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Abstract
In this paper, we establish a generalized extreme Value-Pareto distribution model and derive an analytical expression
of Weibull–Pareto distribution model. Based on a data sample of 26-year wave height, we adopt the new model to
estimate the design wave height for 500, 700 and 1000-year return periods. Results show that the design wave height
from Weibull–Pareto distribution is between that of the Weibull distribution and that of the Pearson-III distribution.
For the 500-year return period design wave height, the results from the new model is 1.601% lower than those from
the Weibull  distribution and 1.319% higher than those from the Pearson-III distribution. The Weibull–Pareto
distribution innovatively considers  the fractal  features,  extreme-value statistics  and the truncated data  in  the
derivation process. Therefore, it is a more holistic and practical model for estimating the design parameters in marine
and coastal environments.
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1  Introduction and Background
In area of designing coastal and marine structures, the

estimation of parameters of the marine environment such as
wave height and water level is one of the critical factors.
Proper and accurate calculation of the wave height or water
level is very important for the research on safety and build-
ing cost of engineering structures, especially under severe
marine conditions (Wang et al., 2017; Xian et al., 2018).
The marine environment can be very complicated. Offshore
projects need to withstand the damage caused by natural
disasters such as strong waves and typhoons. When design-
ing coastal structures and assessing the relevant risk, if the
designing security’s standard is not high enough, extreme
marine impacts such as typhoons can easily result in im-
measurable losses. On the other hand, if the designing se-
curity standard is too high, there may be issues like over-in-
vestment and financial waste. Therefore, the estimation of a
proper and accurate design standard, which can not only
withstand the natural impacts but also guarantee the secur-
ity and stability of the designed marine structures, is re-

quired. The essence of the design lies in the creation of the
most reasonable and appropriate model to estimate marine
environment design parameters.

Traditionally, univariate extreme value models, such as
Gumbel, Weibull, Pearson-III type distributions and the
maximum entropy distribution have been adopted for mod-
eling wave height and water level under extreme conditions
(Liu et al., 2006; Wang et al., 2014). As the multivariate
statistical theory develops, multivariate models like Logist-
ic model, Hüsler-Reiss model, Beta model and other mix-
ture models have been adopted in an accumulation of literat-
ure, and compound extreme value distribution under ex-
treme conditions has been introduced recently (Chen et al.,
2017a; Liu G.L. et al., 2015, 2018; Liu X.J. et al., 2018;
Wang and Wang, 2013; Wang et al., 2013, 2016). Tradition-
ally, the main idea of deriving design wave height (or wave
height for a specific return period) is to select a certain type
of probability distribution (such as, Weibull, Pearson-III,
Gumbel distribution) to model the distribution of the max-
imum annual wave height. Then observed data of maxim-
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um annual wave height and frequency is used to determine
the model parameters. After the calculation of parameters,
the cumulative density function is used to finally determine
the design wave height for a specific return period. Specific-
ally, this modeling process is based on the following as-
sumptions: 1) The annual maximum wave height follows
the same probability distribution both in the short-term and
the long-term; 2) the observed statistical characteristics in a
relatively short period of time are strictly self-similar to
those in the long-term (100-year return period or longer); 3)
due to constrains in the distribution function, only the annu-
al maximum wave height (only one data point per year) is
used in the models of wave height and water level, instead
of the majority of observed data.

The data volume and quality are fundamental for the
modeling and analysis and the quantity of the data often dir-
ectly influences the quality of the results. Due to practical
constraints in many cases, only data over a limited time
range (For example, 20 or 30 years) is available. Therefore,
it is crucial to make full use of all obtained data and extract
as much useful information as possible.

The probabilistic analysis on ocean environmental ele-
ments such as wave height and water level with Pearson-III,
Weibull distribution and multivariate extreme value distri-
bution is designed to explore the changing laws of marine
environmental factors on different time scales (i.e., 100
years, 500 years) and locations, and the expansion and infer-
ences to and from different scales. In previous extreme
value models, if the random variable is larger than a certain
threshold, the distribution function shows the form of a
power function, which has a fractal characteristic if the
large-value tail is truncated. Therefore, these distribution
functions can describe the power functions at large values
very well. However, the tail of the distribution function con-
verges to 0 so rapidly that the distribution function fits the
data poorly near the tail. The Pareto distribution shows
fractal characteristics at the low-end of the tail and has su-
perior performance in fitting the tailing data. However, its
performance for large values is mediocre.

