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Abstract
This study analyzes and summarizes seven main characteristics of the marine data sampled by multiple underwater
gliders. These characteristics such as the big data volume and data sparseness make it extremely difficult to do some
meaningful applications like early warning of marine environment. In order to make full use of the sea trial data, this
paper gives the definition of two types of marine data cube which can integrate the big marine data sampled by
multiple underwater gliders along saw-tooth paths, and proposes a data fitting algorithm based on time extraction and
space compression (DFTS) to construct the temperature and conductivity data cubes. This research also presents an
early warning algorithm based on data cube (EWDC) to realize the early warning of a new sampled data file.
Experiments results show that the proposed methods are reasonable and effective. Our work is the first study to do
some realistic  applications  on  the  data  sampled  by  multiple  underwater  vehicles,  and  it  provides  a  research
framework for processing and analyzing the big marine data oriented to the applications of underwater gliders.
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1  Introduction
Ocean is a treasure to human society since it is rich in

various resources like marine biological resources (e.g.
fish), marine mineral resources (e.g. petroleum) and marine
energy (e.g. tidal power). Marine environmental monitoring
is an important means to supervise and manage the marine
environment, and it is the foundation of all the work related
to the marine environment. The early warning about abnor-
mal data in the marine environment is of great significance
to marine environmental monitoring.

Conventional marine environmental monitoring meas-
ures include buoy, shore station and ship. However, none of
the measures mentioned above can obtain continuous and
high-resolution ocean monitoring data in a long period of
time. In recent years, underwater glider, which is a new type
of ocean environment observation vehicle, has received
great attention of researchers.

Underwater glider can take a variety of sensors and
move along a saw-tooth trajectory in a wide range with a
long continuous period of time. It can conduct marine mon-
itoring on ocean physical and chemical parameters (e.g.

temperature, salinity and acoustic characteristics) for mar-
ine science research. In addition, the underwater glider also
has such merits as low cost of manufacturing, strong endur-
ance ability, independent control and so on (Zhang et al.,
2011; Yu et al., 2013). Thus, underwater gliders have broad
application prospects in the field of marine environmental
monitoring.

It is impracticable for a single glider to get sample data
from different locations at the same time, while multiple un-
derwater gliders can avoid this limitation (Zhang et al.,
2015). Underwater gliders dive into ocean, and then swim
up to the ocean surface, which can provide us with both the
vertical structure of ocean and continuous marine data. Un-
derwater gliders have been successfully used to investigate
characteristics and conditions of ocean in several regions of
the world, such as the Northern South China Sea (Qiu et al.,
2015), the Monterey Bay (Fiorelli et al., 2006), the Balearic
Sea (Bouffard et al., 2010), and the Ionian Sea (Dobricic et
al., 2010).

In this paper, the marine data are sampled in the South
China Sea from June 2014 to June 2015 by several under-
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water gliders designed by Shenyang Institute of Automa-
tion, Chinese Academy Sciences. The observational data
has a big data volume since the environmental parameters
are recorded every six seconds. Meanwhile, to the vast
ocean, the sampled data are highly sparse because gliders
collect data along a saw-tooth trajectory. In addition, the
sampled marine data have characteristics like multiple
sources, multiple parameters and inconsistency at the time
and space. Because of these characteristics, it is difficult to
do the theoretical and practical research on the data sampled
by multiple underwater gliders. It is significant to explore a
marine environment early warning algorithm by making full
use of these sea trial data. It can help the researchers and
policymakers to analyze the data and find out the useful in-
formation hidden in these data.

Vasilijević et al. (2017) presented a cooperative robotic
system for environmental monitoring consisting of an
autonomous underwater vehicle (AUV) and an autonomous
unmanned surface vehicle (USV), and a novel human-on-
the-loop (HOTL) approach is applied on the system for en-
vironmental monitoring. Båmstedt and Brugel (2017) pro-
posed a cost-precision model for marine environmental
monitoring based on the time-integrated averages. The en-
vironmental data sampled by many sampling stations in the
northern Bothnian Sea were used in this cost-precision spa-
tio-temporal allocation model. A Marine Information Sys-
tem, acting as an integrated and inter-operable monitoring
tool is proposed and discussed by Pieri et al. (2018).
However, the data from AUV reports are acquired only on
specific occasions in this system. All the above monitoring
systems are not based on multiple gliders. Thus, we should
set up a new model to monitor the marine environment ori-
ented to multiple gliders.

Forecasting and early warning methods have a wide
range of applications and abundant achievements in many
fields. Zheng et al. (2012) studied safety evaluation and
early warning rating of the hot and humid environments,
and proposed a fuzzy analytic hierarchy process (AHP)
method to evaluate the work safety in hot and humid envir-
onments. Sun and Lee proposed a red tide prediction meth-
od that uses the fuzzy reasoning and ensemble method to
forecast the density of red tide algae and red tide blooms
(Park and Lee, 2014). Park et al. (2015) used artificial neur-
al network and support vector machine to predict the con-
centration of chlorophyll-a for the early warning in freshwa-

ter and estuarine reservoirs. Fang et al. (2015) presented an
integrated approach to snowmelt floods early-warning based
on geoinformatics (i.e. remote sensing, geographical in-
formation systems and global positioning systems), Internet
of Things (IoT) and cloud services. Zollo et al. (2010) pro-
posed an integrated regional/on-site early warning method,
which can be used in the very first seconds after a moderate-
to-large earthquake to map the most likely damaged zones.
Jiang et al. (2016) built a novel framework based on a prin-
cipal component analysis and an improved continuous hid-
den Markov model for forecasting and early warning of mi-
crocystins.

