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Abstract
The load and corrosion caused by the harsh marine environment lead to the severe degradation of offshore equipment
and to their compromised security and reliability. In the quantitative risk analysis, the failure models are difficult to
establish through traditional statistical methods. Hence, the calculation of the occurrence probability of small sample
events is often met with great uncertainty. In this study, the Bayesian statistical method is implemented to analyze
the oil and gas leakages of FPSO internal turret, which is a typical small sample risk but could lead to severe losses.
According to the corresponding failure mechanism, two Bayesian statistical models using the Weibull distribution
and logarithmic normal distribution as the population distribution are established, and the posterior distribution of the
corresponding parameters is calculated. The optimal Bayesian statistical model is determined according to the
Bayesian  information  criterion  and  Akaike  criterion.  On  the  basis  of  the  determined  optimal  model,  the
corresponding reliability index is solved to provide basic data for the subsequent risk assessments of FPSO systems.
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1  Introduction
FPSOs are usually set up in harsh and complex deep-sea

waters for their entire life cycle, which often spans over 10
years. Hence, FPSOs are subjected to extreme environment-
al loads caused by extreme sea conditions (big waves, cur-
rents, etc.). Hull structures and equipment also gradually de-
grade in highly corrosive environments, leading to serious
challenges in ensuring the security and usability of FPSOs.

The reliability and safety of FPSOs have been ad-
dressed in previous literatures. Zhang et al. (2016) pro-
posed a reliability evaluation method for the FPSO side-by-
side offloading mooring system. This method combines the
structural system reliability theory with the weakest failure
mode group. A real SBS offloading mooring system was
chosen as the simulation object, and the results showed con-
sistency with practical engineering experiences and hydro-
dynamic theory. Sun et al. (2017) studied the FPSO colli-
sion damage. A dynamic simulation in the time domain was
used to predict the structural response resulted from a ship
collision. Then, the artificial neural network (ANN) was

trained on the basis of the collision data and then used as a
substitute for the iterative runs of the finite element method
(FEM) within the MCS procedure. A qualitative uncer-
tainty analysis of the quantitative damage was also conduc-
ted. The proposed method can reduce the number of numer-
ical calculations and eliminate the sample size limitation of
MCS. Lu et al. (2018) presented a methodology that com-
bines ANN and a genetic algorithm to solve the models of
the dropped object collision damage and thereby reduce the
computational complexity of the conventional FEM.

FPSO internal turret systems involved in oil and gas
transmission are at risk of leakage, which may cause fire
and explosion and threaten the safety of the entire FPSO
system. Internal turret systems are widely used in the field,
accounting for about 42% of all FPSOs in service. Hence,
their reliability requires adequate attention.

The key components of an internal turret can be divided
into four main parts according to function: (1) turret (T), in-
cluding the turret shaft, turret cavity, main bearing, and
lower bearing; (2) fluid transfer system (FTS), including
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multi-channel rotary joints and piping systems located in the
upper part of the turret and connected by the turret transfer
system (TTS); (3) TTS, which mainly refers to the middle
manifold and turntable that can rotate around the turret, TTS
connection turret, and FTS; (4) an interface system (IS),
which refers to the chain buoys, mooring lines, flexible
risers, and rotary joints used to view the platform structure
and other auxiliary equipment.

Although the failures of internal turret systems are seri-
ous, the statistical failure information is insufficient. This
inadequacy presents difficulties in summarizing the risk
characteristics using traditional statistical analysis methods.
The Bayesian method is an effective tool to deal with this
problem. Applying the Bayesian method to modeling and
analyzing reliability data can solve problems such as small
sample size and unclear understanding of the failure mech-
anisms. As the Bayesian posterior distribution is a probabil-
istic description of unknown parameters, it can be propag-
ated through complex models. The Bayesian reliability ana-
lysis method has been analyzed in previous studies. Gel-
man et al. (2003) studied convergence analysis and model
test methods. Hamada et al. (2008) have summarized the
theoretical development and application of Bayesian meth-
ods in reliability data analyses in recent years, focusing on
the regression model, acceleration model, degradation mod-
el, and other models of failure time. They also introduced
the goodness-of-fit test, model verification, design of reliab-
ility test program, and the basic data required for fault tree
analysis. Ntzoufras (2009) presented Bayesian modeling
and the necessary steps in detail, including the application
of the Bayesian hierarchical model. The corresponding
model was solved by the Markov chain Monte Carlo (MCMC)
theory, and a detailed calculation case was demonstrated us-
ing WinBUGS software. Abaei et al. (2018a) developed a
Bayesian Network for the reliability assessment and predict-
ing the optimum design point of the mooring system. The
proposed Bayesian approach could improve the safety of
marine floating structures. Abaei et al. (2018b) introduced a
safety framework for estimating the Touching Bed Probabil-
ity (TBP) of a vessel transiting a water way. Luque and
Straub (2016) used dynamic Bayesian approach to model
the deterioration of structural systems. Reliability of a
Daniels system and a steel offshore structure are accurately
assessed based on the presented algorithm.

