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ABSTRACT 

Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the 

vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position 

with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable 

sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are 

proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations 

in a variety of environments. Our results show the improved performance over prior techniques based on position 

computation. 
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1. Introduction 

Reliable navigation is a critical ability for AUV, not only for the sake of safe operation and 

recovery of the AUV, but also for scientific surveys. AUVs are now being used for a variety of tasks, 

including oceanographic surveys, demining, and bathymetric data collection in marine and river 

environments. Accurate localization and navigation is essential to ensure the accuracy of the gathered 

data for the application. AUV navigation is a challenging problem due primarily to the rapid 

attenuation of higher frequency signals and the unstructured nature of the undersea environment. 

Above water, most autonomous systems rely on radio or spread-spectrum communications and global 

positioning. However, underwater, such signals propagate only short distances and acoustic-based 

sensors and communications perform better. Acoustic communications still suffer from many 

shortcomings such as narrow bandwidth, low data rate, high latency, variable sound speed, multipath 

transmissions and unreliability. In spite of these significant challenges, research in AUV navigation has 

exploded in the last ten years. Acoustic navigation system is still a popular method of underwater 

vehicle in deep sea.  The field is in the midst of a paradigm shift from old technologies, such as long 

baseline (LBL), which require pre-deployed and localized infrastructure, toward dynamic system 

approaches that allow for rapid deployment and flexibility with minimal infrastructure. Another system 

“ultra short baseline (USBL)” is employed to track and locate the underwater vehicle (Ji and Zheng, 
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2013). However, acoustic navigation algorithm of deep sea AUVs is pretty challenging because it is a 

bit difficult to design an effective online processing procedure for travel time measurements which 

may be affected by noise, drop outs and outliers. Past reviews on this topic includes Stutters et al. 

(2008), Kinsey et al. (2006), Paull et al. (2014). In fact the predominant source of the spurious 

measurements is the presence of multiple acoustic propagation paths between source and receiver. The 

AUV must make decisions regarding the quality of the data without the aid of a human operator. Of 

course the reliability of the decision should be high in order to keep AUV safe and high navigation 

accuracy. A major consideration in acoustic navigation is the treatment of outliers. Methods to account 

for outliers in LBL systems include hypothesis grids (Bingham and Seering, 2006) and graph 

partitioning (Olson et al., 2006). Generally, range measurements can fall into one of three categories: 

direct path (DP), multipath (MP), or outlier (OL). The quality of range data is dependent on the 

location within the survey area (Ji and Liu, 2010). In (Bingham and Seering, 2006), a hypothesis grid 

is built to represent the belief that future measurements from a particular cell will be in a particular 

category (i.e., DP, MP, and OL). In graph partitioning, outliers are rejected using spectral analysis. A 

set of measurements is represented as a graph and the graph partitioning algorithm is applied to 

identify sets of consistent measurement (Olson et al., 2006). Another consideration is the time 

difference of arrival (TDOA) of the acoustic responses of the network (Bishop et al., 2008; McPhail 

and Pebody, 2009). The change in vehicle pose between the initial interrogation request and all of the 

subsequent replies must be explicitly handled. This is often done with a delayed state EKF. Each range 

difference measurement between two receivers constrains the target to an annulus (in 2-D) or a sphere 

(in 3-D). Annuluses are intersected to find the location of the target. However, when the data are 

corrupted by noise, there is not necessarily an intersection point.  

Our AUV is a deep ocean vehicle of 6000 meters, which was developed at Shenyang Institute of 

Automation. As part of its sensor suite, a custom multiple beacons navigation system was equipped on 

the AUV. To estimate the vehicle position, we present an algorithm that uses an extended Kalman filter 

(EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed 

in the operating environment. Most importantly, an effective method for processing raw measurements 

is adopted in the filter on account to that measurements process is a prerequisite for the EKF in the 

presence of spurious measurements. The algorithm was successfully applied to “Qianlong 1”AUV in 

the trial. The structure of this paper is as follows. In Section 2, the problem of multiple beacons 

navigation of AUVs is described. Section 3 discusses the central problem of measurements process. 

Section 4 presents experimental results obtained with the algorithm and compares its performance with 

the conventional navigation algorithm based on EKF but without outlier rejection. Finally, Section 

5discusses the results and future research directions. 