All the research work mentioned above are oriented to
certain application fields. However, there is no relevant re-
search on the early warning of the ocean environment based
on sampled data of multiple underwater gliders. The contri-
butions of this paper include:

(1) Analyze the characteristics of marine data sampled
by multiple underwater gliders in the South China Sea.

(2) Define the concept of marine data cube to describe
the marine data, and propose a data fitting algorithm DFTS
to construct the marine data cube based on large but sparse
sampled data.

(3) Propose an early warning algorithm based on the
marine data cube to realize the early warning of new
sampled data.

To the best of our knowledge, this paper is the first at-
tempt to conduct an early waring application based on the
marine data sampled by multiple underwater gliders. Sec-
tion 2 analyzes seven main characteristics of sampled mar-
ine data and introduces the preprocessing procedure of these
data. Section 3 defines the concept of marine data cube and
proposes a data fitting algorithm based on the time extrac-
tion and space compression (DFTS) to construct the marine
data cube. In Section 4, an early warning algorithm based
on data cube (EWDC) is described in detail. Plenty of ex-
periments are carried out to determine the appropriate para-
meters of EWDC in Section 5 and the last section is the con-
clusion.

2  Data analysis and preprocessing
There are six data packages observed by underwater

gliders from June 2014 to June 2015 in the South China
Sea. The basic information of all data packages is shown in
Table 1 including the experimental period, longitude and

Table 1   Basic information of all data packages
Data

package ID Experimental period Longitude range
(GPS data format)

Latitude range
(GPS data format)

Number of CTD
data files

Records of CTD
data files

1 Jun. 6, 2014 –Jun. 26, 2014 11456.903–11852.914 1847.211–2124.178 126 246514
2 Sep. 10, 2014 –Oct. 15, 2014 11628.464–11857.39 1941.643–2137.226 227 385760
3 Nov. 13, 2014 –Nov. 17, 2014 11356.853–11857.289 1803.938–2136.889 38 61560
4 Apr. 18, 2015 –May. 7, 2015 11033.03–11131.14 1656.744–1754.551 138 467854
5 Apr. 28, 2015 –May. 21, 2015 11628.464–11857.390 1941.643–2137.226 144 259919
6 Apr. 28, 2015 –Jun. 1, 2015 11356.853–11857.289 1803.938–2136.889 205 299112
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latitude range, the number of CTD (Conductivity–Temper-
ature- Depth) data files and the number of data records in
corresponding CTD data files.

A CTD data file records the data collected by an under-
water glider at one saw-tooth period, which contains sever-
al marine monitoring parameters including the time interval,
the depth, temperature, conductivity and the task time.
Every six seconds, the CTD data file adds a record which
contains all these parameters (Xu et al., 2016). Fig. 1 gives
an example of the path and depth changing in one CTD data

file, and we can see the data is from one saw-tooth period.
There is also a task information file in each package

which records the task information of each CTD data file in
this package. These parameters include the task name, the
date, time, type and the operator name, as well as some
gliders’ parameters like the longitude and latitude of the
starting and ending positions, desired and real maximum
depth, desired heading and pitch angle, leakage voltage,
periodicity range (i.e. the spherical distance between the
start and end positions), and so on.

We summarize seven main characteristics of the
sampled data:

(1) Big data volume: Each package contains tens of or
even hundreds of CTD data files and one experimental task
information file. The total files number is up to 884 and the
number of data records is up to 1720719.

(2) Data sparseness: Underwater gliders move along a
saw-tooth trajectory and collect the marine observational
data. Compared with broad ocean, the sampled marine data
are still extremely limited and sparse.

(3) Multiple sources: The marine data are collected by
several underwater gliders in different regions and distinct-
ive time, thus making the monitoring more comprehensive
than that using buoy and shore station.

(4) Multiple parameters: As is mentioned above, two
types of files are contained in a packet and each of them
consists of multiple parameters.

(5) Time inconsistency: The sea trials are conducted
during a long period of time, from June 2014 to June 2015.
Each data package belongs to a distinct experimental period.
In a certain package, the experimental time of tasks differs
from each other.

(6) Position inconsistency: The route of each task is dif-
ferent from others. Although the last three packages seem to
overlap in time, indeed, they are conducted by three differ-
ent gliders in different places, respectively. There are no
such two tasks conducted in the same area simultaneously.
Although some points from different routes are overlapped
in the longitude and latitude, they are not overlapped in the
depth at the same time. Thus, the real positions of each
glider in these routes are quite different.

(7) Inconsistency or loss of data: The Autonomous Un-
derwater Gliders work automatically, so it is inevitable that
the faults on the sensor may result in the data loss and in-
consistency. For example, the task conducted on April 29,
2015 by Glider SIA-G1000J003 records an impossible max-
imum depth as deep as 24021 m.

