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ABSTRACT 

Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and 

black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship 

mathematical model for ship manoeuvring motion, in which the hydrodynamic coefficients are obtained from roll planar 

motion mechanism test, some zigzag tests and turning circle manoeuvres are simulated. In the white-box modeling and 

grey-box modeling, the training data taken every 5 s from the simulated 20°/20° zigzag test are used, while in the 

black-box modeling, the training data taken every 5 s from the simulated 15°/15°, 20°/20° zigzag tests and 15°, 25° 

turning manoeuvres are used; and the trained support vector machines are used to predict the whole 20°/20° zigzag test. 

Comparisons between the simulated and predicted 20/20° zigzag tests show good predictive ability of the proposed 

methods. Besides, all mathematical models obtained by the proposed modeling methods are used to predict the 10°/10° 

zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to 

demonstrate the good generalization performance of the mathematical models. Finally, the proposed modeling methods 

are analyzed and compared with each other in aspects of application conditions, prediction accuracy and computation 

speed. The appropriate modeling method can be chosen according to the intended use of the mathematical models and 

the available data needed for system identification. 

Key words: ship manoeuvring; 4 degrees of freedom; system identification; support vector machines 

1. Introduction 

For warship and other ships with low metacentric height (e.g., container ship), ship manoeuvring 

motion is usually accompanied by roll motion of large amplitude. The roll motion not only affects the 

tactical and technical performance of warship, but also has direct impacts on ship navigation safety. 

Investigation of ship manoeuvring motion with the influences of the roll motion being taken into 
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account is one of the research hotspots. Son and Nomoto (1982) investigated the sway-yaw-roll 

coupling motion of a container ship on the basis of captive model tests, and a 4 degrees of freedom 

(4-DOF) motion equation including roll motion was established in modular mathematical model. 

Fossen (1994) simulated the 4-DOF ship manoeuvring motion using hydrodynamic coefficients from 

Son and Nomoto’s tests. Blanke et al. (1997, 2002) presented a nonlinear whole-ship mathematical 

model for a container ship based on the experimental results obtained with the 4-DOF roll planar 

motion mechanism (RPMM) facility. 

The application of System Identification (SI) method based on free-running model tests or 

full-scale trials plays an important role in modeling of ship manoeuvring motion (ITTC, 2005). Various 

SI methods are applied in modeling of ship manoeuvring motion. Model reference method (Hayes, 

1971), extended Kalman filter method (Abkowitz, 1980; Revestido and Velasco, 2012), maximum 

likelihood method (Åström and Källström, 1976), recursive prediction error method (Källström and 

Åström, 1981; Zhou and Blanke, 1989), least square method (Rhee et al., 1998), frequency domain 

identification method (Bhattacharyya and Haddara, 2006; Perez and Fossen, 2011), neural network 

(Haddara and Wang, 1999), etc. have been used to identify the hydrodynamic coefficients in the 

mathematical models. Among them, neural network can not only be used for parametric identification, 

but they are more suitable for nonlinear regression. Artificial neural network was adopted to regress the 

nonlinear dynamic model of a large tanker (Rajesh and Bhattacharyya, 2008); recursive neural network 

was applied to simulate the ship manoeuvring motion (Hess and Faller, 2000; Moreira and Guedes 

Soares, 2003). In the 1990s, support vector machines (SVM), a novel method of modern artificial 

intelligence technology, was proposed (Vapnik, 2000). Compared with neural network, SVM is 

directed at finite samples and has good generalization performances and global optimal extremum. By 

using the least squares support vector machines (LS-SVM, Luo and Zou, 2009) and ε-support vector 

machines (ε-SVM, Zhang and Zou, 2011), the hydrodynamic coefficients of Abkowitz model were 

identified. 

In this paper, three modeling methods, i.e., white-box modeling, grey-box modeling and 

black-box modeling of ship manoeuvring motion in 4-DOF based on LS-SVM are investigated. With 

the nonlinear whole-ship model proposed by Blanke et al. (1997, 2002), 10°/10°, 15°/15°, 20°/20° 

zigzag tests and 15°, 25°, 35° turning circle manoeuvres are simulated. In white-box modeling and 

grey-box modeling, the simulation data of 20°/20° zigzag test taken every 5 s are used to train the 

support vectors; while in black-box modeling, the simulation data of 15°/15°, 20°/20° zigzag tests and 