2. Multiple-Beacon Navigation 

Multiple-beacon navigation refers to an underwater position referencing system employing an 

array of acoustic beacons, as shown in Fig. 1. Beacon separations for most vehicle applications are 

typical from hundreds of meters to a few kilometers. These beacons are always calibrated before AUV 
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operation. 

Owing to the latency of acoustic updates, state estimators are implemented where the DR sensors 

provide the predictions and then acoustic measurements provide the updates. There is one prevalent 

filtering approach for position estimation when processing range measurements (Ji et al., 2009). This is 

to update the predicted position with fix computation based on more than three range measurements. In 

this case, the position is usually computed by depth and not less than three distances of beacons and 

used to correct position estimates by a Kalman filter (KF). While the navigation approach we presented 

here is to directly update the predicted position by range measurements. To be more specific, the depth 

and each range measurement or travel time are directly regarded as an observing value in the 

measurement equation in the extended Kalman filter (EKF). That also is, the presented method does 

not explicitly compute a fix, but provides a position estimate which is a weighted combination of dead 

reckoning results and absolute measurements, and consequently leading to a smoother track because a 

successive set of travel time is only utilized to partly correct the predicted position instead of totally 

updating in the first approach. Therefore the second approach was designed for deep sea navigation. 

 

 

                      Fig. 1. Multiple beacon position. 

 

2.1 State Model of the EKF 

Since the depth can be obtained by depth sensor on the AUV, obviously we only need to establish 

the local horizontal frame of geography other than three-dimensional frame. According to the 

conventional custom, the x-axis points east, and the y–axis points north. The AUV position in this 

frame is denoted by (x, y) and accordingly the coordinates of beacon i (i = 1, 2, ...) are denoted by(xi, 

yi). The measured travel time between the vehicle and the beacon is denoted by ti and the associated 

distances is denoted by di. The round trip distance is computed from the round trip travel time by the 

approximate relationship: di=c(tiτi), where c is the average speed of sound and τi is the turn around 

time of beacon i. 

The position prediction stage of the EKF is given as below. This state model is identical with the 

classical dead-reckon navigation: 

1

1 1
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  (1) 

where dt is the sample time, wk1 is the process noise, and vx and vy are the east speed and north speed 

respectively. They are the well-known function involving yaw, pitch, roll and speed vector in the 

vehicle frame. These angles and speed are gained from relevant sensors on the AUV. For example, if 

heading is available from a compass and velocity is available from a Doppler velocity log (DVL), (vx, 
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vy) is achieved by using the following kinematic equations: 
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where u  and v are the body frame forward and starboard velocities. In this model, it is assumed that 

roll and pitch are zero and that depth is measured accurately with a depth sensor. It is worth noticing 

that an inertial system is an alternative of electronic compass that aims to improve upon the dead-

reckon pose estimation by integrating measurements from accelerometers and gyroscopes. However, 

one problem with inertial system is that they drift over time. One common approach, for example, is to 

maintain the drift as part of the state space (Miller et al., 2010).  

2.2 Observation Model of the EKF 

As far as the filters mentioned above are concerned, they are easily distinguished from their own 

observation models. In the first approach, the fix is a set of measurements of each state and thus its 

observation model is linear. While in the second approach, the travel time is a single measurement of 

the whole states and its observation model is clearly nonlinear. In fact the second approach provides 

the filter process with specific advantages. To begin with, this approach is more suitable to deal with 

independent measurement. The travel time from each beacon are measured and output at different time 

because of different ranges from each beacon to the vehicle and consequently the travel times is a set 

of independent measurements. Therefore these measurements can be filtered independently rather than 

not processed until more than three periods of travel times come up for fix computation. It is obvious 

that the presented approach contribute more to position estimation than the first one in terms of real 

time and filtering rate. Another important point is that the presented approach can take account of the 

vehicle movement during the period of travel time. This is because the observation model in the EKF 

describes a real time model of round trip from pinging moment to receiving moment. By contrast, the 

fix computation in the KF always assumes that the vehicle is stationary between the ping and the 

reception and naturally leading to an error in the vehicle position from the fix computation. 

