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Abstract
The atmosphere is an evolutionary agent essential to the shaping of a planet, while in oceanic science and daily life,
liquids  are  commonly  seen.  In  this  paper,  we  investigate  a  generalized  variable-coefficient  Korteweg-de  Vries-
modified Korteweg-de Vries equation for the atmosphere, oceanic fluids and plasmas. With symbolic computation,
beginning with a presumption, we work out certain scaling transformations, bilinear forms through the binary Bell
polynomials  and  our  scaling  transformations, N solitons  (with N being  a  positive  integer)  via  the  aforementioned
bilinear forms and bilinear auto-Bäcklund transformations through the Hirota method with some solitons. In addition,
Painlevé-type  auto-Bäcklund  transformations  with  some  solitons  are  symbolically  computed  out.  Respective
dependences and constraints on the variable/constant coefficients are discussed, while those coefficients correspond
to  the  quadratic-nonlinear,  cubic-nonlinear,  dispersive,  dissipative  and  line-damping  effects  in  the  atmosphere,
oceanic fluids and plasmas.
Key words: atmosphere,  oceanic  fluids,  plasmas,  generalized  variable-coefficient  Korteweg-de  Vries-modified

Korteweg-de  Vries  equation,  scaling  transformations,  bilinear  forms, N solitons,  auto-Bäcklund
transformations
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1  Introduction
The  atmosphere  has  been  said  to  be  an  evolutionary

agent essential to the shaping of a planet (Farlex, 2021; Li et
al.,  2020a; Chen  et  al.,  2020a; Feng  et  al.,  2019; Su  et  al.,
2019a; Su et al., 2019b). In oceanic science, natural science,
engineering,  medical  science  and  daily  life,  liquids  have
been commonly seen (Khorram, 2020; Hu et al., 2019a; Hu
et  al.,  2019b; Hu et  al.,  2021; Jia  et  al.,  2019; Deng et  al.,
2020a; Liu et  al.,  2021a, 2021c; Shen et  al.,  2021a, 2021b,
2021e, 2021f; Ding  et  al.,  2019; Gao  et  al.,  2020a, 2020b,
2021a, 2021b, 2021d; Grave  et  al.,  2020; Wang  et  al.,
2019a, 2019b, 2020a, 2020b, 2020e, 2021b).  Plasmas have
been believed to be possibly the most abundant form of or-
dinary matter  in  the  Universe,  which are  mostly  associated
with  stars,  extending  to  the  rarefied  intracluster  media  and
intergalactic regions (Plasma, 2021; Gao et al., 2020c; Feng
et  al.,  2020; Deng et  al.,  2020b; Liu  et  al.,  2020b; Shen  et

al., 2021c; Shen et al., 2021d; Ding et al., 2020; Wang et al.,
2020c; Du  et  al.,  2020; Zhao  et  al.,  2021; Chen  et  al.,
2020b; Liu et al., 2021b).

For certain atmospheric blocking phenomenon, Wang et
al.  (2012) have  considered  a  generalized  variable-coeffi-
cient  Korteweg-de  Vries  (KdV)-modified  Korteweg-de
Vries (mKdV) equation, as follows:

ut −6μ0(t)uux −6μ1(t)u2ux +μ2(t)uxxx −μ3(t)ux+

μ4(t) (Au+ xux) = 0, (1)
u(x, t) x t μ0(t)

μ1(t) μ2(t) μ3(t) μ4(t)
t A , 0

where  is a real function of the variables  and , ,
, ,  and  are  all  the  smooth  functions  of

the  variable ,  and  is  a  constant  (Wang et  al.,  2012).
Eq. (1) has also been seen in Meng et al. (2012); Triki et al.
(2010); Djoudi  and Zerarka  (2016) and Tang et  al.  (2016),
and known to arise in many wave problems in fluid mech-
anics,  nonlinear  optics  and  plasma  physics,  where t is  the
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μ0(t)
μ1(t) μ2(t)

−μ3(t)+ xμ4(t) μ4(t)A

time variable (Djoudi and Zerarka, 2016). In Eq. (1), ,
 and  represent the quadratic-nonlinear, cubic-non-

linear  and  dispersive  coefficients,  respectively,  while
 and  correspond to the dissipative and

line-damping terms (Meng et al., 2012).
In oceanic/atmospheric fluid mechanics, plasma dynam-

ics and other fields, there have appeared some special cases
of Eq. (1):

μ1(t) = 0(1)  When ,  variable-coefficient  KdV  equation
for the oceanic shallow water waves, or dust-ion-acoustic or
ion-acoustic or dust-acoustic waves in a dusty plasma (pos-
sibly magnetized), or small-amplitude waves in a fluid-filled
elastic  or  viscoelastic  tube,  or  electromagnetic  waves  in  a
ferromagnetic  medium,  or  nonlinear  waves  in  a  mixture  of
liquid and gas bubbles (Triki et al., 2010; Tang et al., 2016;
Meng et al., 2012; and references therein).

μ0(t) μ2(t) μ1(t) = 0
A = 2

(2)  When  is  proportional  to ,  and
,  nonisospectral  variable-coefficient  KdV  equation

modelling the shallow water waves, dust-acoustic structures
in a  magnetized dusty plasma,  and ion-acoustic  waves in  a
plasma,  as  well  as  appearing  in  a  relaxation  cylindrical
plasma to describe, e.g., the radially ingoing acoustic waves
(Triki et al., 2010; Wang et al., 2012; Tang et al., 2016; and
references therein).

μ0(t) = 0(3)  When , variable-coefficient  mKdV  equa-
tion  for  the  oceanic  shallow  water  waves,  or  dust-acoustic
waves in a magnetized dusty plasma, or ion-acoustic waves
in  an  inhomogeneous  magnetized  plasma,  or  interfacial
waves in a two-layer liquid with gradually varying depth, or
weakly nonlinear waves in a fluid-filled elastic tube, or elec-
tromagnetic  waves  in  a  size-quantized  film,  or  phonons  in
an anharmonic lattice (Triki et al., 2010; Wang et al., 2012;
Meng et al., 2012; Tang et al., 2016; and references therein).

μ4(t) = 0(4)  When , variable-coefficient  Gardner  equa-
tion for the internal solitary waves in such coastal zones as
the  north-west  shelf  of  Australia  and  that  of  the  Baltic,  or
for a variety of the waves in plasma physics, quantum field
theory  and  solid  state  physics  (Meng  et  al.,  2012; Tang  et
al., 2016; and references therein).

μ0(t) = constant μ1(t) = constant
μ2(t) = constant μ3(t) = μ4(t) = 0

(5)  In  addition,  when , ,
, ,  Gardner  equation  for  the

internal/ interfacial waves in a shallow sea or atmosphere, or
dust-acoustic waves or ion-acoustic waves in a plasma with
negative ions (Wang et al., 2012; Meng et al., 2012; Triki et
al., 2010; and references therein).