This research proposes a generalized extreme value –
Pareto distribution function to make full use of the marine
data based on the extreme value statistical theory and fractal
theory. The new model contains the commonly used ex-
treme value distribution that shows the statistical character-
istics of random variables in extreme conditions, as well as
the fractal characteristics that utilize data efficiently. If the
observed data are from a rather short period of time, the data
can be expanded by selecting an appropriate threshold. The
new model presents both the interactive and hierarchical
structures in explicit form. The new model can be simpli-
fied to obtain the original extreme value distribution model.
It is a novel model that covers larger amounts of informa-
tion with flexibility and has broader scope of applications.

The motivation of this research lies in four folds. First,

most distribution functions of extreme values/statistics have
the form of a power function. Taking advantage of the
fractal characteristics of power function when the large-
value tail is truncated, this research discusses the changing
laws of marine environment elements over a shorter time
period (20 to 50 years). Then, using self-similarity of data
statistics, this paper calculates the design wave height over
an extended period of time (100 or 500 years). Second,
when using above-threshold data to derive design wave
height, the tail of the distribution function approaches 0, a
poor fit of tail data. Therefore, this research introduces the
Pareto distribution that exhibits fractal characteristics when
low-value data is truncated. Third, this research combines
generalized extreme distribution function (de Haan and Fer-
reira, 2006) and Pareto distribution function, to take advant-
age of their complementary strengths. Fourth, in Section 3,
we derived the generalized extreme value – Pareto distribu-
tion model, and gave the explicit express of Weibull–Pareto
distribution, where the steps are: first create a function fam-
ily; then, prove when random variable T follows the gener-
alized extreme value distribution, and X follows Pareto dis-
tribution, the expression for Weibull–Pareto distribution can
be found.

2  Fractal characteristics of the function
Fractal refers to a system with irregularity and complex-

ity, but with similarities between parts and the whole. There
is randomness in the formation of fractal with a certain reg-
ularity in the randomness. The most important fundamental
feature of fractal is self-similarity and scale-invariance.
Self-similarity means that an entity complies to the same
statistical distribution locally and globally. The scale-invari-
ance feature refers to the entity’s structure and remains un-
changed on different scales.

Dimension is another important quantity to describe the
geometric entity. In the traditional Euclidean geometry, a
single point is considered to be zero-dimension. A straight
line is one-dimensional, plane is two-dimensional, and
space is three-dimensional. The fractal dimension, in con-
trast to the Euclidean geometry of the line, plane and space,
has the dimension that may not only be an integer, but can
also be a fraction, which is different compared with the tra-
ditional dimensions in Euclidean geometry. So far, fractal
has been abstracted into a theory. Data analysis based on
fractal has shown promising results (Barrs and Chen, 2018;
Cai et al., 2011; Escalante et al., 2016; Liu G.L. et al., 2018;
Zhang S.F. et al., 2018). Fractal has become a new and per-
spective method for complex system analysis, bridging mi-
cro and macro analysis (Cai et al., 2016; Chen and Wang,
2017; Chen et al., 2016; Fu et al., 2018; Ponce-López et al.,
2016; Wang et al., 2016).

Definition 1 In a Euclidean space, if the Hausdorff di-
mension of a set is always larger than its topological dimen-
sion, such as:
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DH > DT, (1)
then the collection is called a fractal set and referred to as
fractal. This mathematical definition can be difficult to un-
derstand. Several features of a fractal are listed as follows
by the British mathematician Falconer to provide more de-
tails.

(1) Fractal has a very detailed structure, with an infin-
itely small-scale proportion of details.

(2) The fractal shows irregularity, and the irregularities
of the part and the whole have infinite levels.

(3) A fractal generally has statistical self-similarity.
(4) A fractal’s dimension is generally larger than its to-

pological dimension.
(5) A fractal can generally be iterated by simple rules

that are not complex.
In practice, the complex features of natural phenomena

represent the universality of many entities in nature. There-
fore, fractal geometry can better describe the natural world
than the traditional Euclidean geometry (Cai et al., 2016;
Chen et al., 2017b; Fu and Liu, 2017; Wang et al., 2013;
Zhang and Kleit, 2016; Zhang K.Y. et al., 2018).

Definition 2 If the research entity’s size is changed
properly, the local and global fractal of any research entity
are the same. If following formula holds,
f (br) = b f (r), (2)

the entity is self-similar fractal or linear fractal.
Definition 3 Self-similarity becomes less strict if scal-

ing ratios of similar mappings in all directions are not ex-
actly the same, which is,

f (br) = b f H(r), (3)

H
H = 1

then, the entity is called self-affine fractal, where  is
between 0 and 1. It is obvious that if , the self-affine
fractal becomes a self-similar fractal. Self-affine fractal is
not as symmetric and regular as self-similar fractal. In
nature, a self-affine fractal has different scaling across di-
mensions (Chen et al., 2018; Jiang et al., 2018; Ponce-
López et al., 2016; Liu X.J. et al., 2018; Wang et al., 2015).
Take stock price and index for example. The change scale is
no longer simple expansion or shrinkage, but rather expan-
sion in different directions with different factors.

