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ABSTRACT 

This paper addresses the multi-fault diagnosis problem of thrusters and sensors for autonomous underwater vehicles 

(AUVs). Traditional support vector domain description (SVDD) has low classification accuracy in the process of AUV 

multi-fault pattern classification because of the effect of sample sparse density and the uneven distribution of samples, and 

so on. Thus, a fuzzy weighted support vector domain description (FWSVDD) method based on positive and negative class 

samples is proposed. In this method, the negative class sample is introduced during classifier training, and the local density 

and the class weight are introduced for each sample. To improve the multi-fault pattern classifier training speed and fault 

diagnosis accuracy of FWSVDD, a multi-fault mode classification method based on a hierarchical strategy is proposed. 

This method adds fault contain detection surface for each thruster and sensor to isolate fault components during fault 

diagnosis. By considering the problem of pattern classification for a fuzzy sample, which may be located in the overlapping 

area of hyper-spheres or may not belong to any hyper-sphere in the process of multi-fault classification based on 

FWSVDD, a relative distance judgment method is given. The effectiveness of the proposed multi-fault diagnosis approach 

is demonstrated through water tank experiments with an experimental AUV prototype. 
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1. Introduction 

AUV works in complex marine environments and completes scheduled tasks independently using 

artificial intelligence, automatic control, pattern recognition, information fusion, system integration, 

and other technology (Xu and Xiao, 2007). Given the complexity of the marine environment and the 

high autonomy of AUV, the occurrence of a fault in the AUV will cause significant losses (Xu and Su, 

2008). Fault diagnosis technology provides a new method to improve the reliability of AUV systems 

(Antonelli et al., 2004). Scholars have raised numerous methods to address the single fault diagnosis 

problem of AUV systems and achieved good results in practical application (Zhu et al., 2009). 

However, the rapid development of computers, sensors, and underwater communication technology 

has made AUV systems more complicated, resulting in the frequent simultaneous occurrence of 

multiple faults within the system (Li et al., 2005; Hamilton et al., 2007). With the unscented Kalman 

filter to perform the joint estimation of parameters and AUV motion state, a multi-thruster for AUV 

fault detection was achieved (Lin et al., 2011). The multi-sensor fault diagnosis of AUV was achieved 
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by using the node energy difference and feature extraction of wavelet decomposition (Wang et al., 

2010). However, most of these methods are only suitable for fault diagnosis problems of multi-thruster 

or multi-sensor and do not consider concurrent problems of thrusters and sensors. When multiple faults 

simultaneously occur in an AUV system, different fault causes and symptoms result in varying 

collection or influence domains, making the multi-fault diagnosis of AUV a complex problem. 

Therefore, a diagnosis study for the concurrent multi-fault of thrusters and sensors in an AUV system and 

the distinction of thruster and sensor faults are of great significance in improving AUV system security. 

In the study of nonlinear system multi-fault diagnosis, commonly used methods include neural 

networks (Talebi et al., 2009), principal component analysis (PCA) (Du and Jin, 2007), support vector 

machine (SVM) (Gao et al., 2007), and other methods. Compared with other nonlinear systems, an 

AUV system usually has more normal samples and less fault samples. Moreover, fault samples are 

difficult to be obtained, thus making it difficult for a neural network to obtain a decision-making 

function with good generalization capability from the limited fault samples (Hu and Wang, 2001). PCA 

requires that the data samples are mutually independent and follow the Gauss distribution (Li and 

Xiao, 2011). However, the data samples in an AUV system typically exhibit another type of 

distribution and have a nonlinear structure. With consideration of the advantages of SVM, such as the 

capability to solve non-linear problems and small-sized samples (Cheng and Shih, 2007; Peng and 

Xiao, 2009), this method is more suitable for AUV system multi-fault diagnosis than the neural 

network and PCA. 

Based on SVM, the support vector domain description (SVDD) method was presented (Tax and 

Duin, 1999). The basic idea of SVDD is to establish the minimum hyper-sphere interface in the kernel 

feature space and to certain the most number of target samples in the hyper-sphere, while ejecting 

non-target samples from the hyper-sphere (Khediri et al., 2012; Zhang et al., 2007; Zhang et al., 2009; 

Zhou et al., 2012). However, a study of the multi-fault mode classifier based on the SVDD method 

reveals the following limitations of this method in the modeling process: (a) the traditional SVDD 

method treats each sample equally without considering the density of the target data. However, in 

practice, the importance of each sample is related to the density of the region where the sample is 

situated; (b) the traditional SVDD method does not consider the uneven sizes of different-fault-mode 

samples. However, when the sample sizes are not balanced, and the SVDD classification error is 

undesirably biased toward the class with fewer samples; and (c) the traditional SVDD method does not 

train non-target class samples together, and the non-target samples will affect the formation of the 

smallest bounding ball during training. These limitations cause the traditional SVDD method to have 

low classification accuracy in the process of AUV multi-fault mode classification. According to the 

sample distribution, Lin and Wang (2002) introduced fuzzy knowledge into the SVDD method and 

used different penalty coefficients for different samples, such that different samples had different 

contributions to the objective function. According to the authors’ knowledge, only limited open 

references on the uneven samples size problem and non-target sample learning problem are available. 

