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Abstract

Modified adaptive observer based backstepping control system for dynamic positioning of ship is proposed. As an
improvement, the adaptive observer takes the first-order wave frequency model and the bias term which represent the
slowly varying environmental disturbances and the unmodeled dynamics. Thus, the wave-frequency motions are

filtered out, and only the reconstructed low-frequency motions are sent as inputs of the controller. Furthermore, as
the ship dynamics parameters are unknown, the adaptive estimation law is designed for both the unknown ship
dynamics and the unmeasured state variables. Based on the estimated states and parameters, backstepping controller

considering the integral action is designed. Global exponential stability (GES) for the total system is proved using
Lyapunov direct method. Simulation results show a good performance of the observer and control system.
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1 Introduction

Dynamic positioning (DP) system has been widely used
for marine craft on station keeping, drilling and offshore of-
floading. Vessels equipped with the DP system can control
the three horizontal motions (position and heading) by
means of thrusters. The DP vessel motions are supposed as
the superposition of low-frequency (LF) vessel motion and
wave-frequency (WF) motion. For that there is no need for
actuators to response for the WF disturbances, and the state
observer (wave filtering) systems are needed to reconstruct
the LF motions and estimate the unmeasured states, which
are sent as the input of controller (Fossen, 2011).

The first generation DP system was designed to employ
conventional PID controllers with low-pass and/or notch fil-
ters. From the middle 1970s, the optimal control theory and
Kalman Filtering techniques was employed to the DP sys-
tem by Balchen et al. (1976). From then on, many exten-
sions and modifications of this work have been proposed
(Julier and Uhlmann, 1997), and it has rapidly become the
most extensively used method. However, the big draw-
backs for the method are that it needs to linearize the kin-
ematic and dynamic equations of motion, and is difficult
and time-consuming to tune the state estimator. These limit-
ations stimulate the researches of nonlinear controllers.
Thus, Koditschek (1987) put forward backstepping control

idea which does not need to linearize the system. The meth-
od can implement the control law design by constructing
Lyapunov function for the subsystem of the nonlinear sys-
tem, and meanwhile, ensure the system asymptotically
stable at the equilibrium point.

Fossen and Grevlen (Grevlen and Fossen, 1996, Fossen
and Grevlen, 1998) employed vectorial observer backstep-
ping to solve the DP problem and proved its uniform global
exponential stability (UGES). However, wave filtering and
bias estimation were not included in their papers. Fossen
and Strand (1999) proposed an UGES passive nonlinear ob-
server with wave filtering and bias estimation using Lya-
punov methods. From then on, many extensive researches
on it have been implemented (Aarset et al., 1998; Torsetnes
et al., 2004; Morishita et al., 2014). However, these observ-
ers suppose that the ship dynamics is stable and all the para-
meters are known and constant. Under real conditions, the
ship dynamics may be unstable in complicated environ-
ments, or some dynamic parameters may be unknown for
lack of ship model tests. To solve this problem, Skjetne et
al. (2005) proposed the adaptive backstepping method with
the assumption that all the states are measurable. Calugi et
al. (2003) proposed the method of backstepping control
based on adaptive observer for dynamic ship position.
However, the environmental disturbances and the first-or-
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der wave-frequency motions were not considered, and this
will result in unnecessary responses of the thrust system for
lack of wave filtering, and inaccurate state estimation for
absence of the bias term.

In this paper, a modified nonlinear adaptive observer
based backstepping control method is proposed. The obser-
vation model is built with consideration of the bias term and
the wave-frequency motions, where the bias term repres-
ents the environmental disturbances due to wind, currents
and waves, and the unmodelled system dynamic. Further-
more, under the assumption that the dynamic coefficients
are unknown, the adaptive observer is designed to identify
the dynamic parameters and estimate the unmeasured states,
and then the integral backstepping controller is derived
based on the estimated parameters and states. The global ex-
ponential stability (GES) is proved for the total observer and
control system using Lyapunov direct method. The perform-
ances of the observer and control system have been determ-
ined through computer simulation at last.