Fortunately, the presented approach can address this issue with its spontaneous advantage. As shown in 

Fig. 2 where AUV starts pinging at point  p p p, ,x y z and receives the acoustic signal from one 

transponder at point  r r r, ,x y z , and the acoustic travel range equals the range between pinging 

location and the transponder plus the range between receiving location and the transponder. Obviously 

the receiving point coordination is the sum of pinging point coordination and displacement  d d d, ,x y z . 

Besides the travel time between pinging and receiving, every transponder has its own delay time 

i  which must be considered into the observation equation. Thus the observation equation for the 

overall travel time can be expressed as a function of the position at the ping and at the reception of the 

return: 

2 2 2 2 2 2

p p p r r r

1 1
( ) ( ) ( ) ( ) ( ) ( )i i i i i i i it x x y y z z x x y y z z

c c
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where i = 1, 2, 3, …, p and r denotes the ping and reception, d ( )ix t , d ( )iy t and d ( )iz t denote the vehicle 

displacement in three axes between the ping and reception. It is noticeable that the vehicle movement 

can be obtained from dead-reckon. 

 
Fig. 2. Sketch diagram of observation equation. 

3. Outlier Recognition 

It is generally assumed that measurement errors consist of zero-mean additive noise. However, in 

fact the acoustic travel times involve a large amount of outliers, especially in the severe condition. This 

may not only produce a false initial position, but also result in a bad track. To avoid these unsatisfied 

effects, the navigation algorithm of AUV should be designed to account for outliers. It is general 

knowledge that both false initial states and false measurements are the keys to acoustic navigation of 

AUV.  

For initial position confirmation, a novel method is proposed here referring to multiple-object 

tracking algorithm. The confirmation of initial position is much the same as initial object tracks in 

terms of initial trajectory estimation. It is common sense that an unreal initial position must be beyond 

basic rules, while the real abides these rules. Thus this proposed method is employed for initial 

position confirmation, involving the processing of a sequence of measurements received during 

consecutive range measurements. The sequence of measurements represents the input to a time-

window containing N measurements. When the number of detections contained in the window reaches 

a specified value, a successful track initiation is obtained; otherwise the window is moved one scan 

towards the right, i.e. for increasing time. Suppose that jr , j = 1, 2, ..., N is the position of AUV from N 

consecutive fix computation and T is the period of acoustic pinging. The proposed method initiates a 

track if any M (<N) measurements from these N fix computations satisfy the following requirements: 

(1) The measured or estimated velocity is greater than a minimum value, minv and less than a 

maximum value, maxv . 

(2) The measured or estimated acceleration is less than a maximum value, maxa . If there is more 

than one return, the one with the minimum acceleration is used to form the new track. Mathematically, 

the two rules can be expressed as 

min 1 maxj jv T v T    r r ;  (4) 
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2

1 1 max( ) ( )j j j j a T    -r r r r .  (5) 

As far as the outlier rejection is concerned, there are two traditional different ways in which 

outlier rejection could be performed: in the time domain (travel time rejection) or in the spatial domain 

(fix rejection). Since it takes only one bad travel time value to result in an erroneous position, fix 

rejection has the potential to discard too much information. Therefore, temporal outlier rejection is 

desirable because erroneous travel times can be rejected individually. The short time accuracy of dead 

reckoning is acceptable and can predict where the vehicle should be. Rejection of outliers could take 

advantage of this ability. The position uncertainty is mainly due to two factors: initial position and bad 

measurements. Furthermore, during the dead reckoning process, validation region for each of travel 

time is defined by transforming the position uncertainty to the travel time domain. The EKF can 

directly perform this transformation. When the vehicle dead reckons, the position is predicted using the 

state equation (1). The associated error covariance is also predicted by: 

/ 1 1 1 1 1k k k k k kP F P F Q      ,  (6) 

where Fk is the Jacobian matrix of the state vector with respect to the speed and orientation, and Qk is 

the covariance matrix of the state noise in Eq. (1). After propagation of the position error, the 

uncertainty in position is transformed into uncertainty in the predicted travel time using observation 

equation. Outliers are judged by the data association gate algorithm. Predicting state kx  can be 

assumed as Gauss distribution and its mean is / 1
ˆ

k kx . Since predicting state is conditioned by all history 

measurements, the distribution of predicting state can be regarded as approximate summary associated 

with history information. Thus this summary can be described below 

1 1 1
ˆ; ,k k k k k k k

p P  
      x t Ν x x ,  (7) 

where 1kt means all the measurements up to k1, the right part of the equation above means probability 

density function (pdf) of Gauss distribution where xk is the variable, 
1

ˆ
k kx is the mean and 

1k k
P  is the 

covariance matrix.  Under the assumption as shown in Eq. (7), we can define an ellipse area as shown 

in Fig. 3 where the measurements can be confirmed as below: 
T2 1

, , / 1 , / 1 0
ˆ ˆ , 1, 2, ,i k i k k k k i k k kd t t S t t i N
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with  
2

