dif - )+ (NDf - )= (0D - )+ 5 (O(DF - )] + TS

Exchange formula (Matsuno, 1984),
D&f)(f8) = (D:g 9)f f ~88(Dxf - ).

comes to

Dx(&f)-(8/)-
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(19)

(20a)

(20b)

21

(22a)

(22b)

(23)

(24a)

(24b)
(24c)

(25)

(26)

27
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3UEWD —12(1)]
ff{(Drg g)+y2(t)(D g-9)+ —,uo

(Dx8-8)—u3()(Dxg - 8) + xpt4()(Dxg - g)} -

41, (1)
BUCWO -] . i
283 (Dif - )+ ()(DYF - f)+ T(Dxf )= p3(ODxf - )+ xp(O)(Df - ) =0, (28)
from which we may assume that

s 3 E0-150) )

Dy +pp()Dy + —————— Dy —u3()Dx + xuy ()Dx 1 8- g = 0; (292)
4uy (1)

L, 3E0-KBo) .

Dy +py (D) + ———————D —us()Dx + xp4()Dx o f - f = 0. (29b)

Thirdly, it can be noted that Egs. (5), (7a), (22) and (29)
constitute two branches of the bilinear auto-Bécklund trans-
formations with the Hirota method for Eq. (1), with respect
to the “+” signs. Each branch of Bilinear Auto-Béacklund
Transformations (5), (7a), (22) and (29) with the Hirota
method is

(1) mutually consistent, or, explicitly solvable with re-
spect to f(x,1), g(x.0), f(x.0), §(x.0), uo(D), up(1), u3(1) and
Uy (1), to be seen right below;

(2) under Variable/Constant-Coefficient Constraints (4)
and (21).

Finally, we symbolically compute out an explicitly-solv-
able solitonic example. With a set of the seed solutions,
f=1and g =1, Eqgs. (22) and (29) can be simplified as

o7 % [o(0)f —C0)g] = (30a)

gxt A2 —[no(Dg - f1 = (30b)

(D)
3% [52@) 0]
SitroOfxx+{ —————— —us(O) + x4 (O ¢ fx = 0;
4y (1)
(30¢)

u(x,t) = Expressions (5) and (7a),
with

32|80 -150)]

40 (1) —,u3(t)+x,u4(t)} gx=0,

8t +lu2(t)gxxx + {

(30d)

into which we can substitute the assumptions

S, 1) ={c1 coshly; (1) x + ()] + ¢ sinh[y; (Dx + (O]} +
ico{cr sinh[y; (D)x+ xo (D] + ca coshly (Hx+ (D1}
g(x,1) = {cy coshly; (Dx + yo (O] + co sinh[y (Hx + (D]} -
ico{cr sinh[y;(Dx+ xp ()] + ca coshly; (Dx + (D]},
(€2))
under the variable-coefficient constraint
1- 2
o(0) = F— Dy (e it (32)
o
So as to obtain
71 (0) = C3e—fﬂ4(t)df;
2
{0 = F—D ety (e 0,
o
120 = = [ [407 O - 10,0 | (33)

where y,(#) and y,(¢) denote the real differentiable functions
of ¢, while ¢y, c¢1, ¢p and c3 are the real constants with
co # 0, 1. Therefore, we obtain the following one-soliton
solutions for Eq. (1):

flx,0) = {cl cosh {6‘367 Jua(de j thcg,uz(t)e*3 Juatds _ caps(te” Jua(de ]dt}
7
o sinh {636_‘[”4(0(1[)6 - j [40 115 (1)e™> Jua(odr _ capz(e” f”“(’)d’ dt }+
7
ico {cl sinh {6‘36_ Jua@de j [chﬂz(l)e_3 Jua(nydr _ c3us(f)e” f#4(l)dt]d,}

7 5
s cosh{C3e—f M(’)d'x—” ZCW S (e 3 HaOd _ ey (e M(’)d' dt } (34a)
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7
gx, )= {cl cosh {C3e’fﬂ4(’)d’x - f [chyz(t)e_””‘*(’)d’ - C3/43(t)e_f”4(’)d’]dt}+

7
¢y sinh {036_ Jua@dey f [ch,uz(t)e_3 Jua(de _ capz(t)e” f““(t)d']dt}}—

7
ico{cl sinh {cze-f it | [Zciuz(oe‘” O ey (et /‘4(')d’]dt}+

(34b)

7
¢y cosh {036_ Jua@dey j [ch,uz(t)e_3 Juatdr _ cauz(t)e” f"‘*(t)d’]dt}},

under Variable/Constant-Coefficient Constraints (4), (21)
and (32).

