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ABSTRACT

Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and
black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship
mathematical model for ship manoeuvring motion, in which the hydrodynamic coefficients are obtained from roll planar
motion mechanism test, some zigzag tests and turning circle manoeuvres are simulated. In the white-box modeling and
grey-box modeling, the training data taken every 5 s from the simulated 20°/20° zigzag test are used, while in the
black-box modeling, the training data taken every 5 s from the simulated 15°/15°, 20°/20° zigzag tests and 15°, 25°
turning manoeuvres are used; and the trained support vector machines are used to predict the whole 20°/20° zigzag test.
Comparisons between the simulated and predicted 20°/20° zigzag tests show good predictive ability of the proposed
methods. Besides, all mathematical models obtained by the proposed modeling methods are used to predict the 10°/10°
zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to
demonstrate the good generalization performance of the mathematical models. Finally, the proposed modeling methods
are analyzed and compared with each other in aspects of application conditions, prediction accuracy and computation
speed. The appropriate modeling method can be chosen according to the intended use of the mathematical models and
the available data needed for system identification.
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1. Introduction

For warship and other ships with low metacentric height (e.g., container ship), ship manoeuvring
motion is usually accompanied by roll motion of large amplitude. The roll motion not only affects the
tactical and technical performance of warship, but also has direct impacts on ship navigation safety.
Investigation of ship manoeuvring motion with the influences of the roll motion being taken into
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account is one of the research hotspots. Son and Nomoto (1982) investigated the sway-yaw-roll
coupling motion of a container ship on the basis of captive model tests, and a 4 degrees of freedom
(4-DOF) motion equation including roll motion was established in modular mathematical model.
Fossen (1994) simulated the 4-DOF ship manoeuvring motion using hydrodynamic coefficients from
Son and Nomoto’s tests. Blanke et al. (1997, 2002) presented a nonlinear whole-ship mathematical
model for a container ship based on the experimental results obtained with the 4-DOF roll planar
motion mechanism (RPMM) facility.

The application of System Identification (SI) method based on free-running model tests or
full-scale trials plays an important role in modeling of ship manoeuvring motion (ITTC, 2005). Various
SI methods are applied in modeling of ship manoeuvring motion. Model reference method (Hayes,
1971), extended Kalman filter method (Abkowitz, 1980; Revestido and Velasco, 2012), maximum
likelihood method (Astrém and Killstrom, 1976), recursive prediction error method (Killstrém and
Astrom, 1981; Zhou and Blanke, 1989), least square method (Rhee ef al., 1998), frequency domain
identification method (Bhattacharyya and Haddara, 2006; Perez and Fossen, 2011), neural network
(Haddara and Wang, 1999), etc. have been used to identify the hydrodynamic coefficients in the
mathematical models. Among them, neural network can not only be used for parametric identification,
but they are more suitable for nonlinear regression. Artificial neural network was adopted to regress the
nonlinear dynamic model of a large tanker (Rajesh and Bhattacharyya, 2008); recursive neural network
was applied to simulate the ship manoeuvring motion (Hess and Faller, 2000; Moreira and Guedes
Soares, 2003). In the 1990s, support vector machines (SVM), a novel method of modern artificial
intelligence technology, was proposed (Vapnik, 2000). Compared with neural network, SVM is
directed at finite samples and has good generalization performances and global optimal extremum. By
using the least squares support vector machines (LS-SVM, Luo and Zou, 2009) and &-support vector
machines (e-SVM, Zhang and Zou, 2011), the hydrodynamic coefficients of Abkowitz model were
identified.