15°, 25° turning manoeuvres are used; and the trained support vector machines is used to predict the 

whole 20°/20° zigzag test. Besides, all mathematical models obtained by the proposed modeling 

methods are used to predict 10°/10° zigzag test and 35° turning circle manoeuvre. The predicted results 

are compared with those of simulation tests to demonstrate the good predictive ability and 

generalization performance of the mathematical models. The modeling methods are analyzed and 

compared with each other in aspects of application conditions, prediction accuracy and computation 

speed. The appropriate modeling method can be chosen according to the intended use of the 

mathematical models and the available data needed for system identification. 
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2. Mathematical Model 

Generally, the 4-DOF manoeuvring motion of a surface vessel can be described by the equations 

in the following form (Son and Nomoto, 1982): 
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where u, v, r, and p denote the surge speed, sway speed, yaw rate and roll rate, respectively; m is the 

mass of the ship; Ixx and Izz are the moments of inertia about the longitudinal and vertical axes; xG and 

zG are the longitudinal and vertical coordinates of the ship’s center of gravity; X and Y are the 

longitudinal and lateral hydrodynamic force components; N is the hydrodynamic yaw moment; K is the 

roll moment; W is the weight of the ship; GM is the metacentric height; and   is the roll angle. 

Expanding the hydrodynamic forces and moments in Eq. (1) by Taylor series expansion, Eq. (1) 

can be written as (Blanke et al., 1997, 2002): 
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where au  is the relative surge speed defined as nomau U U  , 2 2U u v   is the ship’s absolute 

speed, nomU  is the nominal speed; , , ,u v r pX Y N K  etc. are the hydrodynamic coefficients;   is the 
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rudder angle. 

3. Least Square Support Vector Machines 

LS-SVM is an improved type of SVM. To avoid the uncertainties in selecting structural 

parameters, some improvements (Suykens and Vandewalle, 1999) have been made. Because of the 

choice of square loss function, the sparse solution feature is lost. But it does not heavily influence the 

precision of the results; in contrast, it transfers the solution of quadratic optimization problem to 

solving a linear system of equations, which immensely saves the computational time. 

The feature space representation of LS-SVM can be described as 
T( ) ( )     ( , )xm ny b y   x w x x R R  (7) 

where ( )y x  is the scalar output of the system; ( ) x  is a high-dimensional feature space to 

approximate the hidden mapping contained in the original training samples; x is the input vector of the 

system; w is the weight matrix; b is the bias (constant); R is the Euclidean space; mx and n are the 

dimensions of the Euclidean space. 

The optimization problem is 
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where C is the penalty factor, and e is the regression error. 

The following Lagrangian function is defined for objective function and constraint conditions 
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where i  is the Lagrangian multiplier. 
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Substituting Eqs. (11) and (12) into Eq. (13), subject to Eq. (14), gives 
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where T

1[ , , ]ny yy  ,  T
1, ,1E  , T

1[ , , ]n β  , T( ) ( ) ( , )i j i jx x K x x    , T[0, ,0] 0 . 

( i jK x x   is the kernel function. The regression estimation function can be obtained, once Eq. (15) is 

solved: 
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4. Modeling Method 

There are three kinds of system identification modeling method, i.e., white-box modeling, 

grey-box modeling, and black-box modeling. In white-box modeling, the motion law of the system is 

analyzed based on the structure of the system; the mathematical model of the system is derived. 

White-box modeling is also known as the mechanism modeling. Black-box modeling is a modeling 

method using only the input-output data of the system, even if both the structure and parameters of the 

system are unknown at all. Black-box modeling aims at an appropriate approximation of the actual 

system. Grey-box modeling is a hybrid modeling method combining the white-box modeling and 

black-box modeling for the system which is not fully known. 

4.1 White-Box Modeling 

For the purpose of parametric identification and computer simulation, the continuous equation of 

motion is discretized by using Euler’s stepping method as: 
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where h is the sampling interval, k and k+1 are the adjacent sampling time steps. 