A multi-fault diagnosis study based on SVM or SVDD needs to establish a multi-mode classifier. 

The existing multi-mode classifier can be divided into two kinds: direct classifier and indirect 

classifier. Weston and Watkins (1998) used k-SVM to establish a multi-mode classifier directly, 



ZHANG Ming-jun et al. / China Ocean Eng., 28(5), 2014, 599  616  
  

601

obtaining all classified hyper-planes in one optimization. However, this approach needs to deal with all 

the learning samples simultaneously and has low learning efficiency. Thus the indirect multi-mode 

classifier is more commonly used for mode classification. The indirect multi-mode classifier first 

transforms a multi-classification problem into a series of two-class problems, each of which is then 

solved (Zhang et al., 2009). The typical strategies include the one-to-one strategy (Hsu and Lin, 2002), 

one-to-many strategy (Han et al., 2011), and hierarchical strategy (Schmenker, 2000). For the same 

N-gram classification problem, the one-to-one strategy needs to establish N (N−1) classifiers (Wei et 

al., 2004), whereas one-to-many strategy needs to establish N classifiers (Liu et al., 2006). By contrast, 

the hierarchical strategy, only needs to build (N−1) classifiers at most (Schmenker, 2000). According to 

the number of classifiers used by different strategies, the hierarchical strategy requires fewer classifiers 

and has a faster learning and testing speed compared with one-to-one and one-to-many strategies. 

However, the hierarchical strategy has an accumulative error problem, that is, when misclassification 

occurs on one layer, the decision-making of the lower layer will be affected. Therefore, the strategy 

requires that the classifiers near the bottom have higher accuracy. 

The SVDD method uses the kernel function to project the original problem into an unknown 

high-dimensional space, which will cause a lack of association among the feature spaces of each 

hyper-sphere. Thus, in the process of multi-fault mode classification, sample points may be located in 

the overlapping area of hyper-spheres or may not belong to any hyper-sphere. The unknown fault mode 

for these sample points cannot be directly determined based on the distances obtained by different 

hyper-sphere classification boundaries. The study of the class ownership judgment of fuzzy sample 

points can improve the accuracy of a fault diagnosis system. 

In this paper, the FWSVDD method based on positive and negative class samples is proposed for 

the establishment of an AUV multi-fault mode classifier. Unlike the traditional SVDD method, the 

proposed method introduces negative class samples (not target samples) during the classifier training to 

enable the SVDD problem to be distinguished between the positive and negative class samples. The 

proposed method introduces a local density and class weight for each sample, increases the importance 

of the data on the high-density distribution region, and makes the classification boundary more 

compact. A multi-fault mode classification method based on the hierarchical strategy is proposed. This 

method adds the fault contain detection surface (FCDS) for each thruster and sensor to isolate the fault 

components during fault diagnosis. Fault mode classification is then performed for the components. 

For the sample points outside the FCDS, the inclusion degree threshold method is proposed for the 

class ownership judgment to improve classification accuracy. For the class ownership problem of fuzzy 

sample points, a relative distance judgment method is given. Finally, water tank experimental 

verification is conducted using an experimental AUV prototype. 

This paper is organized as follows: Section 2 introduces the fuzzy weighted support vector 

domain description method. Section 3 presents the AUV multi-fault classification method based on 

hierarchical strategy classification. Section 4 discusses the class ownership judgement method of fuzzy 

sample points. Section 5 verifies feasibility and effectiveness of the proposed approach through 

experiments. Finally, a brief conclusion is drawn in Section 6. 
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2. FWSVDD Method 

2.1 FWSVDD Classifier 

To describe the local density of the data sample distribution, we introduce local density ρi 

(0≤ρi≤1) for each data sample xi based on the clustering method (Cristianini and Shawe-Taylor, 2004). 

A larger ρi denotes that the data sample is more important and thus accounts for larger weight in the 

process of building the classifier. In this work, ρi is equivalent to the fuzzy factor, the selection method 

of which will be given in Section 2.2. By introducing ρi, the traditional SVDD can be extended to the 

fuzzy SVDD. 