In this paper, three modeling methods, i.e., white-box modeling, grey-box modeling and
black-box modeling of ship manoeuvring motion in 4-DOF based on LS-SVM are investigated. With
the nonlinear whole-ship model proposed by Blanke ef al. (1997, 2002), 10°/10°, 15°/15°, 20°/20°
zigzag tests and 15°, 25°, 35° turning circle manoeuvres are simulated. In white-box modeling and
grey-box modeling, the simulation data of 20°/20° zigzag test taken every 5 s are used to train the
support vectors; while in black-box modeling, the simulation data of 15°/15°, 20°/20° zigzag tests and
15°, 25° turning manoeuvres are used; and the trained support vector machines is used to predict the
whole 20°/20° zigzag test. Besides, all mathematical models obtained by the proposed modeling
methods are used to predict 10°/10° zigzag test and 35° turning circle manoeuvre. The predicted results
are compared with those of simulation tests to demonstrate the good predictive ability and
generalization performance of the mathematical models. The modeling methods are analyzed and
compared with each other in aspects of application conditions, prediction accuracy and computation
speed. The appropriate modeling method can be chosen according to the intended use of the

mathematical models and the available data needed for system identification.
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2. Mathematical Model

Generally, the 4-DOF manoeuvring motion of a surface vessel can be described by the equations
in the following form (Son and Nomoto, 1982):
m@—vr—x,r’ +zrp) =X
m(V+ur+x,7—z.,p)=Y M
I 7 +mx,(V+ur)=N
I p—mz,(V+ur)=K—-W-GM -¢
where u, v, r, and p denote the surge speed, sway speed, yaw rate and roll rate, respectively; m is the
mass of the ship; /., and I, are the moments of inertia about the longitudinal and vertical axes; x;and
zg are the longitudinal and vertical coordinates of the ship’s center of gravity; X and Y are the
longitudinal and lateral hydrodynamic force components; N is the hydrodynamic yaw moment; K is the

roll moment; W is the weight of the ship; GM is the metacentric height; and ¢ is the roll angle.

Expanding the hydrodynamic forces and moments in Eq. (1) by Taylor series expansion, Eq. (1)
can be written as (Blanke et al., 1997, 2002):
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(6)
where u, is the relative surge speed defined as u, =U-U, , U =+u’+v* is the ship’s absolute

speed, U,,, is the nominal speed; X,, Y, N, K, etc. are the hydrodynamic coefficients; & is the
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rudder angle.

3. Least Square Support Vector Machines

LS-SVM is an improved type of SVM. To avoid the uncertainties in selecting structural
parameters, some improvements (Suykens and Vandewalle, 1999) have been made. Because of the
choice of square loss function, the sparse solution feature is lost. But it does not heavily influence the
precision of the results; in contrast, it transfers the solution of quadratic optimization problem to
solving a linear system of equations, which immensely saves the computational time.

The feature space representation of LS-SVM can be described as

y(x)=w'd(x)+b (xeR™, yeR") @)
where y(x) is the scalar output of the system; @(x) is a high-dimensional feature space to
approximate the hidden mapping contained in the original training samples; x is the input vector of the
system; w is the weight matrix; b is the bias (constant); R is the Euclidean space; m, and n are the
dimensions of the Euclidean space.

The optimization problem is

. 1 1
man(w,e)=5wTw—i-ECZ:ei2 ®)
.
subject to
v, =w@(x)+b+e (i=12,-,n) ©

where C is the penalty factor, and e is the regression error.
The following Lagrangian function is defined for objective function and constraint conditions

L (w,e,3,b) = J(w,e)—iﬂi [w'®(x)+b+e -y, ], (10)

where S is the Lagrangian multiplier.
Taking the partial derivatives of L, with respect to w, e, f and b, and setting the derivatives to

be zero, respectively, we have

oL z

Lt=0>w= D(x); 11
P 2AP) (11)
%=0—>p’i=c@i; (12)
Oe,
%=O—>WT¢(xi)+b+ei—y,=0; (13)
p,

L n
Z£=O_>zﬂ‘=0’ (14)

Substituting Egs. (11) and (12) into Eq. (13), subject to Eq. (14), gives

= acels ) s
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where y=[y, 1", E=[L-1], B=[B..B,]", 2=O(x) D(x))=K(x,x,), 0=[0,,0] .
K(x,,x,) is the kernel function. The regression estimation function can be obtained, once Eq. (15) is

solved:

y=Y BK(x,x)+b. (16)

4. Modeling Method

There are three kinds of system identification modeling method, i.e., white-box modeling,
grey-box modeling, and black-box modeling. In white-box modeling, the motion law of the system is
analyzed based on the structure of the system; the mathematical model of the system is derived.
White-box modeling is also known as the mechanism modeling. Black-box modeling is a modeling
method using only the input-output data of the system, even if both the structure and parameters of the
system are unknown at all. Black-box modeling aims at an appropriate approximation of the actual
system. Grey-box modeling is a hybrid modeling method combining the white-box modeling and
black-box modeling for the system which is not fully known.