In the present study, two Bayesian models are proposed
to calculate the probability of oil and gas leakage of FPSO
internal turret systems. These two models are gradually up-
dated with the failure data to reduce the uncertainty of the
reliability analysis and make the calculation of the probabil-
ity close to actual situations. In Section 2, the risk features
of FPSO internal turret systems are described, and the
Bayesian method is presented. In Section 3, two Bayesian
models referring to failures of internal turret systems are es-
tablished and compared. In Section 4, we summarize our

findings and present specific comments about the proposed
method.

2  Problem and method

2.1  Problem description
Oil and gas leakages are the main threats faced by FPSO

internal turret systems due to the flammable and explosive
oil and gas resources involved, the deterioration of the ma-
terial properties (fatigue and corrosion of pipelines and
seals), human errors, and failures of control systems. In par-
ticular, TTSs, which are subjected to heavy loads, are prone
to malfunction. According to relevant studies (Paik et al.,
2011; Kang et al., 2017; Jin and Jang, 2015; Meng et al.,
2018), during the production phase of the FPSO, the occur-
rence of oil and gas leakages in internal turrets is relatively
rare, but the consequences considerably affect the safety of
employees and equipment, especially when large uncontrol-
lable oil and gas leakages lead to fires and explosions.
Through safety monitoring systems, the risks are easily dis-
covered in the initial stage of leakages, and injuries and ac-
cidents are thus avoided. However, the maintenance of such
systems involves a long downtime, which affects the eco-
nomic efficiency of FPSO production. The failure informa-
tion of the FPSO internal turret systems in the context of
leakages is collected and presented in Table 1 according to
Offshore Technology Report (AEA Technology Engineer-
ing Solutions for the Health and Safety Executive, 2001).
These FPSOs are installed in the North Sea, UK.

According to Table 1, the TTSs are the largest contribut-
or to the internal turret leakage. TTSs are subjected to not
only physical loads but also high temperatures and corro-
sion caused by oil and gas. As a result, the probability of the
material degradation rises. Establishing a mathematical
model to calculate the leakage probability is difficult be-
cause of many factors that need to be considered, such as
loads, temperature, and corrosion. Failure mechanisms are
too complicated to be established because of the correlation
among these factors. In this case, the use of statistical meth-
ods, such as the Bayesian method, is an effective approach,
especially for the analysis of small samples.

2.2  Bayesian method and MCMC simulation
The basic principle of the Bayesian analysis is to con-

tinuously renew the established model using the updated in-
formation it possesses. The Bayesian statistical model con-

Table 1   Statistical data of leakages of FPSO internal turret
FPSO name Leakage position Leakage interval/day

GRYPHON A
TTS   228
TTS 1503

SCHIEHALLION TTS   242
BERGE HUGIN STP   571
UISGE GORM TTS 1176

GURLEW TTS 1388
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sists of two parts: the likelihood function and the prior dis-
tribution of the parameters, and the result is the posterior
distribution of the parameters. It can be expressed by
Posterior distribution ∝ Likelihood function×

Prior distribution (1)
Bayesian analysis can be divided into four main steps:

establish the probability model, calculate the posterior dis-
tribution, analyze the posterior distribution samples, and
generate a statistical inference.

In the Bayesian analysis, we need to use the Monte
Carlo method to estimate the integrals involved according to
the ergodic theorem. The two common types of MCMC are
the Metropolis–Hastings (M-H) algorithm and Gibbs al-
gorithm. Although the Gibbs method can quickly converge
Markov chains to posterior distributions and presents a
small correlation among consecutive samples, the applica-
tion of this method requires the derivation of the full-condi-
tional probability distribution of all parameters.

Satisfying such requirement is difficult. In the current
work, the random walk M-H algorithm is used to simulate
the posterior distribution. The following describes the steps
of the M-H algorithm.

θ

In the process of sampling, the transition kernel density
function must satisfy three conditions. First, the function
must start from any subset of the parameter space within a
limited number of steps and it can be moved to any position
in the parameter space. Second, the function must not make
the Markov chains periodic. Third, assuming  represents a
parameter describing the probability distribution of the
sample, for all i and candidates the following should be sat-
isfied.

0 <
g
(
θ∗|θi−1

)
g
(
θi−1|θ∗

) <∞. (2)

g
(
θ∗|θi−1

)
θ0

i ⩾ 1

The transfer kernel density function  and ini-
tial value  are selected according to the aforementioned
principles. For , the iterative steps are as follows.

θ∗

g
(
θ∗|θi−1

)
θi−1

Step 1. Generate candidate point  according to
 and ;

Step 2. Calculate the acceptance probability of the can-
didate point;

θiStep 3. Generate  according to acceptance probability;

θi =

{ θ∗ u ⩽ r
θi−1 u > r

(3)

where u is a random number subjected to a uniform distri-
bution (0, 1).

When calculating the acceptance probability r, the prin-
ciple of moving the candidate points to gain a high posteri-
or probability density and a large transfer kernel density
function is satisfied. Through multiple iterations of these
steps, a random sequence that meets the requirements is
generated. The number of iterations depends on the calcula-
tion requirements. Generally, higher requirements lead to
more iterations.

2.3  Model availability

2.3.1  Model convergence analysis
Convergence analysis refers to whether the sample of

the posterior survey is stable and converges to the target dis-
tribution. The convergence of the Markov chains is often
judged from the numerical statistics and graphs.