4 Painlevé-type auto-Bicklund transformations and rel-

evant soliton features for Eq. (1)

We in this section carry out the investigation on Eq. (1)
by seeking a Painlevé expansion in the form of the general-
ized Laurent series (Gao, 2019; Gao et al., 2020b; Gao et
al., 2020d; Gao et al., 2020e; Gao et al., 2021c; and refer-
ences therein),

u(x 1) = ¢72000 ) Ul ) ¢ (x, 1),
&=0

in the neighborhood of the non-characteristic singular mani-
fold ¢(x,7) =0, where = is a positive integer, us(x,)'s and
é(x,1) are all the analytic functions with ug(x,7) #0 and
#.(x,1) # 0. Balancing the powers of ¢ at the lowest orders
yields = =1, we truncate Painlevé Expansion (35) at the
constant level terms (Gao, 2019; Gao et al., 2020b; Gao et
al., 2020d; Gao et al., 2020¢; Gao et al., 2021¢), as

up(x,1)
P(x, 1)
which is substituted back into Eq. (1). With symbolic com-
putation, the way for the coefficients of like powers of ¢ to

(35)

u(x,t) =

+uy(x,1), (36)

vanish leads to the Painlevé-Backlund equations:

¢_4 tuUp == ¢x; (37)
’ Vi ()
w(@®#0 (38)
(1) # 0; (39)
67 2 (Ot + oD £ N () Vi =00 (40)
¢*2 S (t)3/2 x”l +6p5(1) iy (1) ¢x”1 + ‘/#10 ﬂ3(t)¢x

XU (t),u4(t)¢x + V:ul(t)¢t¢x F4 V& (t)ﬂZ(t)¢xxx¢x$
3 Vi (Dp (D%, — 611 () \ita (P~

1201 (1) i (0§ 1 = 6pt(1) iy (D =05 (41)

$7" 1 240y (Dpg ()1t (D = 2415 (D (1Y Py o~
12000 (D (D 11 x = o (D (D)~
120 (1)1t (1) § 0 = 1200/ Opio ()it (1)1 +
(SO + 24 (Dpy ()~
24y (Opz (D (DD e + 25005 (Dpg (Dpy (D, +

205 (1Y 1 (D g = O; (42)

¢O W 6/‘0(1‘)141141,): - 6/11(1‘)14%141’/‘ +/u2(t)ul,xxx_

Us(Ouy x + 14 (1) (Auy + xu1 ) = 0, (43)
where u1(x,1) can be treated as the seed solutions for Eq. (1)
(Gao, 2019; Gao et al., 2020b; Gao et al., 2020d; Gao et al.,
2020e; Gao et al., 2021c¢).

The sets of Eqgs. (36), (37) and (40)—(43) constitute two
branches of the Painlevé-type auto-Bécklund transforma-
tions, due to the “+” signs! and based on the fact that, to be
seen right below, each of those two sets is

(1) mutually consistent, or, explicitly solvable with re-
spect to @(x,1), uo(x,1), ur(x,0), A, o), u (@), u(0), uz(t)
and p4(1);

(2) under Variable-Coefficient Constraints (38) and
(39).

Next, let us find out some explicitly-solvable solitons
with symbolic computation. Assumptions hereby are

$(x,0) = MDD 1 -y (x,0) = n5(0), (44)
which need to be substituted into Egs. (40)-(43), resulting in
¢° 300 = (45)
where 7,(?), #,(¢) and #5(?) are the real differentiable func-

tions, with 7, (z) # 0 since ¢, # 0.
Casel: 73 =0

0 or n5(2) #0,

5 mn=s—20
Vit (1) i (1)

to(H) # 0 since n,(¢) # 0; (46)

_ OX Ho(Dus(1)
20 (1) = Holl 0\H3

=] PRCREN 0] il v NN o
. __uo(t) m @ @)
P = 6 200 20 7)

1 Each of Auto-Bécklund Transformations (36), (37) and (40)—(43) works as a system of the equations relating a set of the solutions of Eq. (1), e.g., Solutions (49),

to another set of the solutions of Eq. (1) itself. Therefore, we could, by and large at least, be able to increasingly construct more and more complicated solutions of
Eq. (1).
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-1 2(4-1 2-A
¢ 0 =nspe() A () A, (43)
where 7, and 55 # 0 are the real constants. Computing with
Expression (36), we obtain the following variable/constant-
coefficient-dependent solitonic solutions of Eq. (1):

u(l)(x, z)z_éuo_((t:) tanh %¢ Ho(Dx )
2 2
. 2 \py (D) \/7]5/10(0272/,[](0]’]
1 N ym - —
%Iﬂo(r)¥ﬂl(0 ) \/’75ﬂo(f)2 A (0i-lde T
1 Ho(Dp3 () ()
2 7 ,
Vi st Ay (0! 4o (49)

under Variable/Constant-Coefficient Constraints (38), (39),
(46), (47) and (48).