Fractal characteristics of some common distributions are
discussed below. It can be concluded that the fractal charac-
teristics of these distributions are in the form of power func-
tions, which is consistent with the form of extreme value
models’ power function in certain conditions.

X
Definition 4 If the probability distribution function of a

random variable  is,

f (x) = ασ−αxα−1, α > 0, 0 ⩽ α ⩽ σ, (4)

σ α

X

then, the random variable X is subject to power function dis-
tribution. Where  is the scale parameter and  is the fea-
ture index. From Eq. (4), the mathematical expectation and
variance for  are,

F(x) = P(X ⩽ x) =
( x
σ

)α
, α > 0, 0 ⩽ α ⩽ σ;

E(x) = ασ(α+1)−1, α > 0;

V(x) = ασ2(α+2)−1(α+1)−2, α > 0. (5)
0 < x ⩽ σ1 ⩽ σIn the truncated tailing of the data, , fol-

lowing formulas can be derived,

P(X ⩽ x |X ⩽ σ1 ) =
( x
σ

)α(σ1

σ

)−α
=

(
x
σ1

)α
, 0 < x ⩽ σ1 ⩽ σ (6)

P(X ⩽ x)
and, Eq. (6) shows that under upper truncation, power func-
tions exhibit similar expression as . Or in other
words, fractal expression remains the same, which is fractal
characteristic. Since,

P(X ⩽ cx |X ⩽ cσ1 ) =
(cx
cσ

)α(σ1

σ

)−α
=

(
x
σ1

)α
, 0 < x ⩽ σ1 ⩽ σ

(7)
the following can be derived,
P(X ⩽ x |X ⩽ σ1 ) = P(X ⩽ cx |X ⩽ cσ1 ). (8)

σ1 c
Note that in Eq. (8), the power function has the property

of scale invariance; where,  is the scale parameter, and  is
a positive constant. Then,

Proposition 1 Power function distribution in the high-
end tailing complies to a fractal distribution with a constant
scale parameter.

X
Definition 5 If the probability distribution function of

random variable  is

f (x) : ασ−αxα−1, α > 0, x→ 0, (9)
X

σ
α

then, the random variable  is subject to an asymptotic
power function distribution. Where  is the scale parameter
and  is the feature index. The asymptotic power cumulat-
ive distribution function is,

F(x) = P(X ⩽ x) :
( x
σ

)α
, α > 0, x→ 0. (10)

x P(X ⩽ x)
xi(i = 1,2,3 · · ·n)

α

From Eq. (10), as  approaches to 0, if  and
 are plotted on a surface, they will converge

to a straight line with the slope . Then,
Proposition 2 The asymptotic power distribution in the

high-end tailing is a fractal distribution with a constant scale
parameter.

X
Definition 6 If the probability distribution function of

random variable  is

f (x) = ασαx−α−1, α > 0, x ⩾ σ > 0, (11)
X

σ X

X

then the random variable  is subject to a Pareto distribu-
tion. Where  is the scale parameter and  is the feature in-
dex. From Eq. (11) it can be found that the mathematical ex-
pectation and variance for  are,

F(x) = P(X ⩽ x) = 1−
( x
σ

)−α
, α > 0, x ⩾ σ > 0;

E(x) = ασ(α−1)−1, α > 1;
V(x) = ασ2(α−2)−1(α−1)−2, α > 2. (12)

Mandelbrot argues that in the lower tailing truncation,
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P(X ⩽ x)Pareto distribution shows a similar form with  and
fractal characteristics,

P(X ⩾ x |X ⩾ σ1 )=
( x
σ

)−α(σ1

σ

)α
=

(
x
σ1

)−α
, x ⩾ σ1 ⩾ σ > 0. (13)

In addition, as following holds

P(X ⩾ cx |X ⩾ cσ1 ) =
(cx
cσ

)−α(cσ1

cσ

)α
=

(
x
σ1

)−α
, (14)

then,
P(X ⩾ x |X ⩾ σ1 ) = P(X ⩾ cx |X ⩾ cσ1 ), x ⩾ σ1 ⩾ σ > 0. (15)

σ1

c

Eq. (15) shows that Pareto distribution carries a con-
stant scaling parameter. Where,  is the scale parameter,
and  is a positive constant. In summary, we obtain:

Proposition 3 Pareto distribution has a constant scaling
parameter in the lower tailing truncation.