As the generated samples are essential Markov chains
that are generated on an iterative basis, the correlation can-
not be ignored. If this correlation is strong, the information
contained in the simulation sample is relatively small, thus
indicating that the algorithm is poorly mixed. Such prop-
erty indicates that the results obtained from the analysis are
not reliable. One statistic that measures the correlation
among the MCMC simulation samples is the autocorrela-
tion coefficient.

ρk(θi) =
n

n− k

∑n−k

i=1

(
θi−θi

) (
θi+k −θi

)
∑n

i=1

(
θi−θi

)2 , (4)

θi

where n is the number of simulation samples; k is the num-
ber of iterations between two simulation datasets, and for a
given k, this value is usually called the k-order autocorrela-
tion function of the parameters; and  is the mean of the
simulated samples.

For the calculated values of each order correlation coef-
ficient, the first order is usually the largest and is a positive
value. As the value of k increases, the correlation coeffi-
cient gradually decreases to zero, indicating that the linear
correlation among the samples increases with the iteration
interval and that the overall randomness of the samples is
satisfactory.

SD(θi |y )

SE(θi)

In the convergence analysis of the posterior distribution,
whether the statistical uncertainty and MC uncertainty re-
lated to the posterior sample are within the acceptable
ranges needs to be determined. Statistical uncertainty is de-
termined by the sample and its model. Under the frame-
work of the Bayesian analysis, this uncertainty is measured
by using a parameter’s posterior standard deviation

. MC uncertainty is derived from the approxima-
tion of model features. This uncertainty is usually measured
by , which is commonly known as the MC deviation.

SD(θ̂i |y ) θ̂i

In Bayesian estimation, the posterior mean squared er-
ror  of a Bayesian estimate  can be calculated by

SD(θ̂i |y ) = Eθi |y
(
θi− θ̂i

)2
. (5)[
SD(θ̂i |y )

] 1
2

θ̂i Eθi |y

p(θi |y ) θ̂i

θi

Here, the square root  is called the posterior
standard error of .  is the expected condition distribu-
tion . When  represents the posterior expectation of

,

SD(θi |y ) = Eθi |y
(
θi−θi

)2
= Var(θi |y ). (6)

Var(θi |y )[
SD(θ̂i |y )

] 1
2

The posterior variance can be denoted by . The
posterior standard deviation  can be approxim-
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ately calculated by the standard deviation of the posterior
samples.

SD(θi |y ) ≈

√√
1

n−1

n∑
i=1

(
θi−θi

)2
; (7)

SE(θi |y ) =
SD(θi |y )
√

n
, (8)

SE(θi |y ) θi represents the standard deviation of .

SE(θi |y )

In the MCMC algorithm, calculating the MC deviation
requires correcting the correlation of sequences. Thus,

 can be estimated by

SE(θi |y ) =
SD(θi |y )
√

n

√√√
1+2

n−1∑
k=1

ρk(θi), (9)

n ρk(θi)
θi

θi

where  is the number of the posterior samples and  is
the k-th order autocorrelation coefficient of . Meanwhile,
if  is estimated by a first-order autoregressive process,
then

SE(θi |y ) ≈ SD(θi |y )
√

n

√
1+ρ
1−ρ , (10)

ρ θi

SE(θi)
SD(θi)

where  is the first-order autocorrelation coefficient of . If
 of the parameters to be evaluated is smaller than 5% of
, then the samples can be considered as convergent.

In the M-H method, the convergence rate of the Markov
chains is sensitive to the initial values. As a result, a sample
path diagram and an ergodicity mean diagram are required
for the convergence diagnosis.

The sample path diagram refers to a record of the
samples generated by each iteration. Multiple Markov
chains are usually generated from different initial points at
the same time to prevent the Markov chains from falling in-
to certain local areas of the target distribution. After a cer-
tain period, if the sample path diagrams are stable and can-
not be distinguished from one another, then the sample is
considered as convergent.

The theoretical basis of the MCMC method is the tra-
versal mean value theorem; therefore, whether the Markov
chain converges can be analyzed by observing the traversal
mean. To prevent Markov chains from falling into certain
support domains of the target distribution, we can examine
whether the traversal mean of multiple Markov chains from
a dispersed initial point converges. If only one Markov
chain is used, the iterations should be enough to ensure that
the chain reaches every part of the support. However, the
conventional convergence diagnosis method has two disad-
vantages. First, the amount of information that can be ob-
tained in a single Markov chain can sometimes exceed the
amount of information obtained by the iterative comparison
of multiple chains. Second, the traversal mean tends to be
the same or similar and cannot completely guarantee the
similarity of multiple chains. Thus, the similarity of chains

is studied in the current work by examining the differences
in the variances of chains; this approach is known as the
most widely used Gelman–Rubin diagnostic method (Gel-
man and Rubin, 1992).

The German–Rubin method determines the conver-
gence of chains according to the degree of mixing of differ-
ent chains. This degree of mixing can be described by the
variance. For multi-parameter Markov chains, the in-chain
and mixed chain variances should be approximately equal
when convergence is reached.