4.1 White-Box Modeling
For the purpose of parametric identification and computer simulation, the continuous equation of
motion is discretized by using Euler’s stepping method as:

(k) = [u(k +1)—u(k)]/ h
(k) = [v(k +1) = v(k)]/ a17)
(k) =[r(k +1)—r(k)]/

[

p(k)=[p(k+1)—p(k)]/h
where 4 is the sampling interval, £ and k+1 are the adjacent sampling time steps.

Substituting Eq. (17) into Egs. (2)—-(6), we can obtain the identification formulas in the
nondimensional form as follows:

C. X =1 (m’_X')u(k+l)_u(k) _m,v(k)r(k) —m'x rz(k) +m'z! V(k)P(k)

T O LhU? (k) LU (k) U (k) °UN(k)
)
C, N, =I|(m¥ _N,)v(k+1)—v(k)+(1, _N,)r(k+1)—r(k)+(_N,)p(k+1)—p(k)+m,x, u(k)r(k)

¢ LhU(k) =00 pUN(k) ’ KU (k) ¢ LU(k)
C, K. =I|(-mz _K,)v(k+1)—v(k) +(_K,)r(k+1)—r(k) +(I’ _K,)p(k+1)—p(k) ' u(k)yr(k)

o o LU (k) YU (k) BRI )] LU (k)

+W'GM 'p(k)
(18)

where coefficient vectors C, , C, , C, ,and C, and variable vectors X , ¥ , N ,and K are

given as:
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128
The above coefficient vectors can be identified by using LS-SVM. By selecting the linear kernel

function K(x,x")=(xx"), Eq. (16) is rewritten as:
y=Y Bxx+b. (19)
i=1
According to Eq. (19), if LS-SVM has approximated the objective function well, Z B x, are
i=1

considered as the identified hydrodynamic coefficients.
The process of white-box modeling and prediction of ship manoeuvring motion by using LS-
SVM is depicted in Fig. 1.

4.2 Grey-Box Modeling
By substituting Eq. (17) into Egs. (2)—(6), the output at £+1 time step can be rearranged as:
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u(k+1):CXg X,
v(k+1)=C, ‘¥,

(20)
r(k+1)=C,,-N,
plk+1)= CKg ‘K,
where coefficient vectors CXg , CYg , C,,»and CKg and variable vectors X;, ¥,, N,, and K, are
CXg =[a1,a2,...,a19]lxlg, CI,g :[bl,bz,...,bzg]lng, C,Vg :[cl,cz,...,czg]lng , CKg :[dl,dz,...,dzg]1x29 ,

X, =, (), ug (), ug (), v(k)r(k), v (), v(k), v* (K), v(k) g (), g, ° (), p* (), p* (Kyu, (K), (k)

& (k), 0(k)u, (k), & (k)u, (k), (k)5 (), v(k)&™ (), (k) p (k)]s

Y, = [v(k),v* (k) v(R) (k)] () [r (k)] (k) (R, (R, () (B (), () (R ()Y (K), k),
P (k). p(oyu, (k). p(kyu, (k)| plyu, (k)] (k). v(k)p(k). vk (k). gk’ (k). L, (K), 5 (k),

&° (k), 6" (k), 6 (kyv(k), 6 (k)v* (), S (kyu, (k), 67 (kyu, (k) & (e, (), u () ()

N,=Y; K, =Y,

The process of grey-box modeling and prediction of ship manoeuvring motion by using LS-SVM
is depicted in Fig. 2.
SVM white-box

Kx, 1) - Output
K(x,.Y) bl Tu(r ) [x(rtD)
: 3 N _L vt D)
K(x.x) pprED )
3 e (k)
K(x, ) p=a-a N {
1—»1+1 iterative prediction

Step 1:1dentify hydrodynamic coefficients A(B’#CKD):%J'Q,-‘]

a1 (x(kt1)
kD) (k)
VD) T kD)

L
k—»k+1 iterative prediction [ -|

Fi

—

g. 1. Process of white-box modeling and motion prediction by using LS-SVM.