2 Mathematical ship model

Models for dynamic positioning (DP) are derived under
the assumption of low speed, which is up to approximately
3 m/s. Thus, the vertical motions of the heave, roll and pitch
are neglected, and only the horizontal motions of the surge,
sway and yaw shall be considered for the DP models. A
mathematical model suitable for the adaptive observer and
backstepping control design should consider the low-fre-
quency (LF) motions, the wave-frequency (WF) motions,
and the slow varying components of wind, waves and cur-
rents or the unmodelled dynamics. Reference to Fossen
(2011), the mathematical model for DP vessel can be ex-
pressed as:

E=ALE+E,wi; (1)
n=Jay; ()
b=-Ty'b+wo; 3)
My =-Dv+1+J (b +ws; 4)
y=n+Cu§+n, (5)

where £ € R® is the internal variable vector, w;(i = 1,2,3)
€ R3 is the zero-mean white noise process, 1, = C,€ is the
vessel’s WF motion, i = [x,y, ] is the low-frequency posi-
tion vector, v = [u,v,]T is the velocity vector including lin-
ear and angular velocities of the vessel, b € R® represents
the bias term describing the effects of low-frequency envir-
onmental disturbances and the unmodelled nonlinear dy-
namics, T € R¥3 is the user-defined diagonal matrix of
positive bias time constants, J(7) is the transformation rota-
tion matrix, M is the inertia matrix including the added iner-
tia, D is the linear damping coefficients matrix, T € R is the
control force vector to be determined, and y € R? is the
measurement considered as the sum of LF and WF compon-
ents, in addition to the zero-mean measurement noise
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ne R3. The matrix M, D, A, E,,, C,, and J()) are defined

as:
m—Xu 0 0
M:[ 0 m—Y; me—Yf]>O,
0 I’I’lXG—NV IZ—N,‘«
-X, 0 0
D= 0 -Y, =Y. |>0
0 -N, -—N,
A, [ O3x3  I3x3 ] :[ 031 ]
—33  —A3x3 ¢ I3
cosy —siny O
Co=[03x1 Izxql, Jap=J(w)=|siny cosy O
0 0 1

where m is the vessel mass, I, is the moment of the inertia,
{Xi, Yy, Yi, Ny, N;} are the added mass hydrodynamic coeffi-
cients, {X,,Y,,Y,,N,,N,} are the hydrodynamic damping
coefficients, Q= diag{w%l,wgz,wéﬁ}, A = diag{2{  wo1,
2 w02,2L6w06}, @g; 1s the dominating wave frequency, ¢; is
the relative damping ratio, i=1, 2, 6 represents the surge,
sway and yaw directions, respectively.

Generally, the hydrodynamic coefficients can be gained
through ship model tests. However, the coefficients may be
unknown for lack of experiments. At this time, the added
mass coefficients can be calculated by theoretical formula
derived through the strip theory (Fossen, 1994), whereas
there are no relatively accurate formula for the damping
coefficients calculation. Thus, in this paper, we suppose that
the hydrodynamic damping parameters {X,,Y,, Y., N, N}
are unknown, and the parameters will be identified by the
design of adaptive nonlinear observer.

Here, we define 6 = [X,,,Y,,Y,,N,,N,]T representing the
unknown parameters, and then Eq. (4) can be rewritten as:

My = ew)0+1+J (b +ws, (6)
where
u 00 0 0
(p(v):—[o v r 0 o} (7
0 0 0 v r

3 Nonlinear adaptive observer design

When designing backstepping controller, an observer is
needed in the feedback loop to provide the control system
with LF signals which have filtered the WF signals, and
with the estimated signals such as velocity, and acceleration,
which are not measured. Here, the adaptive observer also
provides the estimated unknown parameters to the control
system.

3.1 Adaptive observer equations

According to Fossen and Strand (1999), the following
assumptions are also made to guarantee the Lyapunov sta-
bility.

Assumption (i): w;(i = 1,2,3) = 0. The terms are omit-
ted in the analysis of an observer and with estimation error
instead. Furthermore, the measurement noise is not in-
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cluded (n=0) since it is negligible compared with #,,.

Assumption (ii): J(n)=J(y) or J(y) = J(w +y,,). This is
equal since the magnitude of wave-induce yaw disturbance
v,, 1s normally smaller than 5° in extreme weather situ-
ations and smaller than 1° in normal operation.

For general nonlinear systems, Tyukin et al. (2013) pro-
posed the method for the adaptive observer and parameter
estimation. Applied the method into DP ship observer and
parameter identification, according to Egs. (1)—(6), the ob-
server equations with parameters adaptive estimation can be
written as follows:

= Aué+Kiy: ®
7= J ()b + Koy; ©)
b=-T, b+ Ky, (10)
M$ =-Dv+ J" b + 7+ T (9)KyF

= e(MO+J Wb +7+J" (3)KaF; (11)
0= o ()7, (12)
§=0+Coé, (13)

where y =y—9 and # = v —¥ are the estimation errors for
position and velocity, respectively; K; € R®3, Ky 34 € R¥S,
and I' € R (F =IT> 0) are the observer gain matrixes to
be interpreted. The tuning of observer gains K, K,, K; and
K, may refer to Fossen and Strand (1999).