Wang  et  al.  (2012), Meng  et  al.  (2012); Triki  et  al.
(2010) and Tang  et  al.  (2016) have  said  that  Eq.  (1)  can
model the weakly nonlinear long waves in a KdV-type me-
dium  that  is  characterized  by  the  varying  dispersive  and
nonlinear  coefficients.  For  Eq.  (1)  itself,  certain  Lax  pair,
infinitely-many  conservation  laws  and  soliton/breather/
double-pole  solutions  have  been  obtained  (Wang  et  al.,
2012);  some  Painlevé-integrability  consideration,  Lax  pair,
bilinear forms, multi-soliton/breather solutions and Bäcklund
transformations  have  been  derived  (Meng  et  al.,  2012);

types  of  the  solitary-wave  solutions  have  been  constructed
along  with  the  formation  conditions  (Triki  et  al.,  2010);
kinds  of  the  traveling-wave  solutions  have  been  found
(Djoudi and Zerarka, 2016); certain soliton solutions, trian-
gular periodic solutions and Jacobi-type solutions have been
obtained via an auxiliary equation (Tang et al., 2016).

N
N

To  our  knowledge,  however,  the  following  issues  for
Eq. (1) have not been investigated in the existing literatures
as yet,  which we will  discuss next: In Section 2 of this pa-
per,  with  symbolic  computation  (Jia  et  al.,  2021; Li  et  al.,
2020b; Ma et al., 2021a, 2021b, 2021c; Wang et al., 2020d;
Wang et al., 2021a; Du et al., 2019; Liu et al., 2020a; Zhang
et  al.,  2019, 2020; Chen  et  al.,  2019, 2020c; Tian  et  al.,
2021a, 2021b; Yang et al., 2021a, 2021b; Zhao et al., 2020;
Wang  et  al.,  2021c; Yang  et  al.,  2020, 2021c; Zhou  et  al.,
2021), we will begin with a presumption, which is different
from  those  presented  in  the  existing  literatures,  and  work
out  the  corresponding  scaling  transformations,  bilinear
forms with the binary Bell polynomials and one/two/three/
solitons for Eq. (1), where  is a positive integer. In the Ap-
pendix, Bell-polynomial  preliminary  will  be  given.  In  Sec-
tion  3,  the  aforementioned  presumption  will  also  lead  to
some  bilinear  auto-Bäcklund  transformations  with  the
Hirota method for Eq. (1). In Section 4, Painlevé-type auto-
Bäcklund  transformations  will  be  symbolically  computed
out with some solitons for Eq. (1), which have not been ob-
tained in the existing literatures, either. Conclusions will be
given in Section 5, with respect to the atmosphere, oceanic
fluids and plasmas. 

N
2   Scaling  transformations  and  bilinear  forms  with  the

binary Bell polynomials and  solitons for Eq. (1)
Bell-polynomial preliminary  can  be  seen  in  the  Ap-

pendix,  with  the  definitions  of  the  relevant  symbols  there
(Bell, 1934; Lambert et al., 1994; Matveev and Salle, 1991;
Wadati, 1975; Cariello and Tabor, 1989; Wang et al., 2017).

Motivated by the work in Lambert and Springael (2001)
as  well  as Lambert  and  Springael  (2008),  we  can  now
present the scaling transformations,

x→ φ1x, t→ φK t, u→ φ−1u,
μ0(t)→ φ2μ0(t), μ1(t)→ φ3μ1(t),
μ2(t)→ φ3μ2(t), μ3(t)→ φ1μ3(t),
μ4(t)→ φ0μ4(t),

(2)

which lead to our assumption
u(x, t) = Υ(t)px(x, t), (3)

K φ Υ(t)
p(x, t)

where  is an integer,  is a positive constant,  is a dif-
ferentiable  function,  while  can be  seen  in  the  Ap-
pendix.

Under the variable/constant-coefficient constraints,
A = 1; (4a)

μ1(t) = −μ2(t)
λ

, (4b)

by virtue of the substitution of Assumption (3) back into Eq.
(1),  Bell-polynomial  procedure  and  symbolic  computation
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help us to obtain

Υ(t) = ±i
√
λ,

and correspondingly, to reduce Assumption (3) to

u(x, t) = ±i
√
λpx(x, t), (5)

λ i =
√
−1where  is a positive constant, while .

It  is  noted  that  Presumption  (5)  is  different  from  those
presented in Wang et al. (2012) and Meng et al. (2012).

q(x, t) Y

x

For  the  Bell-polynomial  format,  we  hereby  introduce
, ,  etc.,  from  the  Appendix,  and  integrate  Eq.  (1)

with respect to  with the integration constant vanishing, so
that
Yt(p)+μ2(t)Y3x(p,q)−μ3(t)Yx(p)+ xμ4(t)Yx(p)−

3Yx(p)
[
μ2(t)Y2x(p,q)± i

√
λμ0(t)Yx(p)

]
= 0,

in which we may further assume that
Yt(p)+μ2(t)Y3x(p,q)−μ3(t)Yx(p)+ xμ4(t)Yx(p) = 0; (6a)

μ2(t)Y2x(p,q)± i
√
λμ0(t)Yx(p) = 0. (6b)

Next,  in  line  with  Eq.  (63)  in  the  Appendix,  we  make
use of

p(x, t) = ln
[

g(x, t)
f (x, t)

]
; (7a)

q(x, t) = ln
[
f (x, t)g(x, t)

]
, (7b)

and reduce  Eq.  (1),  through System (6),  into  the  following
two  branches  of  the  bilinear  forms  with  the  binary  Bell
polynomials:[
Dt +μ2(t)D3

x −μ3(t)Dx + xμ4(t)Dx
]
g · f = 0; (8a)[

μ2(t)D2
x ± i
√
λμ0(t)Dx

]
g · f = 0, (8b)

f (x, t) g(x, t)where  and  can also be seen in the Appendix.
α(x, t)

β(x, t)
In  terms  of  the  real  differentiable  functions  and

, i.e.,
g(x, t) = α(x, t)+ iβ(x, t) and f (x, t) = α(x, t)− iβ(x, t),

Bilinear Forms (8) become[
Dt +μ2(t)D3

x −μ3(t)Dx + xμ4(t)Dx
]
α ·β = 0; (9a)

μ2(t)D2
x
(
α ·α+β ·β)±2

√
λμ0(t)Dx α ·β = 0, (9b)

while

u(x, t) = ∓2
√
λ
{

arctan
[
β(x, t)
α(x, t)

]}
x
. (10)

±

The reason for the existence of two branches of Bilinear
Forms  (8)  or  (9)  with  the  binary  Bell  polynomials  is  that
there  appear  the  “ ”  signs.  We  also  call  the  attention  that
each branch of Bilinear Forms (8) or (9) through the binary
Bell polynomials is

(1) under Variable/Constant-Coefficient Constraints (4);
μ0(t) μ2(t) μ3(t) μ4(t)(2) dependent on , ,  and .