Due to the characteristics of sampled marine data intro-
duced above, it is difficult to effectively use existing obser-
vational data to realize the early warning of the marine en-
vironment. First of all, the data rectification should be con-
ducted to obtain valid data. The GPS data format is not easy
to be used in the following data fitting algorithm. So, the
GPS data format needs to be transformed to the format with
the unit of degree. In addition, marine data collected by the
underwater gliders may contain null values and wrong val-
ues. The values beyond normal ranges should be regarded
as wrong values and be replaced by the modified ones,
which are the average value of the previous and next data
items. After the outlier filtering, the data are valid and can
be used to solve the early warning problem.

3  Data cube construction

3.1  Definition of the data cube
In general, the definition of a data cube is a multidimen-

sional data set in the data mining (van der Aalst, 2013). In
this paper, we define two types of marine data cube which
are called TDC (temperature data cube) and CDC (conduct-
ivity data cube). Let M denotes the month, and a TDC is
defined as a 4-tuple form which is composed of the longit-
ude, latitude, depth and temperature with a given M. The

 
Fig. 1.   An example of a CTD data file.
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formulation is shown as follows:
TDCM =< LNG,LAT,DEP,TEMP >, M1 ⩽ M ⩽ Mk, (1)

DEP ∈ L

k

where LNG, LAT, DEP and TEMP denote the longitude, lat-
itude, depth and temperature, respectively. Seawater is di-
vided into eighteen layers from 0 to 1000 meters according
to the standard observation level, i.e., let L presents the set
{0, 10, 20, 30, 50, 75, 100, 125, 150, 200, 250, 300, 400,
500, 600, 700, 800, 1000}, . Similarly, a CDC is
defined as a 4-tuple form including the longitude, latitude,
depth and conductivity with a given month value, which is
shown in Eq. (2). The value range of DEP is the same with
the definition in the TDC. In the two formulas,  denotes the
total number of the months on which the sea trials have car-
ried out.
CDCM =< LNG,LAT,DEP,COND >, M1 ⩽M ⩽Mk. (2)

3.2  Data fitting algorithm DFTS
In order to establish the data cube to display the big

marine data obtained by the underwater gliders, we propose
a data fitting algorithm based on the time extraction and
space compression (DFTS). We focus on the data fitting of
the temperature and conductivity data. The main idea of the
DFTS is based on the following two aspects.

(1) Take the month as the particle size of time in the
data fitting, i.e., we conduct the data fitting for each month
separately.

(2) Take 18 depth layers as the particle size of space in
the data fitting. That means we filter the data around each
layer and then fit it.

The data fitting algorithm DFTS includes five steps.
Taking the data sampled in April 2015 as an example, the
detailed procedure of the DFTS is described as follows:

(1) Extracting from the task information files by month.
We extract the data including the longitude and latitude of
the start point (i.e., In-Longitude and In-Latitude), longit-
ude and latitude of the end points (i.e., Out-Longitude and
Out-Latitude), and the CTD file names from those records
whose date is April 2015 in all task information files. Then
input these data into a new file named TIF-201504. Fig. 2
gives the longitude and latitude values of extracted data in
April 2015 which is actually composed of three gliders’ paths.

(2) Horizontal space compression. Calculate the aver-

age value of In-Longitude and Out-Longitude, and the aver-
age value of In-Latitude and Out-Latitude. The average val-
ues are noted as AVE-LNG and AVE-LAT and added into
the file TIF-201504. This step compresses one saw-tooth
range into one point because the distance of the start and
end points is relatively small and the temperature and con-
ductivity have no obvious change in such a limited range.
Table 2 gives partial data of TIF-201504 after the horizont-
al space compression.

(3) Extracting from the CTD data files by month. Find
the CTD data files whose names are on the list of the file
TIF-201504. Then, add AVE-LNG and AVE-LAT into each
record of corresponding CTD data file. After that, integrate
all the CTD data files in the same month into one single file
named CTD-201504.

(4) Vertical space compression. Divide the data into
eighteen layers according to the depth. Define a range of
(DEP–1, DEP+1) for each layer except the layer of 0 m. Es-
pecially, we define the depth range from 0 m to 1.5 m as the
layer of 0 m. After following the above steps, examples of
the data in the layer of 0 m and 10 m are shown in Table 3
and Table 4.

(5) Fitting with the polynomial linear model. We fit the
temperature and conductivity data of each layer with the
polynomial linear model. The experimental results will be
introduced in Section 3.3.

According to the algorithm description mentioned
above, the pseudo-code of the DFTS is shown in Algorithm 1.

3.3  Data cube construction
Fig. 3–Fig. 5 show the data fitting results of the temper-

Table 2   Partial data of TIF-201504 after the horizontal space compression
In-LNG (°E) Out-LNG (°E) In-LAT (°N) Out-LAT (°N) AVE-LNG (°E) AVE-LAT (°N) File name

118.73 118.73 21.36 21.36 118.7326 21.3631 150418_2_1
118.73 118.75 21.36 21.37 118.7429 21.3637 150418_3_1
118.75 118.77 21.36 21.37 118.7577 21.3686 150418_4_1
118.76 118.78 21.37 21.38 118.7718 21.3776 150418_5_1
118.78 118.82 21.38 21.40 118.7976 21.3938 150418_6_1
118.82 118.80 21.40 21.35 118.8063 21.3761 150418_7_1
118.80 118.81 21.35 21.37 118.8043 21.3605 150418_8_1
118.81 118.85 21.37 21.35 118.8290 21.3618 150419_1_1
118.85 118.88 21.35 21.33 118.8639 21.3424 150419_2_1

 
Fig. 2.   Longitude and latitude values of extracted data in April 2015.
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ature and conductivity in the layers of 10 m, 400 m, and 700
m, respectively. In these figures, the dark points stand for
the data of the temperature and conductivity in the layer
range, and the colorful surface represents the fitting surface.