SVM grey-box

Vo(ulkED)) (x(ht1)
LD kD
BaCG AT )

GG

k—>k+1 iterative prediction ‘ {
Fig. 2. Process of grey-box modeling and motion prediction by using LS-SVM.
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4.3 Black-Box Modeling
From Eq. (20), it can be seen that u(k+1), v(k+1), r(k+1), and p(k+1) are the functions of

u(k), v(k), r(k), p(k), ¢(k),and O6(k).These equations can be rewritten as:
u(k +1) = g, [u(k),v(k), r(k), p(k), $(k), (k)]
vk +1) = g, [u(k),v(k), r(k), p(k), p(k), 5 (k)]
r(k+1) = g [u(k),v(k),r(k), p(k), §(k),5(k)]
plk+1) =g, [u(k), v(k),r(k), p(k), ¢(k),5(k)]

The process of black-box modeling and prediction of ship manoeuvring motion by using LS-SVM

ey

is depicted in Fig. 3.

Output

C(ukr)y (x(kt])
Vv (et D)
D) T k)

| o) 90eD;

k—k+1 iterative prediction { }

Fig. 3. Process of black-box modeling and motion prediction by using LS-SVM.

5. Prediction and Generalization Verification

5.1 Prediction
A model of container ship (Blanke et al., 1997, 2002) is taken as the study object. The principal
dimensions of the ship are given in Table 1.

Table 1 Principal dimensions of the container ship
Parameter Magnitude Parameter Magnitude
Length (L) 230.66 m x-coordinate of CG ( x;;) —0.46 m
Beam (B) 32m z-coordinate of CG ( z,; ) 354m
Draught (D) 10.7 m Metacentric height ( GM ) 0.83m
Displacement volume (V) 46070 m® Block coefticient ( C,, ) 0.56
Non-dimensional mass ( m' ) 750.81x107° Propeller diameter ( D, ) 8m
Non-dimensional inertia in roll (7, ) 1.30x107° Rudder rate (5, ) 2.3°/s
Non-dimensional inertia in yaw ( /.,) 43.25%x107 Nominal speed (U, ) 12.7 m/s

Firstly, 10°/10°, 15°/15°, 20°/20° zigzag tests and 15°, 25°, 35° turning circle manoeuvres are
simulated by using the hydrodynamic coefficients obtained from RPMM test (Blanke et al., 1997,
2002), as given in Table 2. The simulation sampling interval is 0.05 s. Surge speed u, sway speed v,
yaw rate r, roll rate p etc. are obtained from the simulation.
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Table 2 Comparison of identified nondimensional hydrodynamic coefficients (x107°) with RPMM test data

Accel ppmm X RPMM Identified | . RPMM Identified . RPMM Identificd . RPMM Identified
-coef. -coef. -coef. -coef. -coef.

