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Abstract
Soft computing tools in the form of combination of multiple nonlinear regression and M5′ model tree were used for
estimation of overtopping rate at the vertical coastal structures. For reliable and precise estimation of overtopping
rate, the experimental data available in the database CLASH were used. The dimensionless overtopping rate was
estimated in terms of conventional dimensionless parameters including the relative crest freeboard Rc/Hs, seabed
slope tanθ, deep water wave steepness Som, surf similarity ξom and local relative water depth ht/Hs. The accuracy of
the new model was compared with other existing models and also evaluated with some field measurements. The
results indicated that the model presented in this paper is more accurate than other existing models. With statistical
parameters, it is shown that the accuracy of predictions in the new model is better than that of other models.
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1  Introduction
Seawalls are usually massive, vertical structures which

are used to protect backshore areas from heavy wave action,
and in lower wave energy environments, to separate land
from water. For example, caisson type structure as a quay-
wall was used before construction of breakwaters exposed
to the open sea in Iran (Alikhani et al., 2003).

Reliable estimation of wave overtopping rate is required
for the planning and safety considerations of coastal struc-
tures. Overestimation of overtopping rate will cause addi-
tional cost, and underestimation will result in irreparable
damage. The wave overtopping rate (q, in m3/s per unit
width) is a fundamental design factor for coastal structures
that are designed to restrict q below an allowable amount.
Therefore, the prediction of wave overtopping has been the
study topic for so many researchers (van der Meer and
Bruce, 2014).

Verhaeghe (2005) presents a summary of various pro-
posed formulae for the prediction of overtopping rate. Goda
et al. (1975) prepared design diagrams for evaluation of
overtopping by using the equivalent deep water wave height
H0′ as the main parameter. EurOtop (2007) presented sever-
al wave overtopping formulae for various kinds of coastal
structures by employing the significant wave at the toe of
the structure, Hs as the key parameter.

Recently, artificial neural network (ANN) as a soft com-
puting method has been employed to predict the mean wave
overtopping rate for coastal structures. These studies have

been fulfilled within the European project CLASH (de
Rouck et al., 2009). Van Gent et al. (2007) presented an
ANN model for various types of coastal structures. Verhae-
ghe et al. (2008) developed a two-phase neural model to
predict the wave overtopping rates.

Here, by using soft computing tools in the form of com-
bination of multiple nonlinear regression and M5′ model
tree, the overtopping rate at vertical coastal structures was
studied with the data from the CLASH database and the res-
ults were compared with others as well as available real
field data.

2  Existing formulas for estimation of overtopping
The most well-known experimental models have been

proposed for vertical caisson breakwaters by Franco et al.
(1994) and EurOtop (2007). Franco et al.’s formula based
on 80 experimental models done in Delft Hydraulics Insti-
tute of the Netherlands has been suggested as:
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where q is the overtopping rate (m3/s per meter width), g is
the acceleration of gravity, Hs is the significant wave height
and Rc is the crest height. a=0.082 and b=3.0 are constant
coefficients proposed based on the experimental conditions.
Another formula to calculate the overtopping rate over cais-
son breakwaters is proposed by EurOtop (2007). First, h*
can be defined as:
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where hs is local water depth and Tm is average wave period.
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In fact, this number is the product of two dimensionle-
ss parameters: the ratio of the water depth to wave height
and the ratio of the water depth to deep water wavelength,

 being the wavelength in deep water. Then the
formulae for estimation of overtopping rate are as follows:
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Eq. (3) is valid for 0.1<Rc/Hs<3.5 and Eq. (4) is valid for
0.03<Rc/Hs<1.

Another formula is provided by Goda (2009) as:
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The constant coefficients in these equations are determ-
ined according to Table 1.

3  M5′ model tree and multiple regression
Decision tree is one of the most powerful and popular

tools for classification and prediction of the data. Unlike
neural networks in which input data are considered only as
numbers, in model tree there is no limit to the type of data.
The most important advantage of the decision tree to the
neural network is about producing of rules. Decision tree re-
veals the predictions in the form of a few rules. For valida-
tion of rules, a series of test data which are not used to build
the tree, are utilized.

The basic form of the model tree was presented by
Quinlan (1986) as a new soft computing tool. These models
fit linear function to the subset of data. The most important
advantage of model trees compared with other soft comput-
ing tools is that they provide clear mathematical relation-
ships. Recently these models have been used in the field of
sediment transport (Bhattacharya et al., 2007), prediction of
wave spectrum (Sakhare and Deo, 2009), and prediction of
the significant wave height (Etemad-Shahidi and Mahjoobi,
2009). In this study, with M5' model tree, separate models

are presented to predict the average rate of wave overtop-
ping on the vertical structures.