X
Definition 7 If the probability distribution function of

random variable  is,

f (x) : ασαx−α−1, α > 0, x→∞, (16)

X
σ α

the random variable  is then subject to an asymptotic
Pareto distribution. Where  is the scale parameter and  is
the feature index. The function of the asymptotic Pareto dis-
tribution is,

F(x) = P(X ⩽ x) : 1−
( x
σ

)−α
, α > 0, x→∞. (17)

Similarly,
Proposition 4 The asymptotic Pareto distribution is a

fractal distribution with constant scale in lower tailing trun-
cation.

Y = ln X

X
X

Definition 8 If a transformed random variable 
follows the normal distribution, then the non-negative ran-
dom variable  obeys a logarithmic normal distribution. If
the density function of variable  is,

f (x) =
1

xσ
√

2π
exp

[
− (ln x−μ)2

2σ2

]
, x > 0, (18)

X

X

then the random variable  follows a lognormal distribu-
tion. From Eq. (18), the distribution function, expectation
and the variance of  are,

F(x) =
1

σ
√

2π

w x

0

1
x

exp
[
− (ln x−μ)2

2σ2

]
dx;

E(x) = exp
(
μ+

σ
2

)
;

D(x) = exp(2μ+σ2)[exp(σ2)−1]. (19)
X′ = cX c

X′
Denote , and  is a positive constant, and the

density function for  is,

f (x) =
1

√
2πσx

exp
[
−(ln x−μ− lnc)2

2σ2

]
=

1
√

2πσx
exp

[
−(ln x−μ′)2

2σ2

]
, x > 0 , (20)

μ′ = μ+ lnc X X′where, . Eq. (20) shows that  and  follow the

same distribution (lognormal distribution). A random vari-
able’s distribution formation remains unchanged by mul-
tiplying a positive constant number, which means that the
lognormal distribution function holds the multifractal prop-
erties.

Proposition 5 The lognormal distribution function holds
a fractal property.

3  Generalized extreme value-Pareto distribution
function
In the field of marine engineering and study of coastal

disaster prevention, Weibull and Gumbel extreme value dis-
tributions are often adopted to estimate the occurrence fre-
quency of wave height’s extreme value. Nonetheless, the
generalized extreme value distribution is used for the mod-
eling, which is helpful to understand these distributions in
the macro scope. This section establishes the generalized
extreme-Pareto distribution model based on the fractal the-
ory and provides the analytical solution to the Weibull-
Pareto distribution.

T
X

G(x) g(x)

Theorem 1 Suppose random variable  follows the gen-
eralized extreme value distribution, random variable  can
be either a discrete or continuous, then exists family of gen-
eralized distribution , and its density function is ,

g(x) =
1
σ1

f (x)
1−F(x)

exp

−(1+ ξ
{− log[1−F(x)]

}
σ1

) −1
ξ
−(1+ ξ

{− log[1−F(x)]
}

σ1

) −1
ξ −1

 , (21)

ξ, σ, β t ⩾ 0where  are parameters, and .

T
T

X

Alzaatreh et al. (2013) proposed a family of generalized
distribution and uses random variable  as a supporting
variable when deriving the impacts of  on the distribution
of .

Proof: construct a distribution function as follows:

G(x) =
w − log[1−F(x)]

0
r(t)dt = R

{− log[1−F(x)]
}
, (22)

X
r(t) T
T ∈ [0,∞) R(t)

T

where F(X) is the cumulative distribution function for ,
and  is the density function for the random variable ,
and .  is the cumulative density function of the
random variable . The corresponding probability density
function associated with Eq. (22) is,

g(x)=
f (x)

1−F(x)
r
{−log[1−F(x)]

}
=h(x)r

{−log[1−F(x)]
}
, (23)

h(x) X
F(x)

Q(λ) 0 < λ < 1 T −X

where  is the hazard function for the random variable 
with the cumulative density function of . The quantile
function, , , for the  family of distribu-
tions can be computed by using the formula,

Q(λ) = F−1[1− e−R−1(λ)]. (24)
TSuppose the random variable  follows generalized ex-

treme value distribution,
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r(t) =
1
σ1

exp

−(1+ ξt
σ1

) −1
ξ

−(1+ ξt

σ1

) −1
ξ −1

 , (25)

σ1 ξ t ⩾ 0where  and  are parameters, . By merging Eq. (25)
into Eq. (22), the following can be obtained,