μ σ2

n θ(t)
ij

Assume that the expectation  and variance  of the
posterior distribution exist. The length of iteratively gener-
ated chains through the MCMC method is , and  is re-
corded as the t-th iteration of the j-th chain. The calculation
formula for the variance between chains is

Bi

n
=

1
k−1

k∑
j=1

(
θij·−θi··

)2
, (11)

θij·=
1
n

n∑
t=1

θ(t)
ij θi··=

1
nk

k∑
j=1

n∑
t=1

θ(t)
ijwhere , . The average variance

of each chain is

Wi =
1
k

k∑
j=1

s2
ij, (12)

where

s2
ij =

1
n−1

n∑
t=1

(
θ(t)

ij −θij·
)2
. (13)

ViThe mixed posterior variance  can be expressed by
Eq. (12).

Vi =
n−1

n
Wi+

k+1
k

Bi

n
. (14)

Wi

Vi Ri

If each chain fully converges on the posterior distribu-
tion, then  should be approximately equal to the mixed
variance estimate . Therefore, the ratio  can be used to
determine the convergence.

Ri =
Vi

Wi
=

n−1
n
+

k+1
k

Bi/n
Wi
. (15)

√
Ri

√
Ri

Gelman (1996) pointed out that  representing the
number of iterations of the MCMC algorithm reduces the
variance of the posterior distribution of digital feature estim-
ates and that  should be smaller than 1.1 or 1.2.

2.3.2  Model fitting test

y
y1 y2 y1

f (y2 |y1 ) y2

When the information provided by a sample is insuffi-
cient, the cross validation method is usually adopted to
avoid the repeated use of data and analyze any abnormal
values of the data. The observation data  are usually di-
vided into subsets  and .  is used for the model analys-
is, and the cross prediction probability density function

 of  is used for the model test.

f (y2 |y1 ) =
w

f (y2 |θ )p
(
θ|y 1

)
dθ. (16)
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yi

The division of subsets presents a difficulty in analysis.
In cases wherein data are insufficient, the cross prediction
probability density function of  was proposed by Draper
(2012).

f
(
yi|y \i

)
=

w
f (yi |θ )p

(
θ|y \i

)
, (17)

y\i = (y1, . . .yi−1,yi+1, . . .yn) CPOi

yi

where .  (conditional pre-
dictive ordinate) of  is

CPOi = f
(
yi|y \i

)
=

f (y)
f (y\i)

. (18)

PPOi yi (posterior predictive ordinate) of  is

PPOi =
1
T

T∑
t=1

f (yi |θt ). (19)

CPOi PPOi yi i = 1, · · ·nIf  and  of all  ( ) are similar, the
model can be considered to be acceptable.

2.3.3  Model comparison
In the Bayesian framework, the commonly used stand-

ards for the comparison of models are the Bayesian factor
(BF), the Bayesian information criterion (BIC), the devi-
ation information criterion (DIC), and the Akaike criterion
(AIC). The Bayesian factor involves complicated multi-in-
tegration and is computationally difficult. Therefore, in the
Bayesian model selection based on MCMC, the BIC, DIC,
and AIC are the most commonly used estimates. The AIC is
an approximation of the K-L distance and is often used to
measure the distance between two probability density func-
tions. For a multi-parameter statistical model, such as a hier-
archical model of multi-cell data, the number of parameters
to be estimated is uncertain. At this time, the common DIC
solves the model selection problem when the parameter
space is difficult to determine. The application of the BIC
requires the evaluation of a clear number of parameters.
Therefore, the DIC can be regarded as an extension of the
BIC. Diciccio et al. (1996) pointed out that the BIC can also
be used as an approximation of the Bayesian factors. The
BIC, DIC, and AIC are all in the same basic form of

IC = −2log[ f (t|θ̂)]+g(k), (20)
θ̂

θ

θ g(·)

where  is the estimated value of the model parameter vec-
tor  (such as the posterior median, posterior mean or mode,
etc.), k is the dimension of ,  is a function that depends
on the criterion of different information, and IC represents
an information criterion. In these three methods, the models
are selected on the basis of the differences in the informa-
tion criteria.
∆i j = ICi− IC j, (21)

ICi IC jwhere  is the information criteria of Model i, and  is
the information criteria of Model j.

g(k)In the calculation of the BIC,  can be described as:
g(k) = klogn, (22)
where n is the volume of observation data and k is the di-

θmension of . The model is deemed acceptable with a small
BIC. When the difference between models is inconspicuous,
the simplest one is generally accepted.

3  Results

3.1  Bayesian statistical model II with the Weibull distribu-
tion as the population distribution
The failure mechanism of data is always an important

factor for model selection. Logarithmic normal distribution
or the Weibull distribution is often used to model the fail-
ures caused by fatigue. Therefore, we established a Bayesian
statistical model with a logarithmic normal distribution or a
Weibull distribution as the population distribution.
p(α,β |t ) ∝ f (t |α,β )p(α,β)

∝
n∏

i=1

[
β
α

( ti
α

)β−1
e−(ti/α)β

]
·αwα−1e−αλα ·β−(wβ+1)e−λβ/β. (23)

3.1.1  Bayesian statistical model II
Many factors clearly affect leakages in the FPSO intern-

al turret, and the occurrence of any factor leads to oil and
gas leakages. This system failure mechanism satisfies the
weakest link principle of Weibull distribution, that is, the
failure time of the entire system depends on the strength of
the weakest link. Therefore, the distribution can be used to
describe the leakage time distribution of the FPSO internal
turret system.
T ∼Weibull(α,β). (24)