3.2 Observer error dynamics and stability properties

Firstly, define the low frequency and wave frequency
motion estimation errors ij = §—#j and & = & — £, the system
dynamic parameter estimation errors D= D—- D and
6 =0—0. For that the unknown parameters are supposed to
be constant or slowly changed, and then its derivative § = 0.
With the Assumptions (i) and (ii), subtracting Egs. (8)—(11)
and (13) respectively from Egs. (1)—(3), (6) and (5) yields
the following observer errors dynamics:

= AuE- Ky, (14)
i1=J) - K5, (15)
b=-T,"'b- K3y (16)
M7© =—-Dv—Dv+ JT(y)b - JT(y)Ks5

= —Di+" ®8+J (b - J (y)K,5; (17)
0=—I'o"®)p: (18)
F=i+Cuf. (19)

Furthermore, by defining the new vector ¥ = [ET, ql,
b™T, the error dynamics Eqs. (14)—(17) can be rewritten as:

Jéo = AopXo + BoJ (y)7; (20)
M¥ = —Dv— 9" ()8 - J " (y)Coo, 21)

where

A,-KC, -K; 0
Ag = [ -K>Cy -K> 0 s
-K;C, -K;3 -Tp!
0
Bo=[ (I) } Co=[K3C,, K3 -—I3].

Consider the following Lyapunov function candidate for
the observer:
Vobs = 7' M + %3 PXo+ 0" T8> 0,Y9,%,0 # 0 (22)
where P = PT > 0 is a constant matrix. Time differentiation
of V,, along the solution of Eqgs. (18), (20) and (21) yields:

Vobs = =91 (D +DV)p + 25 08— 25T JT(y)Co %o

+X)(PAg+Ag" P)%o+ 2%, PBoJ (y)7 —20"¢ 5.  (23)
Defining that
D+D"=0,>0 (24)

and the matrix P is required to satisfy the following Egs.
(25) and (26)

PAg+A)TP=-0,<0; (25)
Co=By'P, (26)
then, we will have

Vobs = =91 Q19 — %) Q2% < 0,9, % # 0. (27)

Thus, under the Assumptions (i) and (ii), and when the
matrix satisfies Eqs. (24)—(26), the global exponential sta-
bility (GES) of the observer is satisfied according to Lya-
punov direct method.

4 Backstepping controller design

4.1 Backstepping design
Now, the notation ng = [x4, 4, wd]T is used to represent
the demanded position and heading, where #4 is a smooth
reference trajectory. To introduce integral action into the
control law, we define the error integral term
er=R-na. (28)
Step 1: the backstepping error variable z; is defined as
z1 = ey, thus
Zy=er=1M-nq. (29)
Firstly, the term # is chosen as the virtual control of z;.
By calculating the time differentiation of the Lyapunov function
V1 = 21 Tz1/2, and then the stabilizing function a, is defined as:
(30)

where K; € R (KI =KT> 0) is an integral gain matrix.

a) = —Kjzi + 14,

Step 2: define the second backstepping error variable z,
as:

€L))
Recalculating z; by substituting Egs. (30) and (31) into

Eq. (29) yields

71 = —-Kiz1 + 25.

22 =f]—(11.

(32)
Taking time differentiation of Eq. (31) and inserting
Egs. (9) and (29) into it results in:
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22 = J)P + Kz § + Ki(f) — 1) — 1jq. (33)
Now, choose the term J(y)¥ as the virtual control of z,.
Calculate the time differentiation of the Lyapunov function
Vo = Vi +2272,/2, and then the stabilizing function a, is
defined as:
@y =—z1 —C122 — D122 +1)g — Ki({) — na), (34)
where C1, Dy € R¥ are the strictly positive diagonal gain
matrices. Elements of D, are defined as:

D, = diag{dlkal,dzkgkz,d3k§k3}, (35)

where [k, ky, k3] = K;F, d; (i=1, 2, 3) are positive design
constants.
Step 3: the third backstepping error variable z; is
defined as:
=JOW-a. (36)
Recalculating z, by substituting Egs. (34) and (36) into
Eq. (33) yields
2 =-21-Ciz2- D122+ 23 + Kb §. (37)
Calculating the time differentiation of Eq. (36) and sub-
mitting Egs. (11), (29) and (37) into it result in

23 =JOM "1+ D+ Q15+ Q2o + 28, (38)
where
® = J)M ' [-Do+ J ()b |+ T (»)S @)
—(C1+D1)*z2+(Ci + D1)(z3 - 21) + (- 1a)
+Ki [J ()9 + K2 3] ~ Kiija — fja; (39)
2, =J)M ' J (»)Ks+(Ci + DKy (40)
@, =-JSP)L; 23 =-JSG)N: p=[0,0,r+y,1";  (41)

61 0 -6 6
S(O):S( 92)=[ 6 0 -6 ];
63 -6, 6 0
0 00 0
0 00 } ;N = [ 0
0 0 1 0
In Eq. (38), the term J(y)M 't is chosen as the virtual
control of z;. Calculate the time differentiation of the Lya-
punov function V3 = Vo +237z3/2, and then the feedback
backstepping control law is defined as:
JO)M ™'t = —2,-Cyz3— Dyz3 - @, (42)
where Cy, D, € R¥ are the strictly positive diagonal gain
matrices. The elements of D, are defined as:

Z wiTw,',ds Z a)iTa),-,d6 Z a)iTw,-},

i=1,4,7 i=2,5,8 i=3,6,9

L=

D2 = diag {d4

43)
where d; (i=4, 5, 6) are the positive design constants and
(@1, 2, w3]= Q] [w4, s, 6] =2 [W7,Ws, W9 ] =25 (44)

Recalculating 23 by substituting Eq. (42) into Eq. (38)
yields

23=—20—Caz3— Daz3 + 21§ + Qo9 + Q€. (45)
4.2 Stability analysis for the total system

By taking into account Egs. (18), (20), (21), (32), (37)
and (45), error dynamics for both the observer and back-
stepping control system can be expressed as:

z= —CZZ—DZZ+EZ+W1_V+W217+W3$; (46)
%o = Ao¥o + BoJ(y)7; (47)
M¥ =-Dv— " 8- J" (y)K3Co%o; (48)
b=-Te"(,9,7)7, 49)
where
T .
zZ= [le,zg,zg] , C, = diag{K;,C;,C>},

D, = diag{03x3, D1, D»}; (50)

o I O 0
E=|-1 0 1| W=|K |

0O -1 0 0

0 0

W2=|: 0 ],W3= 0 |. 5D

Q Q;

Considering the following Lyapunov function for the
total system:

V = Veon + Vobs = ZTZ/z + Vobs, Y2 # 0. (52)
By taking into account of Eqgs. (27) and (46), its time de-
rivative is:
V=z'7+ Viobs
=7 (=Cyz— D,z + Ez+ W § + Wy + W3€)
~71Q17 - %] Qs %o (53)
For that the matrix E is skew-symmetric, the term z' Ez
is equal to zero. Now, add the following zero terms into Eq. (53)

10765-5"6i5) =0,

% (77 G -7"Gy) = 0

1
7 (€'G:¢-¢"Gag) =0. (54)
where G; = g;1(i=1,2,3).
3 3
1 1 1 1 1
=N ——) === , 55
g1 4;(di+di+3) 82=83 4;di+3 (55)

And by defining that § = Cy&o, & = C¢%o where C, and
C: are diagonal positive matrixes, it will yield

V=- zTsz +77 (—Dzz + Wi+ Wy + W3§-'>
1
-1 (57615 +7"Go9 +£7G3é)
1 1
-5 (Q2 - ZCyTGle - ZC;;TG3C§)S¢0

—l (Q1 - j—th)ﬁ. (56)
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With the definition of D_, W}, W, and W3 in Egs. (50)
and (51), the second and third terms of Eq. (56) can be re-
written as:

A=2" (-D122+K2§) + 23" (D223 + 21§+ +23€)

(37615 +7"G29 +£7Gs¢). (57)

1

4

With Egs. (35), (43), (44) and (55), it can be proved that
the term A is the negative semi-definite function, that is

3 1 1 1
d=— Z {di[kiZZ(i) - gy] kiza(i) - Ey]

i=1

r T -
d e - e -
+dit3 kWtZ3(l) Y] 7le3(l) 2dis y]