X, -1244 X] 240 240 Y -7250 -7250 N -300.0 -300.0 K 25.0 25.0

Y, 8780 X, -1.0 -09 Y, 98.6 98.6 N, -0.6 -0.6 K 0.0 0.0

Y481 X; o 14 14 Y 58015 -5801.7 Ny 7129 -7129 K 992 99.2

Y 233 X) -1168 -1168 Y/ 2481 2481 N, -1289 -1289 K; -6.5 -6.5

N, 423 X, 2262 -226.1 Y 13.4 134 N,  -119 119 K -0.8 -0.8

N =300 X, -645 -633 Y, -193.0 -193.1 N 1014 1014 K, 4.1 4.1

N, 02 X, -1372 -1242 Y, 3794 -3794 N, 1969 1969 K, 8.9 8.9

K! 00 X, 1245 1244 Y,  -556 =556 N, 12.8 128 K, 1.3 1.3

K] -1.0 X, -341.0 -3409 Y, 2323 2319 N, -1254 -1252 K;,, ~ -4.8 4.8

K -0.7 X;, -172 172 Y] 4.7 50 N, 0.6 -0.6 K; -0.1 -0.1

Xy, 2249 2248 Y, -53 -59 N, 6.5 6.5 K, 1.1 1.1

X, -5.9 -59 Y, -100.0 -100.0 N; 246 246 K, 5.4 5.4

X, —422 422 Y, 1892 1902 N;, -349.1 -349.1 K, -0.9 -0.9

X, 1081 108.1 Y 37.7 37.7 Ny -179  -179 K, -10  -10

X, 44 45 Y, 1449 1449 N, 17.8 178 K, -147 -147

X, —240 240 Y, 24593 24580 N, 09  -08 K|, -1039 -1039

X, 7.2 72 Yoo o 1772 1806 N, 9339 -9340 K, = 62 6.3

X 3.9 40 Y 1182 1182 N. -2900 -290.0 K! 0.8 0.8

Y, 0 0 N, 0.0 00 K. 200 200

Y, -158.0 1569 N, 2245 2242 K 0.0 0.0

Vi 4094 -4095 Ny 7788 -7787 K 411 41.1

Y, 9946 -9953 N, -1287.2 -1286.8 K., -346 -346

Yoo -11927 -11927 Ny 1747 -1747 K 104 10.4

Y, -1107.9 -11074 N, 36.8 374 K., 222 222

Y 3.4 -34 N, -8.0 -80 K -3.0 -3.0

Y, -9.3 93 N,, 0.0 0 K 0.0 0.0

Y, 23.6 236 N, 12.8 128 K, 0.0 0.0

Ve =525 =599 N, 0.0 13 K,,, 00 0.2

In white-box modeling and grey-box modeling, the training samples are taken from the simulation
data of 20°/20° zigzag test every 5 s. In the process of identification, the linear kernel function is
selected, and penalty factor C =10° is chosen. For white-box modeling, the training sample couples
consist of:

Input: [X,.¥,,N,.K,]
u(k+1)—u(k (k)r(k ., ik ., r(k)plk
(LhJZ(k; S L(U)Z((k)) —Me UZ((k))+MZG (szk())}

2| (- vk +1) —v(k) (m'x, ~Y') r(k+1)—r(k) (o' - Y,)p(k+1)—p(k) +py HER(E) |,
LhU? (k) ¢ hUR k) ¢ hU (k) LUk) |

E)

Output: > {(m’ -X])

v
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P {(m,x; D) e D) pED=p ) u(k)r(k)]

LhU*(k) =00 pUN (k) ? hU? (k) LUk |

2| (m! _K,)v(k+l)—v(k) +(_K,)r(k+l)—r(k)+(1, _K,)p(k+1)—p(k) _ g WEIr(K)

¢ LhU (k) Y U (k) ’ hU? (k) LU (k)
+W'GM¢(k).

The hydrodynamic coefficient vectors are identified by Eq. (19) and the results are given in Table
2 in comparison with the RPMM test data. Note that the acceleration coefficients are not identified.
They are treated as known constants during identification.

It can be seen from Table 2 that the identification results of the hydrodynamic coefficients are in
good agreement with the RPMM test data. This shows that the proposed white-box modeling by using
LS-SVM is an effective method to identify the hydrodynamic coefficients.

In the grey-box modeling, the training sample couples consist of

Input: [ X,.¥,.N,.K, |
Output: [u(k +1), v(k +1), r(k +1), p(k +1)]

In order to make Eq. (21) have the same nonlinear mapping capability as Eq. (20), the kernel
function of the black-box modeling must be nonlinear. The RBF kernel function, one of the commonly

used nonlinear functions, K(x,x’):exp(—"x—x'"2 /(20'2)) is chosen, where o is the width

parameter which is taken as 30. SVM has a strong ability to learn from a small sample compared with
neural networks, however, the sample is required to fully reflect the input and output mappings. The
roll rate changes more rapidly than surge speed, sway speed and yaw rate, it is difficult to achieve
better forecasting results only relying on a certain motion (such as a zigzag test or a turning circle
manoeuvre). Refer to the simulation of ship motion using recurrent neural network (Hess and Faller,
2000), the training samples are taken from the simulation data of 15°/15°, 20°/20° zigzag tests and 15°,
25° turning circle manoeuvres every 5 s. The training sample couples consist of