G(x) =
w − log[1−F(x)]

0

1
σ1

exp

−(1+ ξt
σ1

) −1
ξ

−(1+ ξt

σ1

) −1
ξ −1

dt

(26)
G(x) xTake a derivative on  with respect to ,

g(x) =
1
σ1

f (x)
1−F(x)

exp

−(1+ ξ{− log[1−F(x)]}
σ1

) −1
ξ
−(1+ ξ{− log[1−F(x)]}

σ1

) −1
ξ −1

 . (27)

XInference 1 If  follows Pareto distribution, then

g(x) =βx−1 exp
{
−
[
1+ log(x/σ)βξ

] −1
ξ

}
{
−
[
1+ log(x/σ)βξ

] −1
ξ −1

}
. (28)

f (x) = ασx−α−1, α > 0, x ⩾ σ > 0Proof: take , into Eq. (21),

g(x) =
1
σ1

αx−1 exp

−(1+ ξ
[(− log(x/σ)−α

)]
σ1

) −1
ξ
−

(
1+

ξ
[− log(x/σ)−α

]
σ1

) −1
ξ −1

 =
α
σ1

x−1 exp

−[1+ log(x/σ)
αξ
σ1

] −1
ξ
−[1+ log(x/σ)

αξ
σ1

] −1
ξ −1

 . (29)

α
σ1
= βAssume , it can be simplified to

g(x) =βx−1 exp
{
−
[
1+ log(x/σ)βξ

] −1
ξ

}
{
−
[
1+ log(x/σ)βξ

] −1
ξ −1

}
. (30)

T
X

f (x) = ασx−α−1, α > 0, x ⩾ σ > 0

GPD(β,σ,ξ) ξ
X

Definition 9 If a random variable  follows generalized
extreme value distribution, random variable  follows
Pareto distribution, , then
Eq. (30) is the generalized extreme value-Pareto distribu-
tion, and denoted as . In Eq. (30), when  takes
values, random variable  follows Pareto distribution, then
Inference 2 exists.

−1
ξ
= 1Inference 2 If , Eq. (30) can be simplified to

g(x) =βx−1 exp
{
−
[
1+ log(x/σ)−β

]}
=

β
x

exp
{
−
[
loge(x/σ)−β

]}
= −eβσβx−1−β, (31)

σwhich is similar to a Pareto distribution. In Eq. (30), when 

Xtakes values that would result in random variable  follows
Pareto distribution, we have Inference 3 below. Eq. (30)
gives explicit expression of Eq. (32).

σ = 1Inference 3 If  , Eq. (30) can be simplified to,

g(x) =βx−1 exp
{
−
[
1+ log(x)βξ

] −1
ξ

}
{
−
[
1+ log(x)βξ

] −1
ξ −1

}
=

βx−1 exp
[
−(logexβξ)

−1
ξ

] [
−(logexβξ)

−1
ξ −1

]
. (32)

The above can be simplified to a Logarithm-Weibull
distribution.

g(x) G(x)
We can deduct the distribution function of Eq. (30) in

Eq. (33), which means  is the density function of .
G(x)Inference 4 If distribution function  is known:

G(x) = exp
{
−
[
1+ log(x/σ)βξ

] −1
ξ

}
. (33)

xAnd take the derivative on Eq. (29) respect to .

g(x)=exp
{
−
[
1+ log(x/α)βξ

] −1
ξ

}{
−
[
1+ log(x/α)βξ

] −1
ξ

}′
x
=

exp
{
−
[
1+ log(x/α)βξ

] −1
ξ

}
×

(
−1
ξ

)
×{

−
[
1+ log(x/α)βξ

] −1
ξ −1

}
×

[
1+ log(x/α)βξ

]′
x
=

exp
{
−
[
1+ log(x/α)βξ

] −1
ξ

}
×

[
1+ log(x/α)βξ

] −1
ξ −1×

1
ξ
×

[
log(x/α)βξ

]′
x
=

exp
{
−
[
1+ log(x/α)βξ

] −1
ξ

}
×

[
1+ log(x/α)βξ

] −1
ξ −1×

1
ξ
× 1

(x/α)βξ
×

[
(x/α)βξ

]′
x
=

exp
{
−
[
1+ log(x/α)βξ

] −1
ξ

}
×

[
1+ log(x/α)βξ

] −1
ξ −1×

1
ξ
× 1

(x/α)βξ
×

(
1
α

)βξ
×

(
xβξ

)′
x
=

β
x
×

exp
{
−
[
1+ log(x/α)βξ

] −1
ξ

}
×

[
1+ log(x/α)βξ

] −1
ξ −1
.