α(x, t) β(x, t)
ϵ

Expanding  and  in  Bilinear  Forms  (9)  with
respect to a formal expansion parameter  as

α(x, t) = 1+
N∑
ϱ=1

ϵϱαϱ(x, t); (11a)

β(x, t) = 1+
N∑

ϖ=1

ϵϖβϖ(x, t), (11b)

ϵ = 1and  then  setting , under  the  variable-coefficient  con-
straint

μ0(t) = m0μ2(t)e−
r
μ4(t)dt, (12)

Nwe  obtain  the -soliton  solutions  for  Eq.  (1)  according  to
Bilinear Forms (9) as follows:
u(x, t) = Expression (10),

with

α(x, t) =
∑

ρi,ρ j=0,1

exp


N∑

i=1

ρi[λi(t)x+ τi(t)]+
(N)∑

1≤i< j

ρiρ jωi j(t) +

(N)∑
1≤i< j<l

ρiρ jρlσi jl(t)+ · · ·

 ; (13a)

β(x, t) =
∑

ρi,ρ j=0,1

exp

 N∑
i=1

ρi[λi(t)x+ τi(t)+κi(t)]+

(N)∑
1≤i< j

ρiρ jδi j(t)+
(N)∑

1≤i< j<l

ρiρ jρlϑi jl(t)+ · · ·

 ;
(13b)

eκi(t) =
±
√
λm0+mi

±
√
λm0−mi

; (13c)

τi(t) =
w [

miμ3(t)e−
r
μ4(t)dt −m3

i μ2(t)e−3
r
μ4(t)dt

]
dt; (13d)

λi(t) = mie−
r

f4(t)dt; (13e)

eωi j(t) =

(
mi−m j

)
2
(
λm2

0∓
√
λmim0∓

√
λm jm0−mim j

)(
mi+m j

)
2
(
±
√
λm0−mi

) (
±
√
λm0−m j

) ;

(13f)

eδi j(t) =

(
mi−m j

)
2
(
λm2

0±
√
λmim0±

√
λm jm0−mim j

)(
mi+m j

)
2
(
±
√
λm0+mi

) (
±
√
λm0+m j

) ;

(13g)

eσi jl(t) =

(
±
√
λm0−mi

)(
λm2

0∓
√
λmim0∓

√
λm jm0−mim j

)×(
±
√
λm0−m j

)(
λm2

0∓
√
λmim0∓

√
λmlm0−miml

)×(
±
√
λm0−ml

)(
λm2

0∓
√
λm jm0∓

√
λmlm0−m jml

)×
(
±λ3/2m3

0− λmim2
0− λm jm2

0− λmlm2
0∓
√
λmim jm0∓

√
λmimlm0∓

√
λm jmlm0+mim jml

)
; (13h)
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eϑi jl(t) =

(
±
√
λm0+mi

)(
λm2

0±
√
λmim0±

√
λm jm0−mim j

)×
(
±
√
λm0+m j

)(
λm2

0±
√
λmim0±

√
λmlm0−miml

)×
(
±
√
λm0+ml

)(
λm2

0±
√
λm jm0±

√
λmlm0−m jml

)×
(
±λ3/2m3

0+ λmim2
0+ λm jm2

0+ λmlm2
0∓
√
λmim jm0∓

√
λmimlm0∓

√
λm jmlm0−mim jml

)
, (13i)

ϱ ϖ i j l

ϱ≤N ϖ≤N i≤N j≤N l≤N

mi mi , 0 mi+m j , 0

m0 representing  a  real  constant, , , ,  and  being  the
positive integers with , , ,  and ,

's denoting the real constants with ,  and

mi , ±
√
λm0 αϱ(x, t) βϖ(x, t)

x t mi

τi(t)
i

∑
ρi,ρ j=0,1

ρ j = 0,1
∑(N)

1≤i< j

N i < j

, ′s and ′s being all the real differ-
entiable  functions  of  and ,  and the  integration  con-
stant  from  via  Eq.  (13d)  representing  the  parameters
characterizing the -th soliton, the sum  taken over

all the possible combinations of , while  be-
ing  the  summation  over  all  the  possible  pairs  chosen  from
the  elements under the condition .

N
±

It  is  noted  that  there  exist  two  branches  of -Soliton
Solutions  (13)  for  Eq.  (1)  because  of  the  “ ”  signs.  Each
branch is

(1)  under  Variable/Constant-Coefficient  Constraints  (4)
and (12);

μ2(t) μ3(t) μ4(t)(2) dependent on ,  and .
N = 1For , two branches of the one-soliton solutions:

u(x, t) = Expression (10), with

α(x, t) =
±
√
λm0−m1

2m1
em1e−

r
μ4(t)dt x+

r [
m1μ3(t)e−

r
μ4(t)dt−m3

1μ2(t)e−3
r
μ4(t)dt

]
dt
+1; (14a)

β(x, t) =
±
√
λm0+m1

2m1
em1e−

r
μ4(t)dt x+

r [
m1μ3(t)e−

r
μ4(t)dt−m3

1μ2(t)e−3
r
μ4(t)dt

]
dt
+1. (14b)

N = 2For , two branches of the two-soliton solutions:

u(x, t) = Expression (10), with

α(x, t) =1− m2∓
√
λm0

2m2
em2e−

r
μ4(t)dt x+

r [
m2μ3(t)e−

r
μ4(t)dt−m3

2μ2(t)e−3
r
μ4(t)dt

]
dt−

m1∓
√
λm0

2m1
em1e−

r
μ4(t)dt x+

r [
m1μ3(t)e−

r
μ4(t)dt−m3

1μ2(t)e−3
r
μ4(t)dt

]
dt−

(m1−m2) 2
[
m1m2− λm2

0±
√
λ (m1+m2)m0

]
4m1m2 (m1+m2) 2 ×

e(m1+m2)e−
r
μ4(t)dt x+

r [
(m1+m2)μ3(t)e−

r
μ4(t)dt−

(
m3

1+m3
2

)
μ2(t)e−3

r
μ4(t)dt

]
dt; (15a)

β(x, t) =1+
m2±

√
λm0

2m2
em2e−

r
μ4(t)dt x+

r [
m2μ3(t)e−

r
μ4(t)dt−m3

2μ2(t)e−3
r
μ4(t)dt

]
dt
+

m1±
√
λm0

2m1
em1e−

r
μ4(t)dt x+

r [
m1μ3(t)e−

r
μ4(t)dt−m3

1μ2(t)e−3
r
μ4(t)dt

]
dt−

(m1−m2) 2
[
m1m2− λm2

0∓
√
λ (m1+m2)m0

]
4m1m2 (m1+m2) 2 ×

e(m1+m2)e−
r
μ4(t)dt x+

r [
(m1+m2)μ3(t)e−

r
μ4(t)dt−

(
m3

1+m3
2

)
μ2(t)e−3

r
μ4(t)dt

]
dt. (15b)

Via Solutions (10) and (15), Fig. 1a shows the interaction between the two dark solitons, and Fig. 1b displays the inter-
action between the two bright solitons.