There exist two branches of Solitonic Solutions (49) be-
cause of the “+” signs. Fig. 2 displays them.

CaseIl: 5#5() # 0

I N R
b O+ m (O =0,
i.e., ny =constant # 0, p,4(r) =0 or 7y =#5(t) #0,
where 7, # 0 (only in Case II).
Case Ila: 5, = constant # 0

$72x" uy (1) = 0; (50)
6770 po(®) = Fy iy (0 Vo (0 = 2440 (0); (51)
¢+ () = F6nins [ N @ N Odi= 1] [ (0=
6nyn3 [ iyt + 1y [ s (0dt+ 75+
Sl (0] 5 10 (0]
$77 (1) = neir(0), (52)

where 55 could be zero (only in Case Ila) and #5#0 is a
real constant.

Computing with Expression (36), we obtain the follow-
ing variable-coefficient-dependent solitonic solutions of Eq.

(1):

¢ m mx m
M(Hd)(X,t) - i2_ ‘%tan 7 - 2 (77% 167]1774 \/7’/_6+
In n
n n Vs
6’73’76)\1‘#2(0(1[ + 21 jﬂ3(t)dt+ ?5 + ( 2 )]i
M
— + 1y, (53)
2 \/ns 4

under Variable-Coefficient Constraints (38), (39), (50), (51)
and (52). Solitonic Solutions (53) are independent of A ow-
ing to Variable-Coefficient Constraint (50). There exist two
branches of Solitonic Solutions (53) because of the “+”
signs.

CaseIlb: n, =#,(t) #0
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72y (0) = nse‘f/‘4(’)df;
¢ pp() = —2nay (e~ AS iz

s N (1) g (e~ H 0, (54)
67220 (1) = jﬂs(f)e_f”“(t)d’dt:L

64172 || Vi@ YD s Od-2 0 gy

6;&;75 fﬂl (;)e—2Af Ha()dr=[ g (Ddt g,

7 a1 r,
¢ (1) = gy (el PO 2@
(55)

where 775 # 0 and #¢ # 0 (only in Case IIb).
Computing with Eq. (36), we obtain the following vari-
able/constant-coefficient-dependent solitonic solutions of

Eq. (1):
u(x. 1) = ,74C—AJ" pa(ndt
nse~CA=D s \Je2A=D) fug(ar N
N -
75e1 =20 a0 \fe2(A=1) [yt
2+ne
tanh{%e‘f"“(’) dry 4 ’7—25 f/@ (r)e~Jra®drg,_

X

n_zs[ 61415\ | 1o (e A DI 2A-D fraXir g4

(65 +13) ﬂz@)e‘”ﬂ“’)‘”dt}}, (56)

under Variable/Constant-Coefficient Constraints (38), (39),
(54) and (55). There exist two branches of Solitonic Solu-
tions (56) because of the “+” signs.

5 Conclusions

The atmosphere has been said to be an evolutionary
agent essential to the shaping of a planet. In oceanic science,
natural science, engineering, medical science and daily life,
liquids have been commonly seen. Plasmas have been be-
lieved to be possibly the most abundant form of ordinary
matter in the Universe.

In this paper, we have investigated Eq. (1), a general-
ized variable-coefficient KdV-mKdV equation for the atmo-
sphere, oceanic fluids and plasmas, in which the coeffi-
cients p(t), u;(t) and u, () represent the quadratic-nonlin-
ear, cubic-nonlinear and dispersive effects, respectively,
while —u5(f) + xu,(¢) and uy(1)A correspond to the dissipat-
ive and line-damping terms. Special cases of Eq. (1) in flu-
id mechanics, plasma dynamics and other fields have been
listed out. With symbolic computation, beginning with Pre-
sumption (5), which is different from those presented in the
existing literatures, we have worked out
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(b)

. . . . . t t . . . .
Fig. 2. Waves via Solitonic Solutions (49) with (a) u(f) = 7 H O =F2+1, us(t) = > N4 =2, 15 =2 and A = 1, with the “_"” sign in Expressions (46), (b)

the same as (a) except for the “+” sign in Expressions (46).