Substituting Eq. (17) into Eqs. (2)(6), we can obtain the identification formulas in the 

nondimensional form as follows: 
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where coefficient vectors 

wXC , 
wYC , 

wNC , and 
wKC  and variable vectors wX , wY , wN , and wK  are 

given as: 
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( ), ( ) ( ), ( ) ( ),

a a a

v k v k v k v k v k r k v k r k r k r k r k r k r k v k r k v k p k

p k p k u k p k u k p k u k k v k k v k k k v k u k k k

k k v k k v k

     

  

 N

T2 3

1 28
( ) ( ), ( ) ( ), ( ) ( ) ;a a ak u k k u k k u k  




 

2 2 3 2

w

3 2 2

2 3 2

( ), ( ), ( ) ( ) , ( ) ( ) , ( ) ( ), ( ), ( ) ( ) , ( ), ( ) ( ) , ( ) ( ), ( ),

( ) ( ) , ( ), ( ) ( ), ( ) ( ) ( ) ( ) , ( ) ( ), ( ) ( ), ( ) ( ),1, ( ), ( ),

( ), ( ), ( ) ( ), ( )

a a a

v k v k v k v k v k r k v k r k r k r k r k r k r k v k r k v k p k

p k p k p k p k u k p k u k p k u k v k k v k k k v k u k k

k k k v k k v

   

   

 K

T2 3

1 28
( ), ( ) ( ), ( ) ( ), ( ) ( ) .a a ak k u k k u k k u k  




 

The above coefficient vectors can be identified by using LS-SVM. By selecting the linear kernel 

function ( , ) (  )K x x x x  , Eq. (16) is rewritten as: 

1

n

i i
i

y x x b


  . (19) 

According to Eq. (19), if LS-SVM has approximated the objective function well, 
1

n

i i
i

x

  are 

considered as the identified hydrodynamic coefficients. 

The process of white-box modeling and prediction of ship manoeuvring motion by using LS- 

SVM is depicted in Fig. 1. 

4.2 Grey-Box Modeling 

By substituting Eq. (17) into Eqs. (2)(6), the output at k+1 time step can be rearranged as: 
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g

g

g

g

g

g g

g

( 1)

( 1)

( 1)

( 1)

u k

v k

r k

p k

  


  


  
   

X

Y

N

K

C X

C Y

C N

C K

 (20) 

where coefficient vectors 
gXC , 

gYC , gNC , and 
gKC  and variable vectors Xg, Yg, Ng, and Kg are 

 
g 1 2 19 1 19

, , ,a a a


XC  ,  
g 1 2 29 1 29

, , ,b b b


YC  ,  1 2 29 1 29
, , ,

g
c c c


NC  ,  

g 1 2 29 1 29
, , ,d d d


KC  , 

2 3 2 2 2 2 2

g

2 2 2 T

1 19

2 2

g

[ ( ), ( ), ( ), ( ) ( ), ( ), ( ), ( ), ( ) ( ), ( ), ( ), ( ), ( ) ( ), ( ),

      ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )] ;

[ ( ), ( ), ( ) ( ) , ( ) ( ) , ( ) (

a a a a

a a

u k u k u k v k r k r k v k v k v k k k k p k p k u k k

k k u k k u k v k k v k k r k p k

v k v k v k v k v k r k v k r k

   

     





X

Y 3 2

3 2 2

2 3 2 2 3

), ( ), ( ) ( ) , ( ), ( ) ( ) , ( ) ( ), ( ),

     ( ), ( ) ( ), ( ) ( ) ( ) ( ) , ( ), ( ) ( ), ( ) ( ), ( ) ( ),1, ( ), ( ),

     ( ), ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )

a a a a

a a a

r k r k r k r k r k v k r k v k p k

p k p k u k p k u k p k u k k v k k v k k k v k u k k

k k k v k k v k k u k k u k k u k

    

       T

1 29

g g g g

, ( ) ( )] ;

;   .

u k r k 

 N Y K Y

 

The process of grey-box modeling and prediction of ship manoeuvring motion by using LS-SVM 

is depicted in Fig. 2. 

 

Fig. 1. Process of white-box modeling and motion prediction by using LS-SVM. 

 
Fig. 2. Process of grey-box modeling and motion prediction by using LS-SVM. 
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4.3 Black-Box Modeling 

From Eq. (20), it can be seen that ( 1),u k  ( 1),v k  ( 1)r k  , and ( 1)p k   are the functions of 

( ),u k ( ),v k ( ),r k ( ),p k ( )k , and ( )k . These equations can be rewritten as: 

 
 
 
 

1

2

3

4

( 1) ( ), ( ), ( ), ( ), ( ), ( )

( 1) ( ), ( ), ( ), ( ), ( ), ( )

( 1) ( ), ( ), ( ), ( ), ( ), ( )

( 1) ( ), ( ), ( ), ( ), ( ), ( )

u k g u k v k r k p k k k

v k g u k v k r k p k k k

r k g u k v k r k p k k k

p k g u k v k r k p k k k

 
 
 
 

  
  
  
  

 (21) 

The process of black-box modeling and prediction of ship manoeuvring motion by using LS-SVM 

is depicted in Fig. 3. 