N = 3For , two branches of the three-soliton solutions:

u(x, t) = Expression (10), with

α(x, t) = 1+
3∑

i=1

e
r [

e−
r
μ4(t)dtmiμ3(t)−e−3

r
μ4(t)dtm3

i μ2(t)
]
dt+e−

r
μ4(t)dtmi x+

∏
1≤i< j≤3

e
r [

e−
r
μ4(t)dt(mi+m j)μ3(t)−e−3

r
μ4(t)dt

(
m3

i +m3
j

)
μ2(t)

]
dt+e−

r
μ4(t)dt(mi+m j)x×
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(
λm2

0∓
√
λmim0∓

√
λm jm0−mim j

) (
mi−m j

)
2(

±
√
λm0−mi

) (
±
√
λm0−m j

) (
mi+m j

)
2
+

e
r [

e−
r
μ4(t)dt(m1+m2+m3)μ3(t)−e−3

r
μ4(t)dt

(
m3

1+m3
2+m3

3

)
μ2(t)

]
dt+e−

r
μ4(t)dt(m1+m2+m3)x×[

m1m2m3± λ3/2m3
0− λ (m1+m2+m3)m2

0∓
√
λ (m1m2+m3m2+m1m3)m0

](
±
√
λm0−m1

) (
±
√
λm0−m3

) (
±
√
λm0−m2

) × (m1−m2) 2 (m1−m3) 2 (m2−m3) 2

(m1+m2) 2 (m1+m3) 2 (m2+m3) 2 , (16a)

β(x, t) = 1+
3∑

i=1

e
r [

e−
r
μ4(t)dtmiμ3(t)−e−3

r
μ4(t)dtm3

i μ2(t)
]
dt+e−

r
μ4(t)dtmi x±

√
λm0+mi

±
√
λm0−mi

+

∏
1≤i< j≤3

e
r [

e−
r
μ4(t)dt(mi+m j)μ3(t)−e−3

r
μ4(t)dt

(
m3

i +m3
j

)
μ2(t)

]
dt+e−

r
μ4(t)dt(mi+m j)x×

(
λm2

0±
√
λmim0±

√
λm jm0−mim j

) (
mi−m j

)
2(

±
√
λm0+mi

) (
±
√
λm0+m j

) (
mi+m j

)
2
+

e
r [

e−
r
μ4(t)dt(m1+m2+m3)μ3(t)−e−3

r
μ4(t)dt

(
m3

1+m3
2+m3

3

)
μ2(t)

]
dt+e−

r
μ4(t)dt(m1+m2+m3)x×[

−m1m2m3± λ3/2m3
0+ λ (m1+m2+m3)m2

0∓
√
λ (m1m2+m3m2+m1m3)m0

](
±
√
λm0−m1

) (
±
√
λm0−m3

) (
±
√
λm0−m2

) ×

(m1−m2) 2 (m1−m3) 2 (m2−m3) 2

(m1+m2) 2 (m1+m3) 2 (m2+m3) 2 . (16b)

 
 

 

m0 = m1 = 1 m2 = 2 μ2(t) =
t3

81
− t2

9
μ4(t) =

t
5

μ3(t) =
t2

100
λ = 100

− +

Fig. 1.   Two dark/bright solitons via Solutions (10) and (15) with  (a) , , , ,  and  with the

“ ” sign in Expression (10), (b) the same as (a) except for the “ ” sign in Expression (10).
 
 

3  Bilinear auto-Bäcklund transformations with the Hirota method and solitons for Eq. (1)
Beginning with Presumption (5), which is different from those presented in Wang et al. (2012) and Meng et al. (2012),

and according to Bilinear Forms (8), we will hereby construct some bilinear auto-Bäcklund transformations with the Hirota
method (Hirota, 1980).

Firstly, according to Eq. (8b), we consider the expression

g f
[
±i
√
λμ0(t)Dxg̃ · f̃ +μ2(t)D2

xg̃ · f̃
]
− g̃ f̃

[
±i
√
λμ0(t)Dxg · f +μ2(t)D2

xg · f
]
= 0, (17)

f̃ (x, t) g̃(x, t)where  and  are another set of the solutions of Bilinear Forms (8).
Exchange formulae (Matsuno, 1984),

(D2
xg̃ · f̃ )g f − g̃ f̃ (D2

xg · f ) = Dx[(Dxg̃ · f ) · (g f̃ )+ (g̃ f ) · (Dxg · f̃ )]; (18a)

(Dxg̃ · f̃ )g f − g̃ f̃ (Dxg · f ) = Dx(g̃ f ) · ( f̃ g), (18b)

522 GAO Xin-yi et al. China Ocean Eng., 2021, Vol. 35, No. 4, P. 518–530  



lead to

0 =μ2(t)Dx[(Dxg̃ · f ) · (g f̃ )+ (g̃ f ) · (Dxg · f̃ )]± i
√
λμ0(t)Dx(g̃ f ) · ( f̃ g) =

Dx

μ2(t)Dxg̃ · f ± i

√
λ

2
μ0(t)g̃ f

 · (g f̃ )+Dx(g̃ f ) ·
μ2(t)Dxg · f̃ ± i

√
λ

2
μ0(t)g f̃

 , (19)

from which we can assume that

Dx

μ2(t)Dx g̃ · f ± i

√
λ

2
μ0(t)g̃ f

 · (g f̃ ) = 0; (20a)

Dx(g̃ f ) ·
μ2(t)Dxg · f̃ ± i

√
λ

2
μ0(t)g f̃

 = 0, (20b)

so as to further obtain

μ2(t) , 0, (21)

and

μ2(t)Dxg̃ · f ± i

√
λ

2
μ0(t)g̃ f = ±i

√
λ

2
ζ(t)g f̃ ; (22a)

μ2(t)Dxg · f̃ ± i

√
λ

2
μ0(t)g f̃ = ±i

√
λ

2
ζ(t)g̃ f , (22b)

ζ(t)with  being a real function.
Secondly, according to Eq. (8a), we consider another expression, which is