Since the depth of the marine data is divided into eight-
een layers, there are eighteen fitting surfaces in total. Ac-

cording to the definition of the marine data cube, all the fit-
ting surfaces can be combined together to display the big
marine data sampled by multiple underwater gliders in the
same month. Figs. 6a and 6b show the temperature data
cube and conductivity data cube in April 2015, respectively.
We can see from Fig. 6 that the proposed data fitting al-

Table 3   Partial data in the layer of 0 m
COND (S/m) TEMP (°C) Depth (m) AVE-LNG (°E) AVE-LAT (°N)

5.37770 26.174 1.1 118.7325583 21.363067
5.37668 26.164 1.2 118.7325583 21.363067
5.37640 26.168 1.3 118.7325583 21.363067
5.37561 26.160 1.3 118.7325583 21.363067
5.37475 26.150 1.4 118.7325583 21.363067
5.36030 26.036 1.5 118.7325583 21.363067
5.37517 26.186 1.1 118.7429333 21.363700
5.37316 26.170 1.2 118.7429333 21.363700
5.36963 26.128 1.3 118.7429333 21.363700

Table 4   Partial data in the layer of 10 m
COND (S/m) TEMP (°C) Depth (m) AVE-LNG (°E) AVE-LAT (°N)

5.34538 25.894 9.7 118.73256 21.36307
5.33346 25.798 10.1 118.73256 21.36307
5.29946 25.682 9.6 118.77184 21.37764
5.28493 25.532 9.9 118.77184 21.37764
5.29848 25.648 10.4 118.79755 21.39380
5.23204 25.172 10.1 118.79755 21.39380
5.23572 25.190 9.8 118.80628 21.37613
5.29873 25.638 10.0 118.80628 21.37613
5.29177 25.720 9.6 118.80425 21.36048

Algorithm 1. Data fitting algorithm based on time extraction and space compression (DFTS)
Input: All preprocessed files including CTD data files and task information files
Output: temperature data cube TDCM and conductivity data cube CDCM

DFTS(){
1: For M = M1 : Mk

2:   Extract the data from task information files in month M into file TIF-M
3:   For i = 1 : Length (TIF-M)
4:     AVE-LNG = (In-Longitude + Out-Longitude) / 2
5:     AVE-LAT = (In-Latitude + Out-Latitude) / 2
6:    Add AVE-LNG and AVE-LAT into each record of corresponding CTD data file
7:   End for
8:   Integrate all the CTD data files in month M into File CTD-M
9:   L = {0, 10, 20, 30, 50, 75, 100, 125, 150, 200, 250, 300, 400, 500, 600, 700, 800, 1000}
10:   For DEP = L[1] : L[18] //Divide the records of File CTD-M into eighteen layers according to the depth
11:   If DEP = L[1]
12:       Compress Depth Range = [0, 1.5]
13:   Else
14:       Compress Depth Range = [DEP - 1, DEP + 1]
15:   End if
16:   Fit (AVE-LNG, AVE-LAT, TEMP) to get temperature surface of DEP meters
17:   Fit (AVE-LNG, AVE-LAT, COND) to get conductivity surface of DEP meters
18:   End for
19:   Combine 18 surfaces together to get TDCM and CDCM

20: End for
}

 
Fig. 3.   Results of the data fitting in the layer of 10 m.

176 XU Zhen-zhen et al. China Ocean Eng., 2019, Vol. 33, No. 2, P. 172–184  



gorithm DFTS is feasible to construct the data cube.
However, in the depth of 0 to 75 m, some fitting surfaces
may be overlapping because of the instability of the data.
And the fitting effect varies according to the layer depth. In
the next step, we are going to study the fitting effect of each
layer by the quantitative analysis.

This study use the root mean square error (RMSE) (Chai
and Draxler, 2014) to compare the fitting effect of the tem-
perature and conductivity on each fitting surface. It is
known that smaller RMSE means better data fitting results.
The formula is expressed as:

RMSE =

√∑
di

2

m
, i = 1,2, · · · ,m, (3)

diwhere  is the deviation of the real value and fitting value
on each fitting surface, and m is the number of real values.

The relationship between the depth and RMSE of the

temperature in April 2015 is shown in Fig. 7a. During the
shallow water of the layer of 0 m to the layer of 50 m, the
RMSE decreases sharply from 2.16 at the layer of 0 m to
0.7262 at the layer of 20 m, and then goes back to 1.274 at
the layer of 50 m. The reason is the data collected by under-
water gliders in the shallow water is not stable. From the
layer of 50 m, the RMSE shows an overall downward trend.
However, the RMSE has a slight increase to 1.042 at the
layer of 125 m because the change of the temperature is rel-
atively large in the ocean thermocline (Dong et al., 2015).
The RMSE continuously decreases when the depth is more
than 125 m, and reaches 0.139 when the depth is 1000 m.
On the whole, the RMSE of temperature is smaller than 1.