2di+3

1T
v [Wi+323(i)_ ! ‘7}

dis3|wis3z3(i) =
+diy3 kwl+3Z3(l) 2ds | 2d;13

T
- 1
. 1) — D <
s 5, [Wz+6Z3(l) s V]} 0 (58)

+di 3| Wivez3 (i) —

Now, if the matrixes @, and Q, satisfy

1 1 1
- ZCyTGle - ZCfTG3C‘f >0, 01-7G>>0, (59)
it can be proved that
\ 1 1
V<-7'Ciz-%; (Q2 - ZCyTGle - chTchg)xo
1
- (Ql - ZGz)f’ <0, Vz,%p,7 #0. (60)

Thus, with the Lyapunov direct method, the adaptive

0 100 200 300 400 500

observer based backstepping system is proved to be Glob-
ally Exponentially Stable (GES) under the Assumptions (i)
and (ii), when matrixes @, and Q, satisfy Eq. (59).

5 Simulation analysis and results

To evaluate the performance of the proposed adaptive
observer based backstepping control method, a model of
Cybership II (CSII) in the Marine Systems Simulator (MSS)
toolbox (Fossen and Perez, 2007) was used for simulations.
CSII ship is a 1:70 scale model of a supply ship. The ship
was disturbed by waves with a peak frequency of w;=0.8
rad/s (the significant wave height H;=2.5 m, moderate
wave), and its first-order wave frequency disturbances are
added on the ship as a random noise. The initial position of
the simulated ship was set at #,=[0 m, 0 m, 0°]T, and the
ship is required to move to the position of #4=[1 m, 0.5 m,
30°]T. The dynamics of CSII can be described by:

25.8 0 0 2 0 0
Mz[ 0 33.8  1.0115 },Dz[o 7 0.1}
0 10115 276 0 0.1 05

Here, we suppose that the parameters in the matrix D are
unknown, according to the adaptive observer based back-
stepping controller designed above, the gains used in the
system are chosen as: K=[-2.34I; 1.81], K,=1.31, K,=diag
{0.1, 0.1, 0.01}, I'=diag {150, 1000, 100, 100, 100},
K=0.21, C,=0.11, d; (i=1, 2, 3)=0.1, C,=101, d; (i=4, 5,
6)=10. The simulation results are shown in Figs. 1-4. From
Fig. 1, we can see a good control performance of the pro-
posed controller, and the ship tracks well to the settled posi-
tion and heading. Fig. 2 shows that most of the first-order

0 100 200 300 400 500
Time (s)

35 Time (s)
£ R e
f

w(%)
o =

0 100 200 300 400 500
Time (s)

30.6

30.2

w(°)

29.8f+

29.4

29.
150 200 250 300 350
Time (s)

Fig. 1. Control output: estimated low-frequency (solid) and measured (dashed) position(x, y)/heading(y).
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Fig. 2. Actual (dashed) and filtered (solid) wave-frequency positions (x, y,,) and heading (w,)
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Fig. 3. Adaptive parameter estimates of elements of D.
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Fig. 4. Error between the plant output velocity and the estimated velocity.
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WEF are filtered out from the measured positions and head-
ing, which result in a smooth estimate measurement. Fig. 3
shows the adaptive parameter estimates of D can converge
to their real value. Fig. 4 shows a good estimate for velocit-
ies. Furthermore, simulations for sea states from slight wave
(wg=1.25 rad/s, H=1.0 m) to high wave (wy=0.67 rad/s,
H=3.5 m) were implemented, and the results similar to Fig. 3
show a good estimation of D. This demonstrates that the ad-
aptive algorithm has a good adaptability for different sea
states.

6 Conclusion

In this paper, an adaptive observer and the parameter es-
timation based backstepping control method have been pro-
posed. The approach considers unstable ship dynamics and
parameter uncertainties. The improvement is that the pro-
posed observer takes into account the first-order wave dis-
turbances filtering as well as the bias term coursed by the
slowly varying environmental disturbances and the unmod-
elled dynamics. Thus, this solution can identify the un-
known dynamic parameters online, and provide more com-
plete state estimation for the backstepping controller and
will maintain smoother control outputs to introduce wave
filtering. The Global Exponential Stability for both the ad-
aptive observer and the backstepping control law has been
proven using Lyapunov direct method. The simulation res-
ults show the good wave filtering, state observer and para-
meter estimation performance, and also good position con-
trol ability.
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