0 =g f
[
Dtg̃ · f̃ +μ2(t)D3

xg̃ · f̃ −μ3(t)Dxg̃ · f̃ + xμ4(t)Dxg̃ · f̃
]
−

g̃ f̃
[
Dtg · f +μ2(t)D3

xg · f −μ3(t)Dxg · f + xμ4(t)Dxg · f
]
. (23)

According to the exchange formulae (Matsuno, 1984),

(Dxg̃ · f̃ )g f − g̃ f̃ (Dxg · f ) = (Dxg̃ ·g) f̃ f − g̃g(Dx f̃ · f ); (24a)

(Dtg̃ · f̃ )g f − g̃ f̃ (Dtg · f ) = (Dtg̃ ·g) f̃ f − g̃g(Dt f̃ · f ); (24b)

(D3
xg̃ · f̃ )g f − g̃ f̃ (D3

xg · f ) = (D3
xg̃ ·g) f̃ f − g̃g(D3

x f̃ · f )+3Dx(Dxg̃ · f ) · (Dxg · f̃ ), (24c)

one can see that

[(Dtg̃ ·g) f̃ f − g̃g(Dt f̃ · f )]+μ2(t)[(D3
xg̃ ·g) f̃ f − g̃g(D3

x f̃ · f )]+3μ2(t)Dx(Dxg̃ · f ) · (Dxg · f̃ )−
μ3(t)[(Dxg̃ ·g) f̃ f − g̃g(Dx f̃ · f )]+ xμ4(t)[(Dxg̃ ·g) f̃ f − g̃g(Dx f̃ · f )] = 0. (25)

Then, Eqs. (22a) and (22b) result in
0 = f̃ f

[
(Dtg̃ ·g)+μ2(t)(D3

xg̃ ·g)−μ3(t)(Dxg̃ ·g)+ xμ4(t)(Dxg̃ ·g)
]
−

g̃g
[
(Dt f̃ · f )+μ2(t)(D3

x f̃ · f )−μ3(t)(Dx f̃ · f )+ xμ4(t)(Dx f̃ · f )
]
+

3
μ2(t)

Dx

∓i

√
λ

2
μ0(t)g̃ f ± i

√
λ

2
ζ(t)g f̃

 · ∓i

√
λ

2
μ0(t)g f̃ ± i

√
λ

2
ζ(t)g̃ f

 =
f̃ f

[
(Dtg̃ ·g)+μ2(t)(D3

xg̃ ·g)−μ3(t)(Dxg̃ ·g)+ xμ4(t)(Dxg̃ ·g)
]
−

g̃g
[
(Dt f̃ · f )+μ2(t)(D3

x f̃ · f )−μ3(t)(Dx f̃ · f )+ xμ4(t)(Dx f̃ · f )
]
+

3λ[ζ2(t)−μ2
0(t)]

4μ2(t)
Dx(g̃ f ) · (g f̃ ). (26)

Exchange formula (Matsuno, 1984),

Dx(g̃ f ) · ( f̃ g) = (Dxg̃ ·g) f̃ f − g̃g(Dx f̃ · f ), (27)
comes to
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f̃ f

(Dtg̃ ·g)+μ2(t)(D3
xg̃ ·g)+

3λ[ζ2(t)−μ2
0(t)]

4μ2(t)
(Dxg̃ ·g)−μ3(t)(Dxg̃ ·g)+ xμ4(t)(Dxg̃ ·g)

−
g̃g

(Dt f̃ · f )+μ2(t)(D3
x f̃ · f )+

3λ[ζ2(t)−μ2
0(t)]

4μ2(t)
(Dx f̃ · f )−μ3(t)(Dx f̃ · f )+ xμ4(t)(Dx f̃ · f )

 = 0, (28)

from which we may assume thatDt +μ2(t)D3
x +

3λ
[
ζ2(t)−μ2

0(t)
]

4μ2(t)
Dx −μ3(t)Dx + xμ4(t)Dx

 g̃ ·g = 0; (29a)

Dt +μ2(t)D3
x +

3λ
[
ζ2(t)−μ2

0(t)
]

4μ2(t)
Dx −μ3(t)Dx + xμ4(t)Dx

 f̃ · f = 0. (29b)

±

Thirdly, it can be noted that Eqs. (5), (7a), (22) and (29)
constitute two branches of the bilinear auto-Bäcklund trans-
formations with the Hirota method for Eq. (1), with respect
to  the  “ ”  signs.  Each  branch  of  Bilinear  Auto-Bäcklund
Transformations  (5),  (7a),  (22)  and  (29)  with  the  Hirota
method is

f (x, t) g(x, t) f̃ (x, t) g̃(x, t) μ0(t) μ2(t) μ3(t)
μ4(t)

(1) mutually  consistent,  or,  explicitly  solvable  with  re-
spect  to , , , , , ,  and

, to be seen right below;
(2)  under  Variable/Constant-Coefficient  Constraints  (4)

and (21).

f̃ = 1 and g̃ = 1,

Finally, we symbolically compute out an explicitly-solv-
able  solitonic  example.  With  a  set  of  the  seed  solutions,

 Eqs. (22) and (29) can be simplified as

fx ∓
i
√
λ

μ2(t)
[μ0(t) f − ζ(t)g] = 0; (30a)

gx ±
i
√
λ

μ2(t)
[μ0(t)g− ζ(t) f ] = 0; (30b)

ft +μ2(t) fxxx +

3λ
[
ζ2(t)−μ2

0(t)
]

4μ2(t)
−μ3(t)+ xμ4(t)

 fx = 0;

(30c)

gt +μ2(t)gxxx +

3λ
[
ζ2(t)−μ2

0(t)
]

4μ2(t)
−μ3(t)+ xμ4(t)

gx = 0,

(30d)
into which we can substitute the assumptions

f (x, t) =
{
c1 cosh[χ1(t)x+ χ2(t)]+ c2 sinh[χ1(t)x+ χ2(t)]

}
+

ic0
{
c1 sinh[χ1(t)x+ χ2(t)]+ c2 cosh[χ1(t)x+ χ2(t)]

}
;

g(x, t) =
{
c1 cosh[χ1(t)x+ χ2(t)]+ c2 sinh[χ1(t)x+ χ2(t)]

}−
ic0

{
c1 sinh[χ1(t)x+ χ2(t)]+ c2 cosh[χ1(t)x+ χ2(t)]

}
,

(31)
under the variable-coefficient constraint

μ0(t) = ∓
1− c2

0

c0
√
λ

c3μ2(t)e−
r
μ4(t)dt, (32)

so as to obtain

χ1(t) = c3e−
r
μ4(t)dt;

ζ(t) = ∓
1+ c2

0

c0
√
λ

c3μ2(t)e−
r
μ4(t)dt;