4  Data selected from the database CLASH
The data used in this study are selected from the data-

base created in the project CLASH (de Rouck et al., 2009).
In this project an extensive database on the wave overtop-
ping including field measurements and laboratory data has
been developed. There are many experimental data in the
database that have been obtained from 163 independent ex-
periments performed in institutes and laboratories around
the world. Further details about the collection of the data-
base are presented by Verhaeghe (2005) and van der Meer
et al. (2009).

In this study selected are the data involving wave over-
topping on the vertical structures, without any upper struc-
ture with reverse slope or protecting rubble mound struc-
ture in front of the caisson. By using correction factor for
the permeability and roughness (γf) and the slope of the
front face of the structure (cotα), the data for this type of
structure are classified. As a part of the project CLASH, a
series of tests have been conducted to evaluate the com-
bined effect of roughness and permeability of various types
of structures. Structures with γf=1 have been considered as
smooth and impermeable (data used in this study) and struc-
tures with γf≤0.6 have been considered as rubble mound
structures.

Overtopping wave studies within the project CLASH
show that, because of the effects of the model, scale, and er-
rors caused by different measurement techniques, the real
condition cannot be simulated in a laboratory accurately.
For example, the effects of sea currents or winds are gener-
ally not taken into account in the lab. If the large-scale as
well as small-scale data are used for model training, scale
effects may affect the accuracy the model. To avoid mis-
leading model, data for large-scale tests (including tests
with the significant wave height larger than 5.0 m and field
measurements) is not used for training model.

The Complexity-Factor (CF) and Reliability-Factor
(RF) are allocated for each experiment in CLASH database.
The complexity factor changes from one for structures with
a very simple cross-section to four for structures with a very
complex cross-section. Similarly, reliability factor varies
from one to four for the very reliable to non-reliable tests,
respectively. For this study the data with CF=4 and RF=4
have been excluded. Data concerning simple structures
(without platform), single slope, without the reverse slope
of the upper structure and the structure of the stone without
protective structures have been selected.

5   Modeling
The experiments available in CLASH were performed in

different scales (such as 1:20, 1:30, and 1:40). Therefore the
measured overtopping rates are not comparable to each oth-
er, without converting to dimensionless parameters. Further-

Table 1   Constant coefficients of Goda’s formula
Slope Factor A Factor B
tanθ A0 b1 c1 B0 b2 c2

1:10 3.6 1.4 0.1 2.3 0.6 0.8
1:20–1:1000 3.6 1.0 0.6 2.3 0.8 0.6

Note: θ is the seabed slope and ht is the water depth at the toe of the struc-
ture.
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more, the experiments were conducted in laboratories by
small-scale models. Thus if a relationship is developed by
these parameters, it is not applicable for large-scale models.
Consequently we should use dimensionless parameters such
as the relative crest freeboard Rc/Hs, seabed slope tanθ, deep
water wave steepness Som, surf similarity ξom, local relative
water depth ht/Hs and dimensionless width of structure crest
Gc/Hs. The output dimensionless parameter is  ac-
cording to most of the existing formulae.

The models are trained and tested using small-scale
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³
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laboratory data selected from the database CLASH. EurO-
top (2007) and some of the previous empirical formulae for
the estimation of wave overtopping rate have an exponen-
tial form. Hence, the exponential form was used for the
present model. The M5′ model tree can only produce linear
relationships between the input and output parameters. To
remove this restriction, the model was developed using

 as the output parameter.
Using just M5′ model tree, the best results will be Eqs.

(8) and (9):

In order to overcome the limitation of the M5' model
which can only give the linear relationships, we used SPSS

software to make nonlinear regression modeling. Using just
this method, the best formula is:

Because in the nonlinear fitting method there is only one
limited model which may not entirely cover the range, from

the combination of two above mentioned methods, we can
obtain:

In fact M5' model uses a special algorithm to divide the
domain and presents only linear models. This disadvantage
is eliminated by using a combination of M5' model and non-
linear regression of SPSS. The method is illustrated in Fig. 1.

Data range used to build the model is given in Table 2.