Fig. 7b shows the relationship of depth and RMSE of
conductivity in April 2015. The RMSE sharply goes down
from 0.4723 at layer 0 m to 0.0683 at layer 20 m. Then, the
RMSE increases until reaching the peak value of 0.1203 at

 
Fig. 4.   Results of the data fitting in the layer of 400 m.

 
Fig. 5.   Results of the data fitting in the layer of 700 m.

 
Fig. 6.   Marine data cube.
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layer 75 m. When the depth is deeper than 75 m, the RMSE
shows a downtrend on the whole, although the RMSE in-
creases a little from 0.1071 at layer 100 m to 0.1077 at lay-
er 125 m. When the depth exceeds 125 m the RMSE con-
tinuously decreases and reaches 0.0119 at the depth of 1000
m. In general, the RMSE of conductivity is smaller than 0.1.

Due to the different units and orders of the magnitude of
the temperature and conductivity, we use Z-score (i.e.,
standard score) (Cheadle et al., 2003) to normalize the
RMSE of the temperature and conductivity in order to com-
pare the fitting effects. The formula of computing Z-score of
the temperature is as follows:

ZT =

(
RMSEp

T−μT

)
σT

, p = 1,2, · · · ,q, (4)

q = 18
RMSEp

T μT
σT

where q represents the number of water layers, i.e. .
 denotes the temperature RMSE value in Layer p. 

is the mean value and  is the standard deviation of q tem-
perature RMSE values, which can be computed by Eq. (5)
and Eq. (6), respectively.

μT =

q∑
p=1

RMSEp
T

q
; (5)

σT =

√√√√√√√√√ q∑
p=1

(
RMSEp

T−μT

)2
q−1

. (6)

The formulas to compute the Z-score of the conductiv-
ity are similar with the Eqs. (4)–(6). After normalizing the
RMSE of the temperature and conductivity, we draw the
figure of the normalized RMSE values, which is shown in
Fig. 8.

|ZT| |ZC|

|ZT|
|ZC|

The distance between the normalized data and the X ax-
is (i.e.,  and ) can be acted as the comparison criteria
of the fitting effect. A smaller distance means better fitting
effect. As can be seen from Fig. 8, in the layer of 0 m, 20 m
and 200 m,  values are 2.2498, 0.1803 and 0.1460 while

 values are 3.5916, 0.2461 and 0.2089, respectively.
This means that in these three layers, the fitting effect of the

|ZC| |ZT|
temperature is better than that of the conductivity. But in
other layers,  values are all smaller than  values. So,
the fitting effect of the conductivity is better than that of the
temperature in most cases.

4  Early warning method EWDC

4.1  Problem description
It is very important to detect the anomalies in monitor-

ing marine environment. In this paper, the objective of early
warning is finding out the abnormal temperature or conduct-
ivity values in a newly sampled CTD data file based on the
historical data and output the specific coordinates (the lon-
gitude, latitude and depth) of the abnormal data. It is help-
ful for researchers and policymakers to make further stud-
ies and decisions after they obtain the early warning results.

4.2  Algorithm description
We have constructed the data cube of the marine in-

formation in the preceding section, which means we can ob-
tain the temperature and conductivity information at any
location of the 18 layers within the data cube. Then we can
predict the temperature and conductivity data at any loca-
tion in the cube range. Thus, when the newly sampled ex-
perimental data is given, we can detect whether there is ab-
normal information in it based on the data cubes. Thus, we
present an early warning algorithm based on the data cube
(EWDC).

With the changes of the seasons, temperature and con-

 
Fig. 7.   Relationship between the depth and RMSE.

 
Fig. 8.   Relationship between depth and normalized RMSE value.
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ductivity will change accordingly. So it is reasonable to
judge the correctness of sampled temperature and conduct-
ivity values by comparing the new test data with the histor-
ical data sampled at the same month. The main idea of the
EWDC is matching the month of the data cube with the
month of new CTD file, and exploring the abnormal data in
the new test data. This algorithm has the following six steps.

Step 1. Preprocess the test values. A new CTD data file
should be preprocessed according to the regulations de-
scribed in Section 2. After that, calculate AVE-LNG (the
average value of In-Longitude and Out-Longitude) and
AVE-LAT (the average value of In-Latitude and Out-Latit-
ude) and add the two parameters into the CTD data file.
Thus, we can get information including AVE-LNG, AVE-
LAT, depth, temperature, conductivity and month from the
new CTD file.

Step 2. Match the month. Find out the existing data
cubes including TDC and CDC whose month value is equal
to the month of the new CTD file.

Step 3. Match the coordinates. Determine whether the
AVE-LNG and AVE-LAT values of the new CTD data file
are in the range of the data cubes found in Step 2. If yes, go
to Step 4, output “early warning failed” prompt message
otherwise.

Step 4. Extract the data cube values. Get the temperat-
ure and conductivity values from the data cube according to
the coordinate value in the new CTD file. Since there are 18
layers, the corresponding 18 points’ marine information
(temperature and conductivity) can be obtained from the
data cube.