χ2(t) = −
w [

4μ2(t)χ3
1(t)−μ3(t)χ1(t)

]
dt, (33)

χ1(t) χ2(t)
c0 c1 c2 c3

c0 , 0, ±1

where  and  denote the real differentiable functions
of t,  while , ,  and  are  the  real  constants  with

.  Therefore,  we  obtain  the  following  one-soliton
solutions for Eq. (1):

u(x, t) = Expressions (5) and (7a),

with

f (x, t) =
{

c1 cosh
{
c3e−

r
μ4(t)dt x−

w [7
4

c3
3μ2(t)e−3

r
μ4(t)dt − c3μ3(t)e−

r
μ4(t)dt

]
dt

}
+

c2 sinh
{
c3e−

r
μ4(t)dt x−

w [7
4

c3
3μ2(t)e−3

r
μ4(t)dt − c3μ3(t)e−

r
μ4(t)dt

]
dt

}}
+

ic0

{
c1 sinh

{
c3e−

r
μ4(t)dt x−

w [7
4

c3
3μ2(t)e−3

r
μ4(t)dt − c3μ3(t)e−

r
μ4(t)dt

]
dt

}
+

c2 cosh
{
c3e−

r
μ4(t)dt x−

w [7
4

c3
3μ2(t)e−3

r
μ4(t)dt − c3μ3(t)e−

r
μ4(t)dt

]
dt

}}
; (34a)
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g(x, t) =
{

c1 cosh
{
c3e−

r
μ4(t)dt x−

w [7
4

c3
3μ2(t)e−3

r
μ4(t)dt − c3μ3(t)e−

r
μ4(t)dt

]
dt

}
+

c2 sinh
{
c3e−

r
μ4(t)dt x−

w [7
4

c3
3μ2(t)e−3

r
μ4(t)dt − c3μ3(t)e−

r
μ4(t)dt

]
dt

}}
−

ic0

{
c1 sinh

{
c3e−

r
μ4(t)dt x−

w [7
4

c3
3μ2(t)e−3

r
μ4(t)dt − c3μ3(t)e−

r
μ4(t)dt

]
dt

}
+

c2 cosh
{
c3e−

r
μ4(t)dt x−

w [7
4

c3
3μ2(t)e−3

r
μ4(t)dt − c3μ3(t)e−

r
μ4(t)dt

]
dt

}}
,

(34b)

under  Variable/Constant-Coefficient  Constraints  (4),  (21)
and (32).
 

4  Painlevé-type auto-Bäcklund transformations and rel-
evant soliton features for Eq. (1)
We in this section carry out the investigation on Eq. (1)

by seeking a Painlevé expansion in the form of the general-
ized  Laurent  series  (Gao,  2019; Gao  et  al.,  2020b; Gao  et
al.,  2020d; Gao et  al.,  2020e; Gao et  al.,  2021c; and  refer-
ences therein),

u(x, t) = ϕ−Ξ(x, t)
∞∑
ξ=0

uξ(x, t)ϕξ(x, t), (35)

ϕ(x, t) = 0 Ξ uξ(x, t)
ϕ(x, t) u0(x, t) , 0
ϕx(x, t) , 0 ϕ

Ξ = 1

in the neighborhood of the non-characteristic singular mani-
fold ,  where  is  a  positive  integer, 's  and

 are  all  the  analytic  functions  with  and
.  Balancing the  powers  of  at  the  lowest  orders

yields ,  we  truncate  Painlevé  Expansion  (35)  at  the
constant  level  terms (Gao,  2019; Gao et  al.,  2020b; Gao et
al., 2020d; Gao et al., 2020e; Gao et al., 2021c), as

u(x, t) =
u0(x, t)
ϕ(x, t)

+u1(x, t), (36)

ϕ
which is substituted back into Eq. (1). With symbolic com-
putation, the way for the coefficients of like powers of  to
vanish leads to the Painlevé-Bäcklund equations:

ϕ−4 : u0 = ±
√
μ2(t)√
μ1(t)

ϕx; (37)

μ1(t) , 0; (38)

μ2(t) , 0; (39)

ϕ−3 : 2μ1(t)ϕxu1+μ0(t)ϕx ±
√
μ1(t)

√
μ2(t)ϕxx = 0; (40)

ϕ−2 : ±6μ1(t)3/2ϕ2
xu2

1±6μ0(t)
√
μ1(t)ϕ2

xu1±
√
μ1(t)μ3(t)ϕ2

x∓

x
√
μ1(t)μ4(t)ϕ2

x ∓
√
μ1(t)ϕtϕx ∓4

√
μ1(t)μ2(t)ϕxxxϕx∓

3
√
μ1(t)μ2(t)ϕ2

xx −6μ1(t)
√
μ2(t)ϕ2

xu1,x−

12μ1(t)
√
μ2(t)ϕxxϕxu1−6μ0(t)

√
μ2(t)ϕxxϕx = 0; (41)

ϕ−1 : 2Aμ2(t)μ4(t)μ1(t)ϕx −24μ2(t)μ1(t)2ϕxu1u1,x−
12μ0(t)μ2(t)μ1(t)ϕxu1,x −μ2(t)μ′1(t)ϕx−
12μ2(t)μ1(t)2ϕxxu2

1−12μ0(t)μ2(t)μ1(t)ϕxxu1+

μ1(t)μ′2(t)ϕx +2μ2(t)μ1(t)ϕxt−
2μ2(t)μ3(t)μ1(t)ϕxx +2xμ2(t)μ4(t)μ1(t)ϕxx+

2μ2(t)2μ1(t)ϕxxxx = 0; (42)

ϕ0 : u1,t −6μ0(t)u1u1,x −6μ1(t)u2
1u1,x +μ2(t)u1,xxx−

μ3(t)u1,x +μ4(t)
(
Au1+ xu1,x

)
= 0, (43)

u1(x, t)where  can be treated as the seed solutions for Eq. (1)
(Gao, 2019; Gao et al., 2020b; Gao et al., 2020d; Gao et al.,
2020e; Gao et al., 2021c).

±

The sets of Eqs. (36), (37) and (40)–(43) constitute two
branches of  the  Painlevé-type  auto-Bäcklund  transforma-
tions, due to the “ ” signs1 and based on the fact that, to be
seen right below, each of those two sets is

ϕ(x, t) u0(x, t) u1(x, t) A μ0(t) μ1(t) μ2(t) μ3(t)
μ4(t)

(1) mutually  consistent,  or,  explicitly  solvable  with  re-
spect  to , , , , , , , 
and ;

(2)  under  Variable-Coefficient  Constraints  (38)  and
(39).