(34)

GPD

GPD

T

In summary, if the parameters take specific values, the
 distribution is reduced to the form of a logarithmic

normal distribution and a Pareto distribution. Therefore, the
 can include both the properties of the Weibull distribu-

tion and those of the Pareto distribution, which highlights
the advantages of the newly proposed model. When ran-
dom variable  follows Weibull distribution, then Infer-
ence 5 exists. The expression in the theorem is the explicit
form of Eq. (39).

TInference 5 If a random variable  follows a Weibull
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distribution,

r(t) =
(

c
γ

)(
t
γ

)c−1

exp
[
−
(

t
γ

)c]
, (35)

c γ t ⩾ 0where,  and  are parameters, and . Then, the Weibull-
Pareto distribution can be explicitly written as,

g(x) =
βc
x

[
β log

( x
σ

)]c−1
exp

{[
β log

( x
σ

)]c}
,

x ⩾ σ > 0, c > 0, β > 0 (36)

TProof: assume that  follows a Weibull distribution,

r(t)=
(

c
γ

)(
t
γ

)c−1

exp
[
−
(

t
γ

)c]
, (37)

c γ t ⩾ 0
G(x)

where,  and  are parameters, and . By merging Eq.
(37) with Eq. (22), the density function of  can be ob-
tained:

g(x)=
αc
γx

[
α
γ

log
( x
σ

)]c−1

exp
{
−
[
α
γ

log
( x
σ

)]c}
, x⩾ σ> 0. (38)

β = α
γDenote , above derivation can be simplified to,

g(x) =
βc
x

[
β log

( x
σ

)]c−1
exp

{[
β log

( x
σ

)]c}
,

x ⩾ σ > 0, c > 0, β > 0. (39)

X
X : WPD(c,β,σ)

Definition 9 Eq. (39) assumes  follows a Weibull–
Pareto Distribution, and denoted as .

σ = 1Inference 6 If , then Eq. (39) can be written as:

g(x) =
βc
x

[
β log(x)

]c−1 exp
{[−β log(x)

]c} . (40)

Eq. (40) represents a logarithmic Weibull.
c = 1If  then Weibull–Pareto distribution can be written as:

g(x) =
β
x

exp
[
−β log

( x
σ

)]
=

β
x

( x
σ

)−β
= βσβx−1−β. (41)

−1
ξ = 1

Eq. (41) shows that Pareto distribution is a special case
of Weibull–Pareto distribution. Moreover, to simplify Eq.
(33), if  then

G(x) =exp

−
[
1+ log

( x
σ

)βξ] −1
ξ
 =

exp
{
−
[
1+ log

( x
σ

)−β]}
=

exp
[
− log

( x
σ

)−β]
=

1
e

( x
σ

)−β
. (42)

Eq. (42) appears to be a power function with two para-
meters, which is the simplest fractal model. In the follow-
ing section, the Weibull–Pareto distribution is applied to an
engineering example. Based on the theories and the statistic-
al characteristics of Weibull distribution and Pareto distribu-
tion, the designed wave height and water level are estim-
ated, which reflect both the extreme value feature as well as
the features of the data beyond the threshold. Together, they
somewhat cover the fractal features.

RIn engineering practice, the main problem is: given ,

0 < R < 1where , solve:
G(x) = T. (43)

T = 1−R TIt is usually expressed as , where  is the design
frequency. Then,

N =
1
T
=

1
1−G(x)

. (44)

X G(x) = R
We call N the return period of wave height random vari-

able . If the equation is satisfied, which means ,
then we call it N-year return period. In practical engineer-
ing problems, we utilize the fractal properties at the tail of
data, using statistical analysis of shorter time period of wave
height data, and extend it to calculate design wave height
over longer period of time.

4  An engineering case study based on WeibullPareto
model
Since the model derived in this paper is extreme value

statistic characteristic model, it can also be used in the cal-
culation of other marine environment design parameters,
like design water level. This section includes a Weibull–
Pareto distribution case study of wave height data measured
between 1963 to 1988 in the Chaolian Island (35°53.6′N
120°53.1′E) in Shandong Province, China (the data in the
year 1976 is missing). The whole data sample is segmented
into 4 groups: with the observed wave height data, the
whole data sample is segmented into 4 groups based on dif-
ferent time periods. Group A26 is a dataset between 1963
and 1988, with annual extreme value; Group A16 is a sub-
set of A26, where the data are between 1973 and 1988; B26
is a dataset between 1963 and 1988 where the values are
above a threshold, which will be further explained in the
next paragraphs; B16 is a subset of B26, where the time
span is from 1973 to 1988. Average wave height A26 is
3.727 m, while A16 is 3.768 m.