Step 5. Compute the predictive values. We want to find
out the relationship between the temperature and depth (or
conductivity and depth), where the temperature or conduct-
ivity is the dependent variable, and the depth is the inde-
pendent variable. Regression analysis can estimate the rela-
tionship between two variables. The most frequently used
regression methods include linear regression, polynomial re-
gression, ridge regression and lasso regression. Ridge re-
gression and lasso regression are biased estimation regres-
sion methods specially used for multicollinearity data (high
correlation between multiple independent variables). Here is
only one independent variable. From the scatter figure, the
relationship between the temperature (or conductivity) and
depth is not a simple linear correlation. So we use the poly-
nomial regression to fit the relationship between the depth
and temperature (or depth and conductivity) from 18 points.
The detailed algorithm for choosing the order of the regres-
sion equation is described in Section 4.3. Then all depth val-
ues in the new CTD file are brought into the equation to ob-
tain the corresponding results of the temperature and con-
ductivity data.

Step 6. Output the early warning results. Compare the
predicted values with the test value in the new CTD data to
get the difference. If the absolute value of the difference is

larger than a threshold value, the early warning results with
the detailed information including the longitude, latitude,
depth and the difference with the normal values will be out-
putted. Otherwise, it is regarded as the normal data, and
shows a “Normal” prompt message.

The pseudo-code of the EWDC is shown in Algorithm 2.

4.3  Determining the order of equation

T1,T2, · · · ,T18 C1,C2, · · · ,C18

According to Step 5 of the EWDC, in order to compute
the predictive values, we should firstly get the multiple lin-
ear regression equation from the fitting curve with 18
points. After constructing a data cube, we can obtain the
longitude and latitude ranges of this data cube. Given a cer-
tain coordinate within the longitude and latitude ranges, we
can obtain corresponding 18 temperature and conductivity
values represented by  and , re-
spectively.

Polynomial regression is a special type of the multiple
linear regression model, which is used widely in statistics
(Montgomery et al., 2015). This paper uses this model to fit
the 18 points’ temperature and conductivity data. The mat-
rix expression of the multiple linear regression model about
the temperature is described as:

YT = Xβ̂T+ eT, (7)

where YT =


T1
T2
...

Tn


n×1

, X =


1 L [1] L[1]2 · · · L[1]k

1 L [2] L[2]2 · · · L[2]k

...
...

...
...

1 L [n] L[n]2 · · · L[n]k


n×(k+1)

β̂T β̂T =

(X′X)−1X′YT eT

 .

 is the estimated value of the regression coefficient, 
, and  is the residual.

The sample regression equation (i.e. the regression line
of temperature) is expressed as:

ŶT = Xβ̂T, (8)

ŶT =


T̂1
T̂2
...

T̂n


n×1

T̂i

Ti

n∑
i=1

eT
2 =

n∑
i=1

(
Ti− T̂i

)2
where ,  represents the estimated value of

. In addition, .

n = 18
Set L = {0, 10, 20, 30, 50, 75, 100, 125, 150, 200, 250,

300, 400, 500, 600, 700, 800, 1000} and .
R β̂TLet  represents the rank of a matrix,  is existed only

when Eq. (9) is satisfied.
R (X) ⩾ k+1. (9)

The order of the polynomial regression model can be
obtained by the following three ways.

(a) Adjusted R2.

R2
T

R2 and adjusted R2 of the regression analysis are used to
detect the goodness of fit of a model. R2 is known as the
coefficient of determination, and its range is 0–1. If R2 is
close to 1, the goodness of fit of the model is better. Let 
represents the coefficient of determination of the temperat-
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ure. The detailed formulas are expressed as follows:

R2
T =

ESST

TSST
= 1− RSST

TSST
; (10)

TSST =
∑

(Ti− T̄ )2; (11)

ESST =
∑

(T̂i− T̄ )2; (12)

RSST =
∑

(Ti− T̂i)
2
=
∑

eTi
2, (13)

T̄ T1,T2, . . . ,Tn T̄ =
n∑

i=1

Ti

/
nwhere  is the average value of , i.e. .

In application, if the regression equation adds a variable,
R2 tends to increase. But in fact, the goodness of fit is not
related to the increase of R2 due to this reason. So R2 is not a
suitable criterion to compare the goodness of fit between the
multiple linear regression models, and it should be adjusted.
Adjusted R2 is known as the adjusted coefficient of determ-
ination, which is very useful in evaluating and comparing
the regression models. The function of adjusted R2 is to ex-
clude the influence of the number of variables on the good-
ness of fit and to prevent over-fitting.

R̄2
TLet  represent the adjusted coefficient of determina-

tion of the temperature which is formulized in Eq. (14).

R̄2
T = 1− RSST/(n− k−1)

TSST/(n−1)
. (14)

R2
T R2

TAdjusted  and  have the following relationship:

R̄2
T = 1− (1−R2

T)
n−1

n− k−1
. (15)

(b) Akaike Information Criterion (AIC)
Akaike Information Criterion (AIC) is a criterion for

model selection, and it can balance the goodness of fit of the
model and the complexity of the model. The AIC can be ex-
pressed as:

AICT = log


∑

e2
T

n

+ 2k
n
. (16)

Considering the residual, AIC severely punishes the ad-
ditional order of independent variable. The preferred model
is the one with the lowest AIC value when selecting from a
set of models.