Next,  let  us  find  out  some  explicitly-solvable  solitons
with symbolic computation. Assumptions hereby are

ϕ(x, t) = eη1(t)x+η2(t)+1, u1(x, t) = η3(t), (44)
which need to be substituted into Eqs. (40)-(43), resulting in

ϕ0 : η3(t) = 0 or η3(t) , 0, (45)
η1(t) η2(t) η3(t)

η1(t) , 0 ϕx , 0
where ,  and  are the real differentiable func-
tions, with  since .

Case I η3(t) = 0: 

ϕ−3 : η1(t) = ∓ μ0(t)√
μ1(t)

√
μ2(t)

;

μ0(t) , 0 since η1(t) , 0; (46)

ϕ−2x0 : η2(t)=±
w μ0(t)3

μ1(t)3/2
√
μ2(t)

dt∓
w μ0(t)μ3(t)√

μ1(t)
√
μ2(t)

dt+η4;

ϕ−2x1 : μ4(t)=−
μ′0(t)
μ0(t)

+
μ′1(t)

2μ1(t)
+

μ′2(t)
2μ2(t)

;
(47)
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1 Each of Auto-Bäcklund Transformations (36), (37) and (40)–(43) works as a system of the equations relating a set of the solutions of Eq. (1), e.g., Solutions (49),

to another set of the solutions of Eq. (1) itself. Therefore, we could, by and large at least, be able to increasingly construct more and more complicated solutions of

Eq. (1).



ϕ−1 : μ2(t) = η5μ0(t)
2(A−1)

A μ1(t)
2−A

A , (48)
η4 η5 , 0where  and  are the real constants. Computing with

Expression (36), we obtain the following variable/constant-
coefficient-dependent solitonic solutions of Eq. (1):

u(I)(x, t)=− μ0(t)
2μ1(t)

tanh

η4

2
∓ μ0(t)x

2
√
μ1(t)

√
η5μ0(t)2− 2

A μ1(t)
2
A−1
±

1
2η5

w
μ0(t)

A+2
A μ1(t)−

A+4
2A

√
η5μ0(t)2− 2

A μ1(t)
2
A−1 dt ∓

1
2

w μ0(t)μ3(t)√
μ1(t)

√
η5μ0(t)2− 2

A μ1(t)
2
A−1

dt

− μ0(t)
2μ1(t)

,

(49)
under  Variable/Constant-Coefficient  Constraints  (38),  (39),
(46), (47) and (48).

±
There exist two branches of Solitonic Solutions (49) be-

cause of the “ ” signs. Fig. 2 displays them.
Case II η3(t) , 0: 

ϕ0 : η3(t) = η4e−A
r
μ4(t)dt;

ϕ−2x1 : η′1(t)+η1(t)μ4(t) = 0,
i.e., η1 = constant , 0, μ4(t) = 0 or η1 = η1(t) , 0,

η4 , 0where  (only in Case II).
Case IIa η1 = constant , 0: 

ϕ−2x1 : μ4(t) = 0; (50)

ϕ−3 : μ0(t) = ∓η1
√
μ1(t)

√
μ2(t)−2η4μ1(t); (51)

ϕ−1 : η2(t) = ∓6η2
1η4

w √
μ1(t)

√
μ2(t)dt−η3

1

w
μ2(t)dt−

6η1η2
4

w
μ1(t)dt+η1

w
μ3(t)dt+η5+

1
2

ln
[
μ1(t)

]− 1
2

ln
[
μ2(t)

]
;

ϕ−2 : μ1(t) = η6μ2(t), (52)
η5 η6 , 0where  could  be  zero  (only  in  Case  IIa) and  is  a

real constant.
Computing with Expression (36), we obtain the follow-

ing variable-coefficient-dependent solitonic solutions of Eq.
(1):

u(IIa)(x, t) = ± η1

2√η6
tanh

[
η1x
2
− η1

2

(
η2

1±6η1η4
√η6+

6η2
4η6

)w
μ2(t)dt+

η1

2

w
μ3(t)dt+

η5

2
+

ln
(√η6

)
2

]
±

η1

2√η6
+η4, (53)

A

±

under Variable-Coefficient Constraints (38), (39), (50), (51)
and (52). Solitonic Solutions (53) are independent of  ow-
ing to Variable-Coefficient Constraint (50). There exist two
branches  of  Solitonic  Solutions  (53)  because  of  the  “ ”
signs.

Case IIb η1 = η1(t) , 0: 

ϕ−2x1 : η1(t) = η5e−
r
μ4(t)dt;

ϕ−3 : μ0(t) = −2η4μ1(t)e−A
r
μ4(t)dt∓

η5
√
μ1(t)

√
μ2(t)e−

r
μ4(t)dt; (54)

ϕ−2x0 : η2(t) = η5

w
μ3(t)e−

r
μ4(t)dtdt∓

6η4η2
5

w √
μ1(t)

√
μ2(t)e−A

r
μ4(t)dt−2

r
μ4(t)dtdt−

6η2
4η5

w
μ1(t)e−2A

r
μ4(t)dt−

r
μ4(t)dtdt−

η3
5

w
μ2(t)e−3

r
μ4(t)dtdt;

ϕ−1 : μ1(t) = η6μ2(t)e
r
[2Aμ4(t)−2μ4(t)]dt,

(55)
η5 , 0 η6 , 0where  and  (only in Case IIb).

Computing with Eq. (36), we obtain the following vari-
able/constant-coefficient-dependent  solitonic  solutions  of
Eq. (1):

u(IIb)(x, t) = η4e−A
r
μ4(t)dt±

η5e−(2A−1)
r
μ4(t)dt

√
e2(A−1)

r
μ4(t)dt

2√η6
±

η5e(1−2A)
r
μ4(t)dt

√
e2(A−1)

r
μ4(t)dt

2√η6
×

tanh
{
η5

2
e−

r
μ4(t)dt x+

η5

2

w
μ3(t)e−

r
μ4(t)dtdt−

η5

2

[
±6η4η5

√η6

w
μ2(t)e−(A+2)

r
μ4(t)dt

√
e2(A−1)

r
μ4(t)dtdt+

(
6η2

4η6+η2
5

)w
μ2(t)e−3

r
μ4(t)dtdt

]}
, (56)

±

under  Variable/Constant-Coefficient  Constraints  (38),  (39),
(54) and  (55).  There  exist  two  branches  of  Solitonic  Solu-
tions (56) because of the “ ” signs. 

5  Conclusions
The  atmosphere  has  been  said  to  be  an  evolutionary

agent essential to the shaping of a planet. In oceanic science,
natural science, engineering, medical science and daily life,
liquids have  been  commonly  seen.  Plasmas  have  been  be-
lieved  to  be  possibly  the  most  abundant  form  of  ordinary
matter in the Universe.