 

Fig. 3. Process of black-box modeling and motion prediction by using LS-SVM. 

5. Prediction and Generalization Verification 

5.1 Prediction 

A model of container ship (Blanke et al., 1997, 2002) is taken as the study object. The principal 

dimensions of the ship are given in Table 1. 

Table 1           Principal dimensions of the container ship 

Parameter Magnitude  Parameter Magnitude 

Length ( L ) 230.66 m x-coordinate of CG ( Gx ) 0.46 m 

Beam ( B ) 32 m z-coordinate of CG ( Gz ) 3.54 m 

Draught ( D ) 10.7 m Metacentric height ( GM ) 0.83 m 

Displacement volume (  ) 46070 m3 Block coefficient ( BC ) 0.56 

Non-dimensional mass ( m ) 750.81×105 Propeller diameter ( pD ) 8 m 

Non-dimensional inertia in roll ( xxI  ) 1.30×105 Rudder rate ( max ) 2.3 °/s 

Non-dimensional inertia in yaw ( zzI  ) 43.25×105 Nominal speed ( nomU ) 12.7 m/s 

Firstly, 10°/10°, 15°/15°, 20°/20° zigzag tests and 15°, 25°, 35° turning circle manoeuvres are 

simulated by using the hydrodynamic coefficients obtained from RPMM test (Blanke et al., 1997, 

2002), as given in Table 2. The simulation sampling interval is 0.05 s. Surge speed u, sway speed v, 

yaw rate r, roll rate p etc. are obtained from the simulation. 
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Table 2 Comparison of identified nondimensional hydrodynamic coefficients (×105) with RPMM test data 

Accel. 
-coef. 

RPMM 
X 

-coef.
RPMM Identified 

Y 
-coef.

RPMM Identified
N 

-coef.
RPMM Identified

K 
-coef. 