α β
As known from the probability density function of the

Weibull distribution, parameters  and  are larger than
zero. Thus, the prior distribution should satisfy the positive
support domain. The dispersivity of prior information is the
thickness of the tail. Robustness is the selection of a priori
distribution to make the posteriori distribution less volatile.
In the Bayesian statistical analysis, Gamma function and In-
verseGamma function are often selected as a prior distribu-
tion with evaluation parameters of the positive support do-
main.
α ∼Gamma(wα,λα); (25)
β ∼ InverseGamma(wβ,λβ). (26)

α β
In the analysis process, if the correlation between para-

meters  and  is not considered, the prior density function
of the parameters is

p(α,β) =
λαwα

Γ(wα)
αwα−1e−αλα ·

λβwβ

Γ(wβ)
β−(wβ+1)e−λβ/β

∝ αwα−1e−αλα ·β−(wβ+1)e−λβ/β. (27)

α β
According to Eqs. (27) and (31), the kernel of the joint

posterior density function of the parameters  and  is
p(α,β |t ) ∝ f (t |α,β )p(α,β)

∝
n∏

i=1

[
β
α

( ti
α

)β−1
e−(ti/α)β

]
·αwα−1e−αλα ·β−(wβ+1)e−λβ/β. (28)
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wα = 3, λα = 400 wβ = 4,
λβ = 8

The method of moments is used to determine the value
of the super parameters with consideration of the priori dis-
tribution, which should have a large range. Hence, the val-
ues of the super parameters are , and 

.

3.1.2  Generation of the posterior analysis samples

3.1.2.1  Extraction of the posterior samples

α β
α j−1

α∗

As a result of the properties of large samples, the pos-
terior distribution often presents good normal properties.
Therefore, a normal distribution is often selected as the re-
commended distribution of the M-H algorithm. To ensure
that the posterior point is always a positive real number, the
parameters  and  select the candidate values under a log-
arithmic scale. The assumption is that  is the (j–1)-th
sample value. Thus, the next candidate point is . In this
case,

ln
(
α∗

)
= ln

(
α j−1

)
+ ε, (29)

ε ∼ N
(
0, sα2

)
sαwhere ,  is the given variance and

α∗ = α j−1eεα . (30)

One of the acceptance probabilities involving the recom-
mended density function can be simplified as:

gα
(
α j−1 |α∗

)
gα

(
α∗

∣∣∣α j−1
) = (

α∗

α j−1

)2

. (31)

βSimilarly, the candidate point of  can be obtained as
follows:
β∗ = β j−1eεβ , (32)

εβ ∼ N
(
0, sβ

)
where  and the relative recommended density
function is

gβ
(
β j−1

∣∣∣β∗ )
gβ

(
β∗

∣∣∣β j−1

) =  β∗

β j−1

2

. (33)

rα α∗The acceptance probability  of the candidate point 
can be obtained as:

rα =min

1, f (t
∣∣∣α∗,β j−1 )p(α∗,β j−1)

f (t
∣∣∣α j−1,β j−1 )p(α j−1,β j−1)

· α∗

α j−1

 . (34)

rβSimilarly, the acceptance probability  of the candidate

β∗point  can be obtained as:

gα
(
α j−1 |α∗

)
gα

(
α∗

∣∣∣α j−1
) = (

α∗

α j−1

)2

; (35)

rβ =min

1, f (t
∣∣∣α j,β∗ )p(α j,β∗)

f (t
∣∣∣α j,β j−1 )p(α j,β j−1)

· β∗

β j−1

 . (36)

α(1) =
2000, β(1) = 4 α(1) = 500, β(1) = 1

The posterior samples satisfying the conditions are ex-
tracted according to Eqs. (2)–(3). To avoid the local conver-
gence of the samples, we take two samples with the largest
difference in initial values. The initial values are 

 and . The first sample
values are shown in Figs. 1a and 1b.

α βThe posteriori sample values of the parameters  and 
vary randomly in a certain range. The samples can thus be
considered as steady-state simulation samples of a certain
distribution. For samples extracted for the first time, we aim
to reduce the impact of the initial values by regarding the
first 10000 samples as the combustion period. The same is
not considered in the subsequent analysis.

3.1.2.2  Autocorrelation analysis of the samples
The first 100 correlation coefficients are calculated. The

results are shown in Fig. 2.

α
β

As the order increases, the autocorrelation coefficient
decreases rapidly (Fig. 2). The autocorrelation coefficient of

 fluctuates around 0 from approximately the 12th order,
and the autocorrelation coefficient of  fluctuates around 0
from approximately the 17th order. According to the defini-
tion of the autocorrelation coefficient, the linear correlation
of the samples with an interval of approximately 20 samples
is small, and the samples can be considered as independent;
therefore, the samples with an interval of 20 samples are
used as the analysis samples.

For 5000 sample values after extraction, the correlation
coefficients of the first 100 orders are calculated. The res-
ults are shown in Fig. 3.

The autocorrelation coefficient fluctuates near 0 from
the first order, thereby confirming the above analysis. The
5000 samples can be regarded as completely independent,
which implies that the mixing efficiency of the chain is high
and that the randomness of the process can be simulated

 
α βFig. 1.   1.1×104 sample path of parameters  (a) and  (b).
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well. The posterior analysis is based on this analysis sample.