Input:  [u(k),v(k),r(k), p(k), p(k),5(k)]

Output: [u(k +1), v(k +1), r(k +1), p(k +1)]

Comparisons of the hydrodynamic forces and moments predicted from white-box modeling with
simulated results are depicted in Fig. 4. Fig. 5 shows the comparisons of the predicted motions using
the mathematical models obtained by white-box modeling, grey-box modeling, and black-box
modeling with those of simulation. A satisfactory agreement demonstrates the validity of the proposed
modeling methods.

5.2 Generalization Verification

To verify the generalization performance of the proposed methods using white-box modeling,
grey-box modeling, and black-box modeling, 10°/10° zigzag test and 35° turning circle manoeuvre are
predicted.

Comparisons of the hydrodynamic forces and moments predicted from white-box modeling with
simulated results are depicted in Fig. 6 and Fig. 8. Comparisons of the predicted motions with
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simulated results are shown in Fig. 7 and Fig. 9. As it can be seen from these figures, good agreements
are achieved, which demonstrates that all the modeling methods have a good generalization capability.
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6. Comparison of the Modeling Methods

6.1 Required Known Conditions and Outputs

Requirements on the known conditions and the output results of the three modeling methods are
listed in Table 3. According to the intended use of the mathematical models and the available data
needed for system identification, the appropriate modeling method can be chosen. If the hydrodynamic
coefficients are to be determined, only white-box modeling should be chosen; the hydrodynamic forces
and moments can be predicted by white-box modeling from Egs. (3)—(6); however, much more known
data are required. When only the structures of the equations of ship manoeuvring motion are known,
the grey-box modeling is a better choice. When neither the principal ship parameters, nor the structures
of the equations of ship manoeuvring motion are known, black-box modeling is the only choice for
modeling of ship manoeuvring motion.

Table 3 Requirements on the known conditions and the outputs of the modeling methods
Method Requirements on known conditions Outputs
Mathematical model of ship motion
Principal ship parameters: m, L, x; etc. Hydrodynamic coefficients: X;, Y", M, K]', etc
White-box i ients: X'.Y.N'.K'
modeling Acceleration coefficients: X, ’YV’N"’KP etc. Hydrodynamic forces and moments: X, ¥, N and K

Motion parameters: u(k),v(k),r(k) and p(k)  Motion parameters: u(k +1),v(k +1),r(k +1) and p(k +1)
Rudder angle and roll angle: 5(k) and @(k)
Mathematical model of ship motion
S;)eggﬁﬁ; Motion parameters: u(k),(k),r(k) and p(k) Motion parameters: u(k +1),v(k +1),7(k+1) and p(k +1)
Rudder angle and roll angle: 5(k) and @(k)
Black-box Motion parameters: u(k),v(k),r(k) and p(k)
modeling  Rudder angle and roll angle: 5(k) and ¢(k)

Motion parameters: u(k +1),v(k +1),r(k+1) and p(k+1)

6.2 Comparison of Prediction Accuracy

Usually, Mean Square Error (MSE) and Correlation Coefficient (CC) are two evaluation criterions
used to measure the prediction accuracy. All the predictions using the mathematical models obtained
by the proposed modeling methods are carried out in the same computational environment. The MSE
and CC of u, v, r and p are listed in Table 4.

Table 4 demonstrates that all the proposed modeling methods have high prediction accuracy.
However, the accuracy of white-box modeling and grey-box modeling is significantly higher than that
of black-box modeling. The reason is that the inputs of white-box modeling and grey-box modeling are
both high-dimensional vectors and hence can better reflect the system characteristics; while the input
of black-box modeling is only one-dimensional vector. White-box modeling and grey-box modeling
have a stronger nonlinear mapping ability than black-box modeling, although the RBF kernel function
is chosen in black-box modeling.