RPMM Identified 

uX   124.4 vX   24.0 24.0 vY  725.0 725.0 vN  300.0 300.0 vK 
 25.0 25.0 

vY   878.0 vvX   1.0 0.9 vvY  98.6 98.6 vvN  0.6 0.6 vvK 
 0.0 0.0 

rY   48.1 X   1.4 1.4 v v
Y  5801.5 5801.7 v v

N  712.9 712.9 v v
K 

 99.2 99.2 

pY   23.3 X  116.8 116.8 Y 248.1 248.1 N 128.9 128.9 K  6.5 6.5 

vN   42.3 uX   226.2 226.1 Y 13.4 13.4 N 11.9 11.9 K  0.8 0.8 

rN   30.0 uuX   64.5 63.3 Y 193.0 193.1 N 101.4 101.4 K  4.1 4.1 

pN   0.2 uuuX   137.2 124.2 uY 379.4 379.4 uN 196.9 196.9 uK  8.9 8.9 

vK   0.0 vX   124.5 124.4 uY 55.6 55.6 uN 12.8 12.8 uK  1.3 1.3 

rK   1.0 vX   341.0 340.9 uY 232.3 231.9 uN 125.4 125.2 uK  4.8 4.8 

pK   0.7 uX  17.2 17.2 0Y  4.7 5.0 0N  0.6 0.6 0K 
 0.1 0.1 

  
uX   224.9 224.8 0uY  5.3 5.9 0uN  6.5 6.5 0uK 

 1.1 1.1 

  X  5.9 5.9 vY 100.0 100.0 vN 24.6 24.6 vK  5.4 5.4 

  X  42.2 42.2 vvY 189.2 190.2 vvN 349.1 349.1 vvK  0.9 0.9 

  
vX   108.1 108.1 Y 37.7 37.7 N 17.9 17.9 p p

K 
 1.0 1.0 

  
rrX   4.4 4.5 vY  144.9 144.9 N 17.8 17.8 vK   14.7 14.7 

  
vrX   24.0 24.0 vY  2459.3 2458.0 vN  0.9 0.8 vK   103.9 103.9 

  
ppX   7.2 7.2 vvY 177.2 180.6 vvN 933.9 934.0 vvK  6.2 6.3 

  
ppuX  3.9 4.0 rY  118.2 118.2 rN  290.0 290.0 rK 

 0.8 0.8 

     r r
Y  0 0 r r

N  0.0 0.0 r r
K 

 20.0 20.0 

  rrrY  158.0 156.9 rrrN  224.5 224.2 rrrK 
 0.0 0.0 

  r v
Y  409.4 409.5 r v

N  778.8 778.7 r v
K 

 41.1 41.1 

  rvvY  994.6 995.3 rvvN  1287.2 1286.8 rvvK 
 34.6 34.6 

  v r
Y  1192.7 1192.7 v r

N  174.7 174.7 v r
K 

 10.4 10.4 

  vrrY  1107.9 1107.4 vrrN  36.8 37.4 vrrK 
 22.2 22.2 

  pY  3.4 3.4 pN  8.0 8.0 pK 
 3.0 3.0 

  pppY  9.3 9.3 pppN  0.0 0 pppK 
 0.0 0.0 

  puY  23.6 23.6 puN  12.8 12.8 puK 
 0.0 0.0 

  pu pu
Y  52.5 59.9 pu pu

N  0.0 1.3 pu pu
K 

 0.0 0.2 

In white-box modeling and grey-box modeling, the training samples are taken from the simulation 

data of 20°/20° zigzag test every 5 s. In the process of identification, the linear kernel function is 

selected, and penalty factor C =106 is chosen. For white-box modeling, the training sample couples 

consist of: 

Input:  w w w w, , ,X Y N K  

Output:  
2

2

2 2 2 2

( 1) ( ) ( ) ( ) ( ) ( ) ( )
 ;

( ) ( ) ( ) ( )u G G

u k u k v k r k r k r k p k
L m X m m x m z

LhU k LU k U k U k

            
 


 

     2

2 2 2 2

( 1) ( ) ( 1) ( ) ( 1) ( ) ( ) ( )
 ;

( ) ( ) ( ) ( )v G r G p

v k v k r k r k p k p k u k r k
L m Y m x Y m z Y m

LhU k hU k hU k LU k

                     
 

  
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     

     

2

2 2 2 2

2

2 2 2

( 1) ( ) ( 1) ( ) ( 1) ( ) ( ) ( )
;

( ) ( ) ( ) ( )

( 1) ( ) ( 1) ( ) ( 1) ( ) ( ) (

( ) ( ) ( )

G v zz r p G

G v r xx p G

v k v k r k r k p k p k u k r k
L m x N I N N m x

LhU k hU k hU k LU k

v k v k r k r k p k p k u k r
L m z K K I K m z

LhU k hU k hU k

                   
 

                  

  

   2

)

( )

     ( ).

k

LU k

W GM k

 
 
 

 

 

The hydrodynamic coefficient vectors are identified by Eq. (19) and the results are given in Table 

2 in comparison with the RPMM test data. Note that the acceleration coefficients are not identified. 

They are treated as known constants during identification. 

It can be seen from Table 2 that the identification results of the hydrodynamic coefficients are in 

good agreement with the RPMM test data. This shows that the proposed white-box modeling by using 

LS-SVM is an effective method to identify the hydrodynamic coefficients. 

In the grey-box modeling, the training sample couples consist of 

 
g g g gInput:    , , ,

Output: ( 1), ( 1), ( 1), ( 1)u k v k r k p k

  
   

X Y N K
 

In order to make Eq. (21) have the same nonlinear mapping capability as Eq. (20), the kernel 

function of the black-box modeling must be nonlinear. The RBF kernel function, one of the commonly 

used nonlinear functions,  2 2( , ) exp (2 )K x x x x      is chosen, where   is the width 

parameter which is taken as 30. SVM has a strong ability to learn from a small sample compared with 

neural networks, however, the sample is required to fully reflect the input and output mappings. The 

roll rate changes more rapidly than surge speed, sway speed and yaw rate, it is difficult to achieve 

better forecasting results only relying on a certain motion (such as a zigzag test or a turning circle 

manoeuvre). Refer to the simulation of ship motion using recurrent neural network (Hess and Faller, 

2000), the training samples are taken from the simulation data of 15°/15°, 20°/20° zigzag tests and 15°, 

25° turning circle manoeuvres every 5 s. The training sample couples consist of 

 
 

Input:    ( ), ( ), ( ), ( ), ( ), ( )

Output: ( 1), ( 1), ( 1), ( 1)

u k v k r k p k k k

u k v k r k p k

 

   
 

Comparisons of the hydrodynamic forces and moments predicted from white-box modeling with 

simulated results are depicted in Fig. 4. Fig. 5 shows the comparisons of the predicted motions using 

the mathematical models obtained by white-box modeling, grey-box modeling, and black-box 

modeling with those of simulation. A satisfactory agreement demonstrates the validity of the proposed 

modeling methods. 