3.1.2.3  Prior/posterior distribution diagram
The corresponding histograms are obtained on the basis

of 5000 analysis samples, as shown in Fig. 4.
The posterior distribution of the parameters has the nor-

mality of large samples, which is consistent with the law of
large numbers in the MCMC theory. According to the histo-
grams, the kernel density estimation curves of the samples
are drawn, and the curves are regarded as the posteriori dis-
tribution of the parameters. The results are shown in Figs.

5a and 5b.
α β

α

The variation ranges of the parameters  and  are obvi-
ously narrow, indicating that the sample information
provided by the observation data makes the distribution of
the parameters increasingly concentrated and reduces the
uncertainty in the parameter estimation. At the same time,
the probability peak value of  increases in Fig. 5a. As
known from the parameter definition of the Weibull distri-
bution, the increase of a proportion parameter makes the
failure time distribution extensive.

 
α βFig. 2.   First 100 correlation coefficients of  (a) and  (b) for the extracted samples.

 
α βFig. 3.   First 100 correlation coefficients of  (a) and  (b) for the analysis samples.

 
α βFig. 4.   Histograms of  (a) and  (b) for the analysis samples.

 
α βFig. 5.   Posterior distribution and prior distribution of  (a) and  (b).
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The following can be determined from Fig. 5b. (1) Be-
ing larger than 1 in a large proportion indicates that the fail-
ure rate of the events is likely to increase with time and is
consistent with the prior estimate. (2) In the range smaller
than 1, the value range of the posterior probability does not
change significantly, and the posterior probability distribu-
tion density is smaller than the prior probability distribution
density. However, this change is not obvious. Hence, the
observation data cannot significantly affect the posterior
distribution. (3) In the range larger than 1, the value range
of the parameters obviously decreases, and the value gradu-
ally decreases. According to the characteristics of a Weibull
distribution, the changes cause the failure function values of
variables to gradually decrease.

3.1.3  Convergence analysis of the posterior samples

3.1.3.1  MC deviation
As noted previously, when the MC deviation is smaller

than 5% of the standard deviation, the chain can be con-
sidered as convergent. According to Eq. (10), the two ap-
proaches to reduce the MC deviation is to increase the num-
ber of samples and to reduce the correlation among samples.
The calculated results of the first Markov chain are given in
Table 2.

α βThe MC deviation of parameters  and  is 5% smaller
than the corresponding standard deviation. This result
shows that the Markov chain is convergent, given the chain
length and autocorrelation. However, we cannot guarantee
that the chain is globally convergent. Thus, other methods
are needed to ensure the global convergence of chains.

3.1.3.2  Variance ratio analysis

Rα Rβ
α β

As noted previously, for the Markov chains generated
above, the in-chain and mixed chain variances are calcu-
lated separately to analyze the convergence and mixing of
the two chains. The mixed variance ratios  and  of
parameters  and , respectively, are calculated, and the res-
ults of the first 500 analysis samples are shown in Fig. 6.

Rα RβFigs. 6a and 6b indicate that the ratios  and  of the in-
chain and mixed chain variances increase with the number
of iterations and that they tend to be equal to 1. Along with the
ergodicity mean figure of the sample, this result suggests
that the samples with similar means and variances can be rega-
rded as being from random samples of the same steady-state
distribution and that each sampling is globally convergent.

3.1.4  Model testing
Given the limited number of the observation samples of

the Bayesian statistical model, we use the cross-validation
method to perform the model test by examining sample out-
liers to analyze the degree of fit. At the same time, the pos-
terior prediction distribution can be used to test the model
from an overall perspective. Then, the overall fit between
the sample and the model can be analyzed.

CPOi PPOi and  of each sample are calculated accord-
ing to Eqs. (18) and (19). The results are shown in Table 3.

CPOi
PPOi

CPOi
PPOi

CPOi PPOi
PPOi

The values of  are correspondingly smaller than
the values of , thereby indicating that each observa-
tion sample has a certain influence on the posterior distribu-
tion and that the maximum likelihood decoding criterion is
followed under the Bayesian framework. For samples with
long and short failure times, the difference between 
and  is relatively large. This result indicates that the in-
fluence of these sample values on the posterior distribution
is larger than that of other sample values. Meanwhile, the
difference between  and  is smaller than the cor-
responding . Thus, the model is acceptable.

3.2  Bayesian statistical model II with the logarithmic nor-
mal distribution as the population distribution

3.2.1  Bayesian statistical model II
The logarithmic normal distribution is often applied to

Table 2   Posterior estimation statistics of Bayesian model II
Variable Mean Standard deviation MC deviation

α 1061.3 293.5910 1.2328
β 1.6583     0.4436 0.0017

Table 3   Cross-validation data of Bayesian model I

Failure time yi (day)
Probability (×10−3)

PPOi CPOi

228 0.5718 0.4024
242 0.5842 0.4307
571 0.7182 0.6910
1176 0.4748 0.4606
1388 0.3508 0.3440
1503 0.2912 0.2363

 
Rα α Rβ βFig. 6.   (a)  value of , (b)  value of .
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downtime models with skewness. It can also be derived
from the stochastic process describing fatigue. Thus, it can
be used to describe random events of oil and gas leakages.
T ∼ Lognormal(μ,σ). (37)