(1) Scaling Transformations (2);

(2) Bilinear Forms (8) or (9) through the binary Bell
polynomials and Scaling Transformations (2), under Vari-
able/Constant-Coefficient Constraints (4), which are de-
pendent on zy(1), (1), p3(t) and wy(1);

(3) N-Soliton Solutions (10) and (13) according to Bilin-
ear Forms (9) under Variable/Constant-Coefficient Con-
straints (4) and (12), which are dependent on 1, (?), 5(¢) and
Uy (1), along with One-Soliton Solutions (10) and (14), Two-
Soliton Solutions (10) and (15), Three-Soliton Solutions
(10) and (16), as well as Fig. la to show the interaction
between the two dark solitons, and Fig. 1b to display the in-
teraction between the two bright solitons;

(4) Bilinear Auto-Bécklund Transformations (5), (7a),
(22) and (29), with the Hirota method, under Variable/Con-
stant-Coefficient Constraints (4) and (21), which are de-
pendent on (), (1), 115(¢) and p,(#), along with Solitonic
Solutions (5), (7a) and (34), under Variable/Constant-Coef-
ficient Constraints (4), (21) and (32).

In addition, with symbolic computation, Painlevé-Type
Auto-Bicklund Transformations (36), (37) and (40)-(43)
have been worked out, under Variable-Coefficient Con-
straints (38) and (39), which have not been obtained in the
existing literatures, either, while have been seen to depend
on A, uy(1), 1y (1), (1), 3(7) and py(7), along with

(1) Solitonic Solutions (49) under Variable/Constant-
Coefficient Constraints (38), (39), (46), (47) and (48), as
well as Fig. 2 to display certain waves via Solitonic Solu-
tions (49);

(2) Solitonic Solutions (53) under Variable-Coefficient
Constraints (38), (39), (50), (51) and (52);

(3) Solitonic Solutions (56) under Variable/Constant-

Vo=

ymx,nt(paQ) = me,nt(lpl,lf" ,lﬂl,n,"' »wm,ls"' ’lﬁm,n)‘ { D ifk-i-QiS odd °

where p(x,f) and g(x,t) are both the C* functions of x and ¢,

Wi 's are the complex functions of p and ¢, pxc = 6];8?;7 and

Qi = 0885q, e.g.,

Coefficient Constraints (38), (39), (54) and (55).

It has been stated that those coefficients correspond to
the quadratic-nonlinear, cubic-nonlinear, dispersive, dissip-
ative and line-damping effects in the atmosphere, oceanic
fluids and plasmas.

Appendix: Bell-polynomial preliminary

Bell polynomials have been said to provide a relatively-
direct way to get the bilinear forms for certain nonlinear
evolution equations, instead of the dependent variable trans-
formations (Bell, 1934; Lambert et al., 1994; Wang et al.,
2017).

Bell (1934); Lambert et al. (1994) and Wang et al.
(2017) have presented the following:

(1) The Bell polynomials:

Yie(v) = Yp(vr, -+ vp) = e dle, (57)
where h=1,2,---, v is a C* function of x, v, = 6&1}, and the

subscripts in the notation Yj,(v) denote the highest-order de-
rivatives of v with respect to x, e.g.,

Yy=vy, Y2x=V2x+v)2p Y3X=V3x+3vxvzx+v)3€,--- (58)
(2) The two-dimensional Bell polynomials:
Ynxnt(0) =¥ipn(O11, . O1ps Oty Ompn) =
e fomare’, (59)

where 6 is a C* function of x and t, 6. =050,

k=1,---,m,¢=1,---,n, with m and n being the nonnegat-

ive integers, e.g.,

Yx,t = ex,t + Hxata Y2x,t = 92x,t + 92):61 + 29x,t9x + 9191, e (60)
(3) The binary Bell polynomials:

(61)
Gk, If k+¢iseven
Yi(p,q) = px, Yox(p,q) = q2x +P)25,
Yxi(D,q) = PxD1 + Gt
Use(p,q) = p3x +3pxgox+ Py - (62)
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Matveev and Salle (1991); Wadati (1975) as well as
Cariello and Tabor (1989) have linked the Y polynomials to
the Hirota operators, i.e.,

Yt [p = ln(g), g=1In (fg)] =(fo) 'DYDif-g  (63)

where f(x,f) and g(x,7) are the C* functions of x and ¢,
while D, and D; are the Hirota operators defined by

DYDf f(x,1)-g(x,1) =
0 0 5 0 0 ! ’
(a‘&) (5‘@) fng(.1)

with x’ and ¢ being the formal variables.

. (64)

x'=x,t'=t
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