X
X X′s

Assume that Chaolian Island’s wave height is a random
variable  and firstly a rescaled range (R/S) analysis is con-
ducted on . The autocorrelation in  time series is ex-
amined based on the Hurst index test, and it is shown that
there are fractal characteristics in the wave height’s time
series. Thus, the generalized extreme value Pareto distribu-
tion function can be used to capture its statistical character-
istics.

The data beyond threshold method is used to determine
the thresholds of the data groups B16 and B26. In the re-
maining life map, the trend lines’ flat parts have less volatil-
ity and the data beyond thresholds can be obtained for B26
and B16 respectively, as shown in Fig. 1. The curves in Fig. 1
consist of observed data points. In Fig. 2 and Fig. 3, the
circles represent data points, and the straight lines or curves
are theoretical curves in different coordinate systems. The
logarithm or histogram of measured data is taken respect-
ively, and the corresponding theoretical curves are drawn in
the coordinate plane. Figs. 2 and 3 are obtained respectively,
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which shows that it is reasonable to fit the measured data
with the theoretical extreme value model.

The statistical description plot in Fig. 2 shows that for
the sample group B26, the selected threshold sample fits

very well with the generalized extreme value distribution
within the confidence level of 95%. Similar results are
shown in Fig. 3 for sample group B16. The density curve
also fits well, which shows that the selected threshold is ap-

 
Fig. 1.   Average remaining life plots for data groups B26 and B16.

 
Fig. 2.   B26 statistical description plot (a. Probability; b. Quantiles; c. Reoccurrence; d. Density).

 
Fig. 3.   B16 statistical description plot (a. Probability; b. Quantiles; c. Reoccurrence; d. Density).
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propriate. Thus, the sample groups B26 and B16 can be
used for modeling in the extreme value distribution. It is
known that the distribution of wave height’s annual ex-
treme value is normally distributed with certain bias. The
shape of the distribution can be captured by a spiky peak
and long fat tail.

c(t)
R2

Table 1 shows the statistical characteristics for the wave
height time series. The fractal characteristics of wave height
time series are further discussed. It is a stochastic process
with a deterministic trend. Table 2 analyzes the wave
height’s time series with R/S method with least square meth-
od, and R/S formula, Hurst index H, transition function ,
and . The Hurst index H is a constant between 0 and 1. R
and S are the range and mean square deviation respectively,
which can reflect the type of data.

c(t) ⩾ 0 H
According to the correlation of the motion trajectories of

fractional Brownian motion, if , as  approaches to
1, the stronger the longer-range correlation of the time series
is, the longer memory embedded in the wave height time
series will be. In other words, if the time series is trending
up historically, there will also be an increasing trend in the
future. Contrarily, if the time series is trending down histor-
ically, there will also be a decreasing trend in the future.
The double logarithmic plots of wave height time series
A26, A16, B26, and B16 are shown in Fig. 4.

From Tables 2 and 3, it is reasonable to set wave height
observed data curve to fit Weibull distribution and Pareto
distribution. Table 3 and Table 4 list the Kolmogorov–
Smirnov test (K-S testing) results for the fittings of Weibull
distribution and Pareto distribution on the wave height
series A26, A16, B26 and B16, respectively. The 95% con-
fidence intervals of estimation of Weibull distribution and
Pearson-III of the parameters are shown in Table 5 and
Table 6. After checking the theoretical curves of wave
height data, the WPD distribution model, Weibull distribu-
tion and Pearson-III distribution can be used to calculate the
design wave heights of 100, 500, 700 and 1000 years re-
spectively. The estimated wave height extreme values for
100, 500, 700, and 1000 years for WPD distribution,
Weibull distribution, and Pearson-III distribution are shown
in Table 7.

From Table 8, it can be seen that the designed wave
height with a recurrence within differentiated years by the
GPD distribution model is quite close to those of some com-
mon distributions. The estimated designed wave height is
generally lower than the Weibull distribution and larger than
the Pearson-III distribution. For instance, the 500-year and
1000-year in the A26 dataset, the newly proposed model is
1.601% and 3.222% lower than the Weibull distribution’s
standards, respectively, and 1.319% and 2.170% higher than
the Pearson-III distribution standards, respectively. The de-
signed wave height from the new model can provide a
benchmark. As the new model is based on rigorous math-
ematical derivation, the design wave height derived from it
can be applied to providing scientific support in the design

 
Fig. 4.   Double logarithmic plot of wave height time series.