μ

T

μ
σ

As the value range of  is the whole real number field
and the normality of the posterior distribution is similar to
that of the prior distribution, the normal distribution can be
selected as the prior distribution. From the uncertainty ana-
lysis, we recognize the existence of a relationship between
the uncertainty of the parameter d and the uncertainty of the
random variable . This relationship can be reflected by the
correlation analysis of the parameters. Therefore, the priori
distribution considering correlation can be selected, that is,
the variance of the parameter  can be expressed by that of
parameter , as shown in the following formulation.
μ ∼ N(θ,kσ). (38)

σ
InverseGamma

The degree of this correlation can be expressed by dif-
ferent values of k, and the value of k is always 1. The value
range of the parameter  is a real number field, which has a
certain degree of concentration. Thus, the 
distribution is often selected as the prior distribution.
σ ∼ InverseGamma(α,β). (39)

According to Eqs. (37)–(39), the joint posterior kernel
density estimation function of the Bayesian statistical mod-
el is as follows:

p(μ,σ |t ) ∝
n∏

i=1

 1
σti

e
−
(

log ti−μ
σ

)2 · 1
kσ

e
−
(
μ−θ
kσ

)2

·σ−(α+1)e−
β
σ . (40)

α = 2, β = 2 θ = 6.5
According to the method of moments, the value of the

super parameters are determined as , .

3.2.2  Generation of the posterior analysis samples

3.2.2.1  Extraction of the posterior samples

μ∗
N(μ j−1,kσ j−1)

Unlike that in other sampling methods, the candidate
point  can be obtained by the normal distribution

 while considering the normality of the pos-
terior distribution. This method can ensure that the posteri-
or distribution of the parameters and the recommended
density function are formally similar and that the resulting
sample retains good Markov properties.

A part of the acceptance probabilities involving the re-
commended density probabilities can be simplified as:

gμ
(
μ j−1

∣∣∣μ∗ )
gμ

(
μ∗

∣∣∣μ j−1

) = 1. (41)

σ∗

rσ

The candidate point  is still obtained under a logar-
ithmic scale. According to Eqs. (33)–(36), the acceptance
probability  of the relative point is

rσ =min

1, f (t
∣∣∣σ∗,μ j )p(σ∗,μ j)

f (t
∣∣∣σ j−1,μ j )p(σ j−1,μ j)

· (σ∗)2

(σ j−1)2

 . (42)

μ(1) = 10 σ(1) = 3 μ(2) = 5 σ(1) = 1

The posterior samples satisfying the conditions are ex-
tracted according to Eqs. (2)–(3). The initial values are

,  ;  ,  .  T h e  n u m b e r  o f
samples is 110000, and the first 110000 samples are taken
as the combustion period. The results are shown in Fig. 7.

3.2.2.2  Autocorrelation analysis of the samples

μ σ
The first 100 correlation coefficients of the samples ex-

tracted of  and  are calculated. The results are shown in
Fig. 8.

μIn Fig. 8, the autocorrelation coefficient of  fluctuates

 
1.1×104 μ σFig. 7.    sample paths of parameters  (a) and  (b).

 
μ σFig. 8.   First 100 correlation coefficients of  (a) and  (b) for the extracted samples.
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σ
around 0 from approximately the 12th order, and the auto-
correlation coefficient of  fluctuates around 0 from approx-
imately the 18th order. To reduce the correlation among the
samples, we determine the interval number as 20 as we gen-
erate the analysis samples.

μ σ
The first 100 correlation coefficients of the analysis

samples of  and  are calculated. As seen in Fig. 9, the
autocorrelation coefficient fluctuates around 0, indicating
that the analysis samples have good mixing for the sub-
sequent analysis.

3.2.2.3  Prior/posterior distribution diagram
The corresponding histograms are obtained on the basis

of 5000 analysis samples, as shown in Fig. 10.
μ σAccording to the histograms of  and , the kernel dens-

ity estimation curves of the analysis samples are drawn and
regarded as the posteriori distribution of the parameters.

μIn Fig. 11, the posterior values of the parameter  have
obvious symmetry and normality, and the range of the val-
ues decreases obviously compared with those of the prior
distribution. The value to which the posterior probability
peak corresponds is smaller than that of the prior distribu-
tion. This result indicates that in the logarithmic normal dis-
tribution model, the failure time interval of oil and gas leak-
ages decreases. The value to which the posterior probability

σ

μ σ

peak of  corresponds is larger than that of the prior distri-
bution. This result shows that the distribution of the failure
time interval is wide and that its uncertainty increases. The
posterior distribution of the parameters  and  is more con-
centrated than the prior distribution, indicating that the un-
certainty of the distribution decreases.

3.2.3  Convergence analysis of the posterior samples

3.2.3.1  MC deviation

μ σ
The MC deviations and standard deviations of the first

Markov chain of the parameters  and  are calculated. The
results are shown in Table 4.

μ σThe MC deviations of the parameters  and  are smal-
ler than 5% of the standard deviation, indicating that the

 
μ σFig. 9.   First 100 correlation coefficients of  (a) and  (b) for the analysis samples.

 
μ σFig. 10.   Histograms of  (a) and  (b) for the analysis samples.

 
μ σFig. 11.   Posterior distribution and prior distribution of  (a) and  (b).