6.3 Comparison of Prediction Speed

The training time and prediction time per step of each manoeuvre are plotted in Fig. 10 for visual
comparison. Fig. 10 demonstrates that all the proposed modeling methods have a fast prediction speed.
However, white-box modeling costs much less computation time than grey-box modeling and black-
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box modeling. The reason is that the prediction based on white-box modeling is by iterative
computations through hydrodynamic coefficients and Eq. (17) and hence is the fastest; on the other
hand, prediction based on grey-box modeling involves a high dimensional nonlinear input and hence
costs a large amount of computation; although the input of black-box modeling is very simple, the RBF

kernel function is quite memory- and CPU time consuming.

Table 4

Comparison of the prediction accuracy

WANG Xue-gang et al. /| China Ocean Eng., 29(4), 2015, 519 — 534

Manoeuvres Evaluation criterion

White-box modeling

Grey-box modeling

Bla

ck-box modeling

u: 3.0909x107 u: 4.1396x107° u: 4.25845x107
MSE v: 6.1478x107° v: 8.3322x107 v: 1.0200%1072
r5.2143%x107° r 6.9638%107 r: 8.0767x107
20°/20° zigzag p: 1.2093x107® p: 1.6670x1077 p: 1.7154x10°°
u: 0.9999 u: 0.9999 u: 0.9981
cc v: 0.9999 v: 0.9998 v: 0.9968
r:0.9999 r:0.9997 r:0.9962
p:0.9997 p:0.9961 p:0.9596
u: 1.4038x107° u: 1.7008%10° w: 2.4381x1073
MSE v: 7.6193%107° v:9.1550x10™ v: 1.4682x1072
r 5.8705%10°° r:7.7978x10* 7 1.1006x10°
. -6
10°/10° zigzag P 5.0966x107 p: 1.2304x10 P 7.6239x107°
u: 0.9999 u: 0.9997 u: 0.9814
cc v: 0.9999 v: 0.9993 v: 0.9883
r:0.9999 r:0.9989 r:0.9850
p:0.9984 p:0.96189 p:0.7585
u: 6.1803x107 u: 7.7087x107 u:2.5632x107"
MSE v: 8.0514x1077 v: 4.8715%107 v: 7.6885%107
r:2.0996x107"2 r: 8.9307x107° r: 4.3855%1077
35° turning p: 4.8442x107" p: 1.8975x1077 p: 8.2096x107
u: 0.9999 u: 0.9998 u:0.9741
cc v: 0.9999 v:0.9917 v: 0.9697
r:0.9999 r:0.9989 r:0.9598
p:0.9999 p: 0.9741 p: 0.9381
1.0E-05
1.0E-04 Zig-zag 20°/20°
1.0E-044 B Zig-zag 10°/10°
1.0E-03 8 Turning 35°
1.0E-03 1
1.0E-02
1.0E-02 -
1.0E-01 | 0E-014
1.0E+00 . . 1.OE+00- A ot A==
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Fig. 10. Comparison of the prediction speed.
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7. Conclusions

Based on LS-SVM, this paper has dealt with three system identification modeling methods for
ship manoeuvring motion in 4-DOF, i.e., white-box modeling, grey-box modeling and black-box
modeling. The conclusions can be summarized as follows:

(1) Good predictive ability and generalization performance of the proposed modeling methods are
demonstrated by comparing the predicted results with those of simulation tests.

(2) Appropriate modeling method can be chosen according to the intended use of the mathematical
models and the available data needed for system identification: When the hydrodynamic coefficients
are to be determined, only white-box modeling should be chosen; when only the structures of the
equations of ship manoeuvring motion is known, the gray-box modeling is a better choice; when both
the principal ship parameters and the equations of ship manoeuvring motion are unknown, black-box
modeling is the only choice for modeling of ship manoeuvring motion, but training samples from more
manoeuvring types are needed.

(3) By comparing the MSE and CC between the prediction results and simulation data, it is shown
that the accuracy of white-box modeling and grey-box modeling is significantly higher than that of
black-box modeling.

(4) It is shown that all the modeling methods have fast prediction speed because of the SVM
characteristics. In comparison, white-box modeling needs much less computation time than grey-box
modeling and black-box modeling.
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