/ 1
t

k k k k k tS H P H   ,  (9) 

where   is the threshold, 2

,i kd  means the statistical distance which conforms to x2 distribution, 0N is 

the number of all the measurements at time k, j means the order number of measurements, H is the 

travel time Jacobian and t denotes the standard error. Fig. 3 illustrates a confirmation area for 

measurements. We can see that the statistical distances of measurements , ( 1, 2,4)i kt i   all meet the 

requirement in Eq. (8), but the statistical distance of ,i kt is bigger than   and thus ,i kt does not fall into 

the confirmation area. 

When a new travel time arrives, its normalized innovation squared is compared with the 

threshold  . Then a validated measurement can be used to correct the predicted position after 
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confirmed by Eq. (8). The threshold  is important for the navigation method, because it determines 

how many measurements we can use in the algorithm. How to choose a reasonable threshold  ? 

Generally, we assume that the noise of measurement obeys Gaussian distribution with standard error 

t and the measurement error is usually defined as two times t under probability of 0.9954 for 

measurement sensors. We can deduce that variable 2 2/ ts   obeys ２ distribution where s means the 

standard error of the sample. Since the dimension of travel time measurements is single, we have from 

(1)２  distribution 

 2 2/ 4 0.9545tp s    .  (10) 

Considering 2

kd is the estimate of 2 2/ ts   with certain error, we increase the probability to 0.998 to 

enlarge the confirmed area. That is 

 2 0.998kp d   .  (11) 

From (1)２  distribution, we can obtain  =9.21. 

 

 

                 Fig. 3. Confirming area for the measurements. 

 

4. Experimental Results 

The proposed algorithm has run in “Qianlong 1”AUV, as shown in Fig. 4. The experiments were 

carried out in March and Jun. separately in the year 2013. There were two totally different acoustic 

conditions as shown in Fig. 3 and Fig. 4, respectively. In the experiments, the period T of acoustic 

pinging is 24 s, vmax and vmin are 4 m/s and 0 m/s respectively, amax is 0.5 m/s2, and   is 9.21. The 

heading sensor is TCM5, and the speed sensor is Doppler Velocity Log. There were four acoustic 

beacons to be deployed at the sea bottom. The presented algorithm is based on EKF with outlier 

recognition. We test the presented algorithms to compare with the conventional navigation algorithm 

which is also based on EKF but without outlier rejection by the record data of two voyages in the trial. 

In order to compare with the error of two navigation algorithms, we give the discrete track by fix 

computation that directly uses range measurements to calculate the vehicle’s position. Fig. 5 and Fig. 7 

show the vehicle tracks estimated by the two navigation algorithms in voyage 1 and voyage 2 

respectively and Fig. 6 and Fig. 8 show the error comparison of two navigation algorithms (without 

outlier rejection vs. with outlier rejection). 
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Fig. 4. “Qianlong 1” AUV.                                 Fig. 5. Tracks comparison of two navigation algorithms (without outlier 

rejection vs. with outlier rejection) in voyage 1. 

  

Fig. 6. Error comparison of two navigation algorithms(without        Fig. 7. Tracks comparison of two navigation algorithms 
outlier rejection vs. with outlier rejection) for Fig. 5.                         (without outlier rejection vs. with outlier rejection) 

                                                                                          in bad acoustic condition in voyage 2. 

 

Fig. 8. Error comparison of two navigation algorithms (without outlier rejection vs. with outlier rejection) for Fig. 8 errors 

caused by the two algorithms.  

We emphasize that all the two algorithms employ the initial position confirmation method in Eqs. 