μ0(t) μ1(t) μ2(t)

−μ3(t)+ xμ4(t) μ4(t)A

In this  paper,  we  have  investigated  Eq.  (1),  a  general-
ized variable-coefficient KdV-mKdV equation for the atmo-
sphere, oceanic  fluids  and  plasmas,  in  which  the  coeffi-
cients ,  and  represent  the  quadratic-nonlin-
ear,  cubic-nonlinear  and  dispersive  effects,  respectively,
while  and  correspond to  the  dissipat-
ive and line-damping terms. Special cases of Eq. (1) in flu-
id  mechanics,  plasma dynamics  and other  fields  have  been
listed out. With symbolic computation, beginning with Pre-
sumption (5), which is different from those presented in the
existing literatures, we have worked out
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(1) Scaling Transformations (2);

μ0(t) μ2(t) μ3(t) μ4(t)

(2)  Bilinear  Forms  (8)  or  (9)  through  the  binary  Bell
polynomials and  Scaling  Transformations  (2),  under  Vari-
able/Constant-Coefficient Constraints  (4),  which  are  de-
pendent on , ,  and ;

μ2(t) μ3(t)
μ4(t)

(3) N-Soliton Solutions (10) and (13) according to Bilin-
ear Forms  (9)  under  Variable/Constant-Coefficient  Con-
straints (4) and (12), which are dependent on ,  and

, along with One-Soliton Solutions (10) and (14), Two-
Soliton  Solutions  (10)  and  (15),  Three-Soliton  Solutions
(10)  and  (16),  as  well  as Fig.  1a to  show  the  interaction
between the two dark solitons, and Fig. 1b to display the in-
teraction between the two bright solitons;

μ0(t) μ2(t) μ3(t) μ4(t)

(4)  Bilinear  Auto-Bäcklund  Transformations  (5),  (7a),
(22) and (29), with the Hirota method, under Variable/Con-
stant-Coefficient Constraints  (4)  and  (21),  which  are  de-
pendent on , ,  and , along with Solitonic
Solutions (5), (7a) and (34), under Variable/Constant-Coef-
ficient Constraints (4), (21) and (32).

μ0(t) μ1(t) μ2(t) μ3(t) μ4(t)

In  addition,  with  symbolic  computation,  Painlevé-Type
Auto-Bäcklund Transformations  (36),  (37)  and  (40)-(43)
have been  worked  out,  under  Variable-Coefficient  Con-
straints (38) and (39),  which have not been obtained in the
existing  literatures,  either,  while  have  been  seen  to  depend
on A, , , ,  and , along with

(1)  Solitonic  Solutions  (49)  under  Variable/Constant-
Coefficient  Constraints  (38),  (39),  (46),  (47)  and  (48),  as
well  as Fig.  2 to display  certain  waves  via  Solitonic  Solu-
tions (49);

(2)  Solitonic  Solutions  (53)  under  Variable-Coefficient
Constraints (38), (39), (50), (51) and (52);

(3)  Solitonic  Solutions  (56)  under  Variable/Constant-

Coefficient Constraints (38), (39), (54) and (55).
It  has  been  stated  that  those  coefficients  correspond  to

the quadratic-nonlinear,  cubic-nonlinear,  dispersive,  dissip-
ative  and  line-damping  effects  in  the  atmosphere,  oceanic
fluids and plasmas. 

Appendix: Bell-polynomial preliminary
Bell polynomials have been said to provide a relatively-

direct  way  to  get  the  bilinear  forms  for  certain  nonlinear
evolution equations, instead of the dependent variable trans-
formations  (Bell,  1934; Lambert  et  al.,  1994; Wang  et  al.,
2017).

Bell  (1934); Lambert  et  al.  (1994) and Wang  et  al.
(2017) have presented the following:

(1) The Bell polynomials:

Yhx(ν) ≡ Yh(ν1, · · · ,νh) = e−ν∂h
xeν, (57)

h = 1,2, · · · ν C∞ x νh = ∂h
xν

Yhx(ν)
ν x

where ,  is a  function of , , and the
subscripts in the notation  denote the highest-order de-
rivatives of  with respect to , e.g.,

Yx = νx, Y2x = ν2x + ν2
x, Y3x = ν3x +3νxν2x + ν3

x, · · · (58)
(2) The two-dimensional Bell polynomials:

Ymx,nt(θ) ≡Ym,n(θ1,1, · · · ,θ1,n, · · · ,θm,1, · · · ,θm,n) =

e−θ∂m
x ∂n

t eθ, (59)

θ C∞ x t θk,ς = ∂k
x∂

ς
tθ

k = 1, · · · ,m, ς = 1, · · · ,n m n
where  is  a  function  of  and , ,

,  with  and  being the  nonnegat-
ive integers, e.g.,

Yx,t = θx,t +θxθt,Y2x,t = θ2x,t +θ2xθt +2θx,tθx +θ2
xθt, · · · (60)

(3) The binary Bell polynomials:

Ymx,nt(p,q) ≡ Ymx,nt(ψ1,1, · · · ,ψ1,n, · · · ,ψm,1, · · · ,ψm,n)
∣∣∣∣∣
ψk,ς=

 pk,ς, if k+ ς is odd
qk,ς, if k+ ς is even

, (61)

p(x, t) q(x, t) C∞ x t

ψk,ς p q pk,ς = ∂k
x∂

ς
t p

qk,ς = ∂k
x∂

ς
t q

where  and  are both the  functions of  and ,
′s are the complex functions of  and ,  and

, e.g.,

Yx(p,q) = px, Y2x(p,q) = q2x + p2
x,

Yx,t(p,q) = px pt +qxt,

Y3x(p,q) = p3x +3pxq2x + p3
x, · · · (62)

 
μ0(t) =

t
2

μ1(t) = t2 +1 μ3(t) =
t
2

η4 = 2 η5 = 2 A = 1 −
+

Fig. 2.   Waves via Solitonic Solutions (49) with (a) , , , ,  and , with the “ ” sign in Expressions (46), (b)

the same as (a) except for the “ ” sign in Expressions (46).
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Matveev  and  Salle  (1991); Wadati  (1975) as  well  as
Cariello and Tabor (1989) have linked the  polynomials to
the Hirota operators, i.e.,

Ymx,nt

[
p = ln

(
f
g

)
, q = ln ( f g)

]
= ( f g)−1Dm

x Dn
t f ·g, (63)

f (x, t) g(x, t) C∞ x t
Dx Dt

where  and  are  the  functions  of  and ,
while  and  are the Hirota operators defined by
Dm

x Dn
t f (x, t) ·g(x, t) ≡(
∂
∂x
− ∂
∂x′

)m (
∂
∂t
− ∂
∂t′

)n

f (x, t)g(x′, t′)
∣∣∣∣∣
x′=x, t′=t

, (64)

x′ t′with  and  being the formal variables.
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