6  Results
Although the slope angle is embedded in the surf simil-

arity parameter (Eq. (7)), the wave runup is separately pro-
portional to the surf similarity parameter and slope angle
due to the interaction between individual runup bores. There

often exists significant interaction between subsequent
waves, such that when a wave reaches the shoreline and
travels up a beach face it cannot always complete a full
swash cycle before the next wave comes along. The second
wave either overtakes the first wave during its uprush stage
(catch up) or collides with the first wave during the back-
wash stage. This interaction between waves continues with
each incoming wave, while following the swash zone hy-
drodynamics; as a result the maximum runup will not cor-
respond to the uprush of the highest wave in the train. This
is particularly true for the mild foreshore slopes, where the
time for a swash lens to travel up and down is longer than
that for steeper slopes. Thus, the slope angle has a signific-
ant effect in predicting the maximum runup height if the
swash interaction is accounted for (Bakhtyar et al., 2008).
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Fig. 1.   Parameters and methods. Table 2   Data range used to build models

Parameter Definition Range
Rc (m) Crest freeboard 0.025–0.400

Hs (m) Significant wave height at
the toe of the structure 0.030–0.262

ht (m) Water depth at the toe of
the structure 0.050–0.775

Tm (s) Average wave period 0.632–2.750
tanθ (-) Seabed slope 0.001–0.100

q (m3/s/m) Mean overtopping discharge
per the structure width 1.11×10–6–1.44×10–2
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According to Eqs. (11) and (12), reduction in the angle
of slope at the toe of the structure, result in the increase of
wave overtopping rate. Because when the angle decreases,
the reduction of water depth rate decreases and therefore
waves are less affected by the roughness of the bed.

On the other hand, when the angle is reduced, if the wa-
ter depth is smaller than the depth of wave breaking, wave
breaks farther from the crest. Thus, a few volumes of water
reach behind the wall and small overtopping rate is recor-
ded.

Similarly according to Eqs. (11) and (12), with the in-
creasing depth of structures the overtopping rate is reduced.
With the increasing depth of structure, the wave is less af-
fected by the bed and placed under the shoaling phenomen-
on and its height is not increased. Moreover, the probability
of breaking at the vicinity of structure highly decreases and
thus water droplets caused by the break are not dispersed in
the air and does not appear as the part of the overtopping
rate. Instead, standing waves are formed in the toe of the
structure, which leads to decreasing of runup and overtop-
ping rate.

S 0 = H=L 0 =

2 H=(gT 2);
Also Som with regard to the relationship 

 is a function of the significant wave height and
incident wave period. By increasing the height of the waves,
the waves break at larger depths, thus, the distance between
the breaking place and the structure increases and the prob-
ability of overtopping becomes less likely. Thus increasing
the wave height results in increasing wave steepness and
this causes the reduction of overtopping.

In EurOtop (2007) formula, the parameter of ξom is the
surf similarity parameter (Iribarren number) defined as:

om = p
Som

: (13) 

Thus, the wave steepness (Som), is inversely proportional
to the surf similarity parameter. With regard to the relation-
ships presented in CEM (2006), the wave runup is directly
related to the surf similarity parameter. It is means that the
reduction of ξom reduced runup. Thus, by reducing the runup
levels, a few waves can achieve the crest level and over-
flow. By increasing the wave steepness, ξom decreases. Re-
duction of ξom results in the reduction of overtopping.

Eqs. (11) and (12) have been obtained based on the av-
erage of input and output data. In other words, the exceeda-
nce level of the measured values from the predicted values
is about 50%. Sometimes it is necessary to predict the over-
topping rates based on less exceedance level. Therefore, the
above equations' coefficients for cases of less exceedance
level can be modified. To correct the coefficient, confid-
ence interval is used. The confidence interval of 90% means
that the exceedance level of the measured values in this
range is 10%. If the line of the best fit is defined as y=ax,
the line equations of the confidence intervals can be defined
as follows:
y = (a § n )x ; (14) 

y = (a + n ) x

in which a is the fit factor and σ is the standard deviation of
the data. n depends on the distribution type of data and the
confidence interval. For example, assuming a normal distri-
bution of the data and the confidence interval of 90%, n is eq-
ual to 1.65. If we assume that the distribution of data around
the line of the best fit is approximately symmetrical, for a
confidence interval of 90%, the probability that the meas-
ured values exceed the predicted value using 
is 5%. According to the above mentioned items and consid-
ering the standard deviation of the data, Eqs. (11) and (12)
are rewritten as follows for the design conditions:

Values of n for the normal distribution and for various
values of confidence intervals and exceedance level are giv-
en in Table 3. Putting the appropriate amount of n in Eqs.
(15) and (16), we obtain the desired prediction equation
based on the exceedance level. The above equations can be
used as design relationships for the vertical structures.