5.2 Generalization Verification 

To verify the generalization performance of the proposed methods using white-box modeling, 

grey-box modeling, and black-box modeling, 10°/10° zigzag test and 35° turning circle manoeuvre are 

predicted. 

Comparisons of the hydrodynamic forces and moments predicted from white-box modeling with 

simulated results are depicted in Fig. 6 and Fig. 8. Comparisons of the predicted motions with 
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simulated results are shown in Fig. 7 and Fig. 9. As it can be seen from these figures, good agreements 

are achieved, which demonstrates that all the modeling methods have a good generalization capability. 

 
Fig. 4. Comparisons of the predicted hydrodynamic forces and moments with simulated results, 20°/20° zigzag test. 

 
Fig. 5. Comparisons of the predicted motions with simulated results, 20°/20° zigzag test. 

 
Fig. 6. Comparisons of the predicted hydrodynamic forces and moments with simulated results, 10°/10° zigzag test. 
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Fig. 7. Comparisons of the predicted motions with simulated results, 10°/10° zigzag test. 

 
Fig. 8. Comparisons of the predicted hydrodynamic forces and moments with simulated results, 35° turning circle manoeuvre. 

 
Fig. 9. Comparisons of the predicted motions with simulated results, 35° turning circle manoeuvre. 
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6. Comparison of the Modeling Methods 

6.1 Required Known Conditions and Outputs 

Requirements on the known conditions and the output results of the three modeling methods are 

listed in Table 3. According to the intended use of the mathematical models and the available data 

needed for system identification, the appropriate modeling method can be chosen. If the hydrodynamic 

coefficients are to be determined, only white-box modeling should be chosen; the hydrodynamic forces 

and moments can be predicted by white-box modeling from Eqs. (3)(6); however, much more known 

data are required. When only the structures of the equations of ship manoeuvring motion are known, 

the grey-box modeling is a better choice. When neither the principal ship parameters, nor the structures 

of the equations of ship manoeuvring motion are known, black-box modeling is the only choice for 

modeling of ship manoeuvring motion. 

Table 3   Requirements on the known conditions and the outputs of the modeling methods 

Method Requirements on known conditions Outputs 

White-box 
modeling 

Mathematical model of ship motion 
Principal ship parameters: , , Gm L x  etc. 

Acceleration coefficients: , , ,u v r pX Y N K        etc. 

Motion parameters: ( ), ( ), ( )u k v k r k  and ( )p k

Rudder angle and roll angle: ( )k  and ( )k  

Hydrodynamic coefficients: , , ,  u v r pX Y N K     etc 

Hydrodynamic forces and moments: ,  ,  X Y N  and K  

Motion parameters: ( 1), ( 1), ( 1)u k v k r k    and ( 1)p k 

Grey-box 
modeling 

Mathematical model of ship motion 
Motion parameters: ( ), ( ), ( )u k v k r k  and ( )p k

Rudder angle and roll angle: ( )k  and ( )k  

Motion parameters: ( 1), ( 1), ( 1)u k v k r k    and ( 1)p k 

Black-box 
modeling 

Motion parameters: ( ), ( ), ( )u k v k r k  and ( )p k

Rudder angle and roll angle: ( )k  and ( )k  
Motion parameters: ( 1), ( 1), ( 1)u k v k r k    and ( 1)p k 

6.2 Comparison of Prediction Accuracy 

Usually, Mean Square Error (MSE) and Correlation Coefficient (CC) are two evaluation criterions 

used to measure the prediction accuracy. All the predictions using the mathematical models obtained 

by the proposed modeling methods are carried out in the same computational environment. The MSE 

and CC of u, v, r and p are listed in Table 4. 

Table 4 demonstrates that all the proposed modeling methods have high prediction accuracy. 

However, the accuracy of white-box modeling and grey-box modeling is significantly higher than that 

of black-box modeling. The reason is that the inputs of white-box modeling and grey-box modeling are 

both high-dimensional vectors and hence can better reflect the system characteristics; while the input 

of black-box modeling is only one-dimensional vector. White-box modeling and grey-box modeling 

have a stronger nonlinear mapping ability than black-box modeling, although the RBF kernel function 

is chosen in black-box modeling. 