(c) Bayesian Information Criterion (BIC)
Bayesian Information Criterion (BIC) is proposed by

Schward in 1978, and it has similar effects with AIC for

Algorithm 2. Early warning algorithm based on data cube (EWDC)
Input: data cubes, a new CTD data file F sampled in the month MF and a corresponding task information file
Output: early warning results (LNG, LAT, DEP, ΔT) and (LNG, LAT, DEP, ΔC)
EWDC(){
1: For i = 1 : length (F)
2:   Preprocess the new CTD data file to get (TEMP, COND, Depth, AVE-LNG, AVE-LAT, MF)
3: End for
4: For M = M1 : Mk

5:   If M = MF

6:     Find out TDCM and CDCM

7:     break
8:   End if
9: End For
10: If (AVE-LNG, AVE-LAT) is not in the range the data cubes TDCM and CDCM

11:   Output “early warning failed” prompt message
12: Else
13:   Get 18 temperature values from TDCM at coordinate (AVE-LNG, AVE-LAT)
14:   Get 18 conductivity values from CDCM at coordinate (AVE-LNG, AVE-LAT)
15:   Get the temperature equation from fitting the curve with 18 temperature values
16:   Get the conductivity equation from fitting the curve with 18 conductivity values
17:   For i = 1 : Length (F)
18:     Bring Depth(i) into the temperature equation to obtain the predictive temperature value TEMPp(i)
19:     Bring Depth(i) into the conductivity equation to obtain the predictive conductivity value CONDp(i)
20:     ΔT = | TEMP(i) - TEMPp(i)|
21:     If ΔT > HT(i)
22:       Warning and Output (AVE-LNG, AVE-LAT, Depth(i), ΔT)
23:     End if
24:     ΔC = | COND(i) - CONDp(i)|
25:     If ΔC > HC(i)
26:       Warning and Output (AVE-LNG, AVE-LAT, Depth(i), ΔC)
27:     End if
28:   End for
29: End if
}
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model selection. Both AIC and BIC attempt to resolve over-
fitting through adding a penalty term for the number of
parameters in the model, but the penalty term in BIC is lar-
ger than that in AIC. Given a set of candidate models for the
data, the one with the minimum BIC value is preferred. The
formula for BIC is as follows:

BICT = log


∑

e2
T

n

+ k logn
n
. (17)

5  Experiments

5.1  Experiments about the equation
In order to verify the effect of proposed EWDC al-

gorithm, we need to do experiments based on the data cube
constructed by real sea trial data. We choose the data cube
in September 2014 as an example. First, construct the data

R̄2
T

cube in September 2014 based on the DFTS algorithm.
Then, get the longitude and latitude ranges of this data cube
which are 110.5790°E–111.3876°E and 17.1898°N–17.9201°N,
respectively. 50 coordinates within the above longitude and
latitude ranges are selected randomly to test the three cri-
terions, and the 50 experiments all obtain optimal order of 4
in both the temperature and conductivity. Therefore, in this
paper, we choose  as the main criterion, and the other two
criteria are used as verification methods.

We design a new CTD data file which acts as the test
data, and the partial data of this file after preprocessing ac-
cording to Step 1 of EWDC are shown in Table 5. Moreover,
the test data pass Step 2 and Step 3 of the EWDC because
the month information is September, and AVE-LNG
(110.5963°E) and AVE-LAT (17.5372°N) are in the range
of the data cube in September 2014.
 

Then, according to Step 4 of EWDC, we use the AVE-
LNG and AVE-LAT in this new file to obtain the corres-
ponding 18 data cube values (the temperature and conduct-
ivity) from the 18 layers of the data cube, and the partial
data of the 18 data cube values are shown in Table 6. The
values of three criteria under the different orders of the re-
gression equation are shown in Table 7. The orders of the
temperature and conductivity regression equations are both
four. 99.06% temperature data and 99.09% conductivity
data can be explained by the equation generated by the re-
gression analysis. Thus, four order regression equations of
the temperature and conductivity are reasonable and effect-
ive in this CTD file.

After determining the order of equation, we can obtain

the equations about the temperature and conductivity from
fitting the curve with 18 points. Next, we need to determine
the thresholds of ΔT and ΔC.

5.2  Experiments about the thresholds
In this section, we carried out experiments to find out the

appropriate threshold values of ΔT and ΔC. In the new CTD
file, the fitting curves of the temperature and conductivity
can be obtained by four order regression equations men-
tioned in Section 5.1, and each depth value can derive a pair
of the temperature and conductivity values which are looked
as the predictive values. The fitting curve and new CTD data
are shown in Fig. 9. The red curve represents the fitting
curve and the blue points denote the new CTD test values.

5.2.1  Determining the temperature threshold
We calculate the absolute values of the differences

between the test values in the new CTD file and the predict-
ive values from the fitting curve. There are 968 records in
the new CTD file, so there should be 968 ΔT values.

HT

HT

We change the value of  to get different early warn-
ing results and find out that = 1 is reasonable. Based on
Step 6 of the EWDC, we compare all ΔT with the temperat-
ure threshold and output 34 abnormal records as the temper-
ature warning results which are demonstrated in Fig. 10a
and Table 8. The green points in Fig. 10 represent the ab-

Table 5   Partial data of preprocessed new CTD file
No. Conductivity Temperature (°C) Depth (m) AVE-LNG (°E) AVE-LAT (°N) Month
1 4.901 30.0240 0 110.5963 17.5372 9
2 5.6020 30.0220 0.7 110.5963 17.5372 9
3 5.6021 30.0220 0.7 110.5963 17.5372 9
... ... ... ... ... ... ...