For better understanding consider Fig. 2. In Fig. 2, the
selected data from CLASH database (for data range
Rc/Hs≤1.31) are indicated by blue dots. The predicted val-
ues using Eq. (11) are shown in black continuous line. that
is the approximately average of data, as seen. However, if
we are to obtain the overtopping rate with the exceedance
level of 33% for the design consideration, putting n=0.44
(from Table 3 for exceedance level of 33%) in Eq. (15), the
values shown by black dashed-line is obtained. As seen in

Fig. 2, about 33% of the measured data is larger than the
data predicted by the black dashed-line.

7  Discussion
The comparison between the measured dimensionless

overtopping discharge and the ones predicted by using the
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Table 3   Values of n for a normal distribution for different values of
confidence interval exceedance level

Confidence interval (%) Exceedance level (%) n
99.8 0.1 3.09
96.0 2.0 2.05
90.0 5.0 1.65
80.0 10.0 1.28
34.0 33.0 0.44
0.0 50.0 0.00
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new formulas (15) and (16) is shown by Fig. 3. The figure
indicates that the new formulas yield accurate predictions of
the overtopping. Especially for the high overpassing dis-
charges which are more dangerous and may cause damage,
the new model is more accurate.

To assess the accuracy of the models, statistical indicat-
ors such as the geometric mean (xG), geometric standard de-
viation (σxG)(Goda, 2009), the index of dispersion (SI), BI-
AS, correlation coefficient (R2), root mean square error
(RMSE) and discrepancy ratio (DR) are used. These indicat-
ors are defined as follows:

xG = exp
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q¤est q¤measin which,  and  are the estimated and measured di-
mensionless overtopping rates. n is the number of measure-
ments. Table 4 shows the calculated errors for various mod-
els.

As it is seen in Table 4, all the error parameters indicate
the improvement of the overtopping rate forecasted by the
new model.

Fig. 4 shows the changes of DR versus relative crest
freeboard (Rc/Hs) for the different models. It's clear that dis-
crepancy ratio of the new model is not as sensitive as other
models for changes of Rc/Hs and therefore is more reliable.

To assess the applicability of new model to real cases,
the model is evaluated with field data of a vertical wall
breakwater in Samphire Hoe, UK (Pullen et al., 2009). Dis-
tributions of the measured values and the predicted overtop-
ping rate by different models for this case are indicated in
Fig. 5. Compared to other formulas, the new model shows
more accurate predictions. Franco’s predictions are underes-
timated and the formulas of EurOtop and Goda give overes-
timated outputs, especially for low overtopping rates that
will result in uneconomical designs.

8  Conclusions
New relationship for the prediction of overtopping rate

for vertical walls introduced using combination of multiple

 
Fig. 2.   Dimensionless measured overtopping discharge (blue dotes) and
the predicted ones by using Eq. (11), average value (solid line), and ex-
ceedance level of 33% (dashed line).

 
Fig. 3.   Scatter diagram of the measured dimensionless overtopping dis-
charge and the ones predicted by using the new formula.

Table 4   Errors calculated from the values predicted by the models

Statistical
indicators

Proposed formula
Franco et al.

(1994)
EurOtop
(2007) Goda (2009) Eqs. (11) and

(12)
xG 0.61 1.03 0.78 0.98

xG 2.91 2.29 2.13 1.99
SI 19:17 13:46 12:95 11:16

BIAS –0.22 0.01 –0.11 –0.01
R2 0.77 0.25 0.85 0.84

RMSE 0.51 0.36 0.35 0.30
Range of DR 0.007–18.2 0.16–93.3 0.03–25.1 0.22–28.8

1/5<DR<5(%) 84.02 93.40 92.84 95.32
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nonlinear regression and M5′ model tree. For this purpose,
the related data from database CLASH for caisson type
structures and other vertical walls were investigated. Data
for breakwaters with a smooth surface were used and effect-
ive parameters were described. Among several output rela-
tionships created using different formations of effective
parameters, finally the most accurate and the simplest one
was presented with pronouncing nonlinearity of the relative
water depth effect on wave overtopping of vertical struc-
tures for two classes of the relative freeboard namely 1.31
being the threshold value of the change. This was inter-
preted for the effect of wave breaking by interaction of re-
flected waves by incident one and the amount of energy
losses caused by overtopped water. The accuracy of the
model to experimental data has been compared with that of

other existing models and it shows that the proposed model
is more accurate than other existing models. The perform-
ances of the models with field measurements are evaluated
using statistical parameters and show that the accuracy of
these predictions has been improved. The coefficients of the
models for the design likely exceeding the lesser of 50%
were also modified. As the model provided more accurate
results than other existing models and also the simplicity
and convenience of use compared with other soft comput-
ing tools such as network and nervous, can the case of these
relationships be well used.
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