(4) and (5). It can be noted in Figs. 5 and 7 that the two algorithms ensure the correct initial position 

using the proposed method. This experiment proves that the proposed approach is valid on initial 

position confirmation. Besides that, what is most manifest from the charts is that the two methods 

mentioned above demonstrate different performances in position estimation. Firstly, we can directly 

see from both Fig. 5 and Fig. 7 that the track estimated by the presented algorithm is much smoother 

than that by the conventional algorithm. Evidently, in addition, the error of the presented algorithm is 

much smaller than that of the conventional algorithm in Fig. 6 and Fig. 8. Moreover, it is obvious that 
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the acoustic condition is good in Fig. 5 as there are few jumps in the track estimated by the 

conventional algorithm, whereas it is bad in Fig. 4 as there are a few jumps. This demonstrates that the 

presented algorithm has a nice performance even in bad condition of measurements. The plots indicate 

that the travel time measurements which passed the validation test can indeed correct the vehicle 

position, while the false measurements are dropped out to avoid disturbing the estimates. In contrast, 

the track estimated by the conventional algorithm produces more significant jumps in worse condition. 

This trend is illustrated clearly in the two voyages. The reason for these jumps is primarily that outliers 

from raw measurements have not been rejected and as a result the estimates are contaminated. 

Consequently the conventional method is easily subjected to measurement quality which depends on 

the acoustic condition. In fact, as these jumps deviate from actual track very far, the track estimated by 

the conventional algorithm is unacceptable for the vehicle navigation.  

The error statistics are given in Tables 1 and 2. The mean in the tables is obtained by absolute 

value of position error. We can see that the error mean of the presented algorithm is very small 

compared with that of the conventional algorithm. More precisely, for the error mean of the presented 

algorithm, the mean is 10.7 m and the standard error is 9.2 m in Table 1 and the mean is 4.2 m and the 

standard error 3.5 m in Table 2. The standard error is less than the mean. Whereas, for the conventional 

algorithm, the error mean is at least 1.5 times that of the presented algorithm. Moreover, the standard 

error is much larger than the mean itself. This is caused by jumps in the track. These results 

demonstrate that the presented algorithm is superior to the conventional algorithm not only in accuracy 

but also in uniformity. Furthermore, we can notice that the mean and standard error of the presented 

algorithm in Table 2 is smaller than that in Table 1. This is owing to the cause that there are more valid 

measurements in voyage 2 than that in voyage 1 to be utilized by the presented algorithm. 

Table 1                            Error statistics in voyage 1 
 Mean (m) Standard error (m) 

Conventional algorithm 16.3 31.5 
Presented algorithm 10.7 9.2 

Table 2                            Error statistics in voyage 1 
 Mean (m) Standard error (m) 

Conventional algorithm 11.6 26.9 
Presented algorithm 4.2 3.5 

It is common sense that the fix computation algorithm uses at least 3 travel times to calculate the 

position. The position outliers can be rejected by Eq. (8) on a subset of the measurements, but all these 

travel times may be discarded together with the position outliers during each measurement circle. This 

procedure will lead to too much waste on valuable measurements for the operation of acoustic beacons 

is very hard in the sea trial (Ji et al., 2010). Thus it is required to utilize as many valid returns as 

possible during a cycle to completely correct the error of the vehicle position estimates. As it happens, 

the presented algorithm can process an independent travel time in every circle. However, this kind of 

procession may inevitably induce the nonlinearity of observation equation that may partially, not 

globally correct the estimates in each measurement update. Nevertheless this situation can be 

compensated by many measurements update. 
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5. Conclusion 

The proposed approach on initial position confirmation is validated by the experiment. Moreover, 

the presented extended Kalman filter with proposed outlier recognition has most satisfactory 

performance compared with the conventionally extended Kalman filter and fix computation. It should 

be noticeable that another source of error in fix computation is that the navigation sensor noise of the 

vehicle is not taken into account. In the near future, it would be desirable to implement a more 

theoretically advanced technique for position estimation. The nice approach would be to employ M-

estimate algorithm for this purpose (Đurović and Kovačević,, 1999). The regression problem on noise in 

EKF can be solved robustly using the M-estimate algorithm. It can become adaptive estimation of the 

unknown a priori state and noise statistics simultaneously with the system states. This ability will make 

the vehicle track more accurate. 
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