590 3.2945 4.3880 1005.2 110.5963 17.5372 9
... ... ... ... ... ... ...

966 5.5800 29.9040 2.1 110.5963 17.5372 9
967 5.5485 29.8180 0 110.5963 17.5372 9
968 5.5474 29.8040 0 110.5963 17.5372 9

Table 6   Partial data of 18 data cube values
Layer Depth (m) Temperature (°C) Conductivity

1 0 29.7586 5.5219
2 10 29.6292 5.5417
3 20 29.5532 5.5494
4 30 28.6811 5.4869
… … … …
15 600 7.1596 3.5193
16 700 6.2507 3.4418
17 800 5.5097 3.3815
18 1000 4.2763 3.2846
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normal values.

HT
HT

Considering the unstable temperature in the shallow wa-
ter area, we attempt to enlarge the threshold in the shallow
water area. Set =3 in the depth of 0 m to 100 m and set

=1 in the other depth layer, the early warning results of
the temperature decrease to two records as shown in Fig.
10b and Table 8. There are only two green points which ap-
parently deviate from the fitting curve in Fig. 10b. Less
green points are found when the threshold is larger from the

layer of 0 m to the layer of 100 m.
The detailed output of the temperature warning results

including the longitude, latitude, depth and ΔT are presen-
ted in Table 8. We compare the two schemes and choose the
latter because the unstable data in shallow water should be
considered, and it will bring too many wrong early warning
results if the threshold is too small in shallow water.

5.2.2  Determining the conductivity threshold

HC

HC = 0.1

HC = 0.3 HC = 0.1

Similarly, we do the early warning experiments about
the conductivity by changing the value of . We find that

 is reasonable. Fig. 11a and Table 9 show the 27 er-
rant points filtered by the conductivity warning. Consider-
ing the instability of sampled data in shallow water, we set

 when the depth is from 0 m to 100 m and 
in the other depths, and the detailed conductivity warning
results are shown in Fig. 11b and Table 9. As shown in Table 9,
less warning results are obtained and the data which may be
false alarms in Fig. 11a are deleted.

6  Conclusions
The present study was designed to fully use the marine

Table 7   Results of three critera

Criterion
Order

Determined order
1 2 3 4 5 6 7 8

R̄2
T 0.7853 0.9390 0.9815 0.9906 –1.4784 –3.6122 –5.1338 –7.1011 4

AICT 2.8427 1.6300 0.4795 –0.1651 5.4454 6.0906 6.3915 6.6755 4
BICT 2.8921 1.7289 0.6279 0.0327 5.6927 6.3874 6.7378 7.0712 4

R̄2
C 0.7909 0.9483 0.9853 0.9909 –9.0112 –19.7079 –28.8345 –43.9944 4

AICC –1.9921 –3.3430 –4.5572 –5.0049 2.0335 2.7844 3.1654 3.5820 4
BICC –1.9426 –3.2441 –4.4088 –4.8071 2.2808 3.0812 3.5116 3.9777 4

Table 8   Detailed output of temperature early warning results
HT No. Longitude

(°E)
Latitude

(°N)
Depth
(m)

ΔT
(°C)

HT=1,
0≤DEP≤1000

1 110.5963 17.5372 18.5 1.2506
2 110.5963 17.5372 22.3 1.6780
3 110.5963 17.5372 26.3 2.1380
4 110.5963 17.5372 30.6 2.5927
5 110.5963 17.5372 35.1 2.5990
... ... ... ... ...
34 110.5963 17.5372 18.0 1.1138

HT=3,
0≤DEP≤100 1 110.5963 17.5372 116.3 3.1283

HT=1,
100<DEP≤1000 2 110.5963 17.5372 448.2 1.7748

 
Fig. 9.   Fitting curve and test values.

 
Fig. 10.   Early warning results of temperature.
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data sampled by multiple underwater vehicles in real sea
trails and find out the early warning method for new
sampled data based on the historical data. The investigation
of the sampled marine data has shown that these data have
seven main characteristics, and two of the more significant
characteristics are big data volume and data sparseness.
These characteristics make it extremely difficult to do some
meaningful applications like early warning of the marine en-
vironment based on these sampled data. This study has
defined the concept of the marine data cube and designed a
data fitting algorithm DFTS to construct the data cube. The
data cube has demonstrated, for the first time, how to integ-
rate the big marine data sampled along saw-tooth paths. The
major contribution of this study is presenting an early warn-
ing algorithm based on the data cube (EWDC) to output the
abnormal information of a new sampled data file. It is the
first study to do some realistic application on the data
sampled by multiple underwater vehicles. These experi-
ments confirmed that the DFTS is effective to construct the
marine data cube and the EWDC is reasonable to obtain the
early warning results.

The most important limitation of this study lies in the
fact that there are only one-year sampled data which only
cover a limited ocean area. We cannot get the variation
trend of the temperature and conductivity in the same month
of different years. In the future, a large number of gliders
will be deployed to carry out automatic marine monitoring
in a long time. Thus, the data will be much bigger. The mar-

ine data cube construction method is good at dealing with
big marine data and will serve as a foundation for future
studies. The proposed algorithms will have greater applica-
tion value, as well as higher early warning accuracy.
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