 KANG Ji-chuan et al. China Ocean Eng., 2019, Vol. 33, No. 1, P. 14–25 23



length of a single chain and the correlation among the
samples satisfy the convergence of the Markov chains.

3.2.3.2  Variance ratio analysis

n

μ σ Rμ Rσ

Considering the two Markov chains with different ini-
tial values and numbers of the analysis samples , we calcu-
late the ratio between the mean chain variance and the
mixed chain variance of the parameters  and (  and ).
The results are shown in Fig. 12.

Rμ RσIn Fig. 12,  and  tend to rapidly approach 1 from
the direction that is larger than 1. Hence, the analytical
samples of the two chains can be regarded approximately
from the same steady-state distribution, that is, the analysis
samples of different Markov chains are well mixed.

3.2.4  Model testing
CPOi PPOi and  of each sample are calculated accord-

ing to Section 2.3. The results are shown in Table 5.

CPOi PPOi

CPOi

PPOi

 and  have similar values, which indicate a
good model fit. The values of  are correspondingly
smaller than those of , and the differences decrease
with the increase of the sample values. This result implies
that the effect of small sample values on the model paramet-
ers is larger than that of large sample values. Therefore, fo-
cus should be directed toward the samples with low failure
time in the statistical analysis.

3.3  Selection of the models and reliability analysis
According to Section 2.3.3, the BIC value and AIC

value of the Weibull distribution and logarithmic normal
distribution are calculated separately. The results are shown
in Table 6.

The BIC value and AIC value of the Weibull distribu-
tion are smaller than those of the logarithmic normal distri-
bution, meaning that the Weibull distribution is more ad-
vantageous than the logarithmic normal distribution when
selecting the failure time distribution model. Hence, the
Bayesian model with a Weibull population distribution is
chosen as the failure time distribution model.

As noted previously, the posterior mean is chosen as the
estimated value of the parameters α and β. The reliability
function distribution of oil and gas leakages in the FPSO in-
ternal turret is presented in Fig. 13.

In the early operation of the internal turret, the reliabil-
ity value is high, and the possibility of oil and gas leakages
is low. Over time, the reliability value decreases gradually
to 0 until 2600 days.

The distribution of the posterior mean failure time for
determining the occurrence of a leakage according to the
posterior distribution of the parameters α and β is shown in
Fig. 14. It can be concluded that the distribution of the pos-
terior average failure time is with certain normality and that
the posterior peak values become concentrated at about 900
days. The figure also illustrates that the value has a low de-
gree of the uncertainty in the posterior estimation.

4  Conclusions
In this study, a reliability statistical analysis method

based on the Bayesian theory is proposed to solve the prob-
ability calculation in the quantitative risk assessment, espe-
cially for small sample failure events for which failure
mechanism models cannot be established. The presented
method can integrate prior information to reasoning and can
effectively reduce the uncertainty in the reliability analysis.

A statistical model is established for small sample events
of oil and gas leakages in FPSO internal turret systems by us-

Table 4   Posterior estimation statistics of Bayesian model II
Variable Mean Standard deviation MC deviation

μ 6.4774 1.3715 0.0239
σ 0.9897 0.2864 0.0050

Table 5   Cross-validation data of Bayesian model II

Failure time yi (day)
Probability (×10−3)

PPOi CPOi

228 0.9405 0.7326
242 0.9459 0.7531
571 0.7002 0.6479
1176 0.2789 0.2528
1388 0.2077 0.1826
1503 0.1785 0.1546

Table 6   Results of different distributions

Criteria
Distribution type

Weibull distribution Logarithmic normal distribution
BIC 95.0595 97.6463
AIC 93.4759 95.0628

 
Rμ μ Rσ σFig. 12.   (a)  of parameter , (b)  of parameter .
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ing the Bayesian statistical method. The model is calculated
and analyzed, and the results are summarized as follows.

The two-parameter distribution Weibull(α, β) and the
logarithmic normal distribution Lognormal(μ, σ) are used as
the population distribution, and the Bayesian statistical
model is established for oil and gas leakage events. The pri-
or distribution of the parameters to be estimated is determ-
ined according to the selection method of the prior distribu-
tion with information: the parameter α of the Weibull distri-
bution is subject to Gamma(3, 400), and the parameter β is
subject to InverseGamma (4, 8); the parameter μ of the log-
arithmic normal distribution is subject to N (6.5, σ), and the
parameter σ is subject to InverseGamma (4, 8).

The two Bayesian statistical models are calculated, and
the optimal model is selected according to the information
criterion, that is, the BIC and AIC. The M-H algorithm is
used to calculate the posterior distribution of the parameters
to be estimated. According to the convergence diagnostic
criteria and the model test results, the two Bayesian statistic-
al models are both acceptable. Furthermore, the Bayesian
model with the population distribution of Weibull(α, β) is
more advantageous than that with a logarithmic normal dis-
tribution in the reliability analysis of oil and gas leakage
events according to the BIC and AIC. The MTTF of the in-
ternal turret leakage is 900 days. The calculated results
could provide suggestions for the operation and mainten-
ance of FPSOs.
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Fig. 13.   Reliability curve of oil and gas leakages in the FPSO internal
turret.          

 
Fig. 14.   Average failure time of oil and gas leakage events in the internal
turrets.       
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