Table 1   Statistical characteristics of wave height data
Data group A26 A16 B26 B16

E(X) 3.72 3.70 3.62 3.64
Skewness 3.54 3.57 3.60 3.53
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standard of breakwaters and levees.

5  Conclusion
This article studies a new calculation model for marine

environment design parameters. The generalized extreme-
Pareto distribution model based on fractal distribution and
the analytic expression of Weibull–Pareto distribution mod-
el are provided. It is also shown that the commonly used
function distributions exhibit fractal characteristics. For the
new model, when it is used to estimate the designed wave
height, the result is higher than that of the Pearson-III distri-
bution, and lower than that of the extreme distribution. This
indicates that when the new model is designed to calculate
the wave height’s annual extreme values, higher standards
are needed than the Pearson-III distribution, i.e. the de-
signed wave height’s extreme value with 500-year return
period. The new model’s results are 1.601% lower than
those of the Weibull distribution and 1.319% higher than
those of the Pearson-III distribution.
 

The model for calculating the marine environment
design parameters established in this research considers the
fractal features, extreme-value statistics and beyond-
threshold data. However, due to the impacts of various ex-
ternal environmental factors on the wave heights, the emer-

ging mechanism can be complicated. Factors, such as the

typhoon-induced wave and surface water level anomalies,

pose challenges to determining the designed wave height in

offshore engineering and are worth further investigation.

Table 2   Estimation of the R/S analysis
Data group A26 A16 B26 B16

H 0.80 0.80 0.84 0.83
c(t) 0.52 0.51 0.60 0.54
R2 0.98 0.96 0.98 0.97

Table 3   K–S testing results for the Weibull distribution
Data group A26 A16 B26 B16

Test value Dn
0.15 0.17 0.16 0.20
0.06 0.10 0.07 0.10

Threshold value D0 (5%) 0.24 0.29 0.24 0.27
Comparison Dn<D0 Dn<D0 Dn<D0 Dn<D0

Testing result Accept Accept Accept Accept

Table 4   K–S Testing results for the Pareto distribution
Data group A26 A16 B26 B16

Test value Dn
0.1411 0.1509 0.1367 0.1477
0.07 0.11 0.06 0.10

Threshold value D0 (5%) 0.2347 0.2634 0.2334 0.2573
Comparison Dn<D0 Dn<D0 Dn<D0 Dn<D0

Testing result Accept Accept Accept Accept

Table 5   Estimated Weibull distribution parameters
Data group A26 A16 B26 B16

a
Estimation interval

40.11
[36.45, 44.30]

40.76
[38.58, 43.73]

38.26
[36.75, 41.04]

40.24
[37.11, 43.00]

b
Estimation interval

6.69
[3.52, 6.23]

7.20
[5.96, 8.91]

6.98
[5.68, 8.76]

7.00
[8.23, 8.77]

Table 6   Estimated Pearson-III distribution parameters
Data group A26 A16 B26 B16

a
Estimation interval

35.46
[19.42, 64.74]

36.12
[20.33, 64.20]

34.67
[20.59, 59.81]

35.23
[19.53, 62.01]

b
Estimation interval

1.05
[0.57, 2.01]

1.14
[0.45, 12.09]

1.02
[0.47, 1.68]

1.07
[0.62, 1.96]

Table 7   Designed wave height values for different return periods

Return period
Weibull distribution Pearson-III distribution GPD distribution

A26 A16 B26 B16 A26 A16 B26 B16 A26 A16 B26 B16
100 5.566 5.601 5.570 5.588 5.316 5.344 5.172 5.200 5.523 5.536 5.075 5.118
500 5.935 5.936 5.840 5.859 5.764 5.806 5.570 5.652 5.840 5.891 5.722 5.727
700 6.002 6.120 5.870 5.929 5.852 5.890 5.647 5.718 5.872 5.892 5.907 5.904
1000 6.070 6.201 5.890 5.981 5.943 6.014 5.728 5.756 6.072 6.179 5.953 5.958

Table 8   Comparison results in percentage
W100 W500 W700 W1000 P100 P500 P700 P1000

A26 –0.772 –1.601 –2.166 –3.222 3.893 1.319 0.342 2.170
A16 –1.161 –0.758 –3.725 –0.355 3.593 1.464 0.034 2.743
B26 –8.887 –2.021 –0.630 –1.070 –1.876 2.729 4.604 3.928
B16 –8.411 –2.253 –0.422 –0.385 –1.577 1.327 3.200 3.509

Note: W* represents the design wave height with return period of * years under the Weibull distribution; P* represents the design wave height with return
period of * years under the Pearson-III distribution.
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