6.3 Comparison of Prediction Speed 

The training time and prediction time per step of each manoeuvre are plotted in Fig. 10 for visual 

comparison. Fig. 10 demonstrates that all the proposed modeling methods have a fast prediction speed. 

However, white-box modeling costs much less computation time than grey-box modeling and black- 



WANG Xue-gang et al. / China Ocean Eng., 29(4), 2015, 519 – 534  

 

532

box modeling. The reason is that the prediction based on white-box modeling is by iterative 

computations through hydrodynamic coefficients and Eq. (17) and hence is the fastest; on the other 

hand, prediction based on grey-box modeling involves a high dimensional nonlinear input and hence 

costs a large amount of computation; although the input of black-box modeling is very simple, the RBF 

kernel function is quite memory- and CPU time consuming. 

Table 4      Comparison of the prediction accuracy 

Manoeuvres Evaluation criterion White-box modeling Grey-box modeling Black-box modeling 

20°/20° zigzag 

MSE 

u: 3.0909×106 

v: 6.1478×105 

r: 5.2143×109 

p: 1.2093×108 

u: 4.1396×105 

v: 8.3322×104 

r: 6.9638×108 

p: 1.6670×107 

u: 4.25845×103 

v: 1.0200×102 

r: 8.0767×107 

p: 1.7154×106 

CC 

u: 0.9999 

v: 0.9999 

r: 0.9999 

p: 0.9997 

u: 0.9999 

v: 0.9998 

r: 0.9997 

p: 0.9961 

u: 0.9981 

v: 0.9968 

r: 0.9962 

p: 0.9596 

10°/10° zigzag 

MSE 

u: 1.4038×106 

v: 7.6193×105 

r: 5.8705×109 

p: 5.0966×108 

u: 1.7008×10-5 

v: 9.1550×10-4 

r: 7.7978×10-8 

p: 1.2304×10-6 

u: 2.4381×103 

v: 1.4682×102 

r: 1.1006×106 

p: 7.6239×106 

CC 

u: 0.9999 

v: 0.9999 

r: 0.9999 

p: 0.9984 

u: 0.9997 

v: 0.9993 

r: 0.9989 

p: 0.96189 

u: 0.9814 

v: 0.9883 

r: 0.9850 

p: 0.7585 

35° turning 

MSE 

u: 6.1803×108 

v: 8.0514×107 

r: 2.0996×1012 

p: 4.8442×1011 

u: 7.7087×103 

v: 4.8715×103 

r: 8.9307×109 

p: 1.8975×107 

u: 2.5632×101 

v: 7.6885×103 

r: 4.3855×107 

p: 8.2096×107 

CC 

u: 0.9999 

v: 0.9999 

r: 0.9999 

p: 0.9999 

u: 0.9998 

v: 0.9917 

r: 0.9989 

p: 0.9741 

u: 0.9741 

v: 0.9697 

r: 0.9598 

p: 0.9381 

 

Fig. 10. Comparison of the prediction speed. 
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7. Conclusions 

Based on LS-SVM, this paper has dealt with three system identification modeling methods for 

ship manoeuvring motion in 4-DOF, i.e., white-box modeling, grey-box modeling and black-box 

modeling. The conclusions can be summarized as follows: 

(1) Good predictive ability and generalization performance of the proposed modeling methods are 

demonstrated by comparing the predicted results with those of simulation tests. 

(2) Appropriate modeling method can be chosen according to the intended use of the mathematical 

models and the available data needed for system identification: When the hydrodynamic coefficients 

are to be determined, only white-box modeling should be chosen; when only the structures of the 

equations of ship manoeuvring motion is known, the gray-box modeling is a better choice; when both 

the principal ship parameters and the equations of ship manoeuvring motion are unknown, black-box 

modeling is the only choice for modeling of ship manoeuvring motion, but training samples from more 

manoeuvring types are needed. 

(3) By comparing the MSE and CC between the prediction results and simulation data, it is shown 

that the accuracy of white-box modeling and grey-box modeling is significantly higher than that of 

black-box modeling. 

(4) It is shown that all the modeling methods have fast prediction speed because of the SVM 

characteristics. In comparison, white-box modeling needs much less computation time than grey-box 

modeling and black-box modeling. 
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