In the process of classification modeling, we introduce a local density for each data sample and 

give data set X={(x1, ρ1), …, (xM, ρM)} with a local density coefficient given that the local density of 

similar samples differs from that of non-similar samples. In this paper, the nonlinear mapping theory 

(Cristianini and Shawe-Taylor, 2004) is taken as a reference to define a fuzzy nonlinear mapping Φ: 

(X, ρ)→F, namely, (X, ρ)→Φ(X, ρ)=ρΦ(X). This fuzzy nonlinear mapping enables the adjustment of 

the weight of the sample data in the nonlinear mapping to obtain the data set {ρ1Φ(x1), ρ2Φ(x2), …, 

ρMΦ(xM)} corresponding to {(x1, ρ1), (x2, ρ2), …, (xM, ρM)} in the high-dimensional space. The inner 

product operation in the high-dimensional space can be written as: 

( , ) ( , ) ( ) ( ) ( ) ( ), ,  1,  2,  ...,  .
i i j j i i j j i j i j

x x x x x x i j M                (1) 

In the process of AUV multi-fault classification based on SVDD, positive samples (target 

samples) Xtarget={(xi, ρi), i=1, 2, …, n} and negative samples (non-target samples) Xoutlier={(xj, ρj), j=1, 

2, …, m} are selected for simultaneous classifier training to improve the anti-noise-interference 

capability of the classification boundary. n denotes the number of positive samples, whereas m stands 

for the number of negative samples. As the positive and negative samples have different numbers, a 

class weight value s is added for each class sample to obtain the FWSVDD based on the positive and 

negative samples. The class weight s will be given in Section 2.2. 

Given that the non-target samples are increased and the local density is introduced to each sample, 

the optimization problem to be solved can be expressed as: 
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where, R is the hyper-sphere radius. C1>0 and C2>0 are the penalty coefficients for balancing the size 

of the smallest bounding hyper-sphere and the number of negative (or positive) samples inside 

(outside) the hyper-sphere; ε>0 is the slack variable; si and sj are the class weight values of samples; ρi 

and ρj are the local density of the samples; a is the center of the hyper-sphere. 

Eq. (2) is transformed into a Lagrange extreme problem as follows: 
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where, αi≥0, γi≥0, αj≥0, and γj≥0 are the Lagrange multipliers. 

Let the partial derivative of R, a, εi, and εj in Eq. (3) be equal to zero to derive the dual problem: 
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where, P indicates that x belongs to positive class samples, N indicates that x belongs to negative class 

samples, K(xi, xj)=exp[−||xi−xj||
2/(2σ2)] is the kernel function, and σ is the kernel parameter. 

The label of positive class samples is +1, and the label of negative class samples is −1, such that  
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The dual problem obtained from using the Lagrange multiplier to transform the FWSVDD 

method proposed in this paper, which is based on positive and negative class samples, is similar to the 

traditional SVDD method in terms of the formula. However, these formulas have essential differences 

between them. Given that the local density and class weight are introduced for the positive and 

negative samples in FWSVDD method, the importance of the high-density region sample is increased 

and the imbalance of the number of differently classed samples is reduced. 

When a new sample point xtest should be identified, the distance between the new sample point 

and the center of the hyper-sphere is calculated as: 
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where, ρtest is the local density of the sample points to be identified. 

If f 2<R2, then the new sample points to be identified belong to the hyper-sphere; otherwise, they 

do not belong to the hyper-sphere. 

2.2 Determination of Local Density and Class Weight Value 

The density of the region of each sample point differs in terms of the multi-fault mode classification 

process. Given the different local densities of sample points between different regions, the importance of 

each sample point for different faults varies. The target data in high-density region are more important 

than the data in the low-density region and should thus be included within the hyper-sphere. To describe 
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the importance degree of the data sample, we introduce local density ρi for data sample xi. 

To determine the local density ρi of the i-th sample point xi, the nearest neighbor method is 

adopted (Hao and Jiang, 2007). In the solving process, the distance d(xi, xi
l) between each sample point 

xi and sample xi
l nearest to xi is calculated, and then the average distance ζ of all sample points from 

their respective nearest sample points is calculated. The local density ρi of sample point xi is given by 

 exp , ,    1,  2,  ...,  ;l k

i i id x x i n      (9) 
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,
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l k

i i
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
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where nk is the number of the samples that belong to class k. 

In the modeling of the fault mode classifier, when the positive and negative class samples are 

trained simultaneously and if the numbers of positive and negative class samples are unbalanced, the 

classification errors tend toward those of the small-sized sample. In order to reduce this effect, we 

introduce different weights for each class sample according to the number of the samples in the paper, 

which can reflect the importance of different types of samples in the classifier learning. Suppose that 

the total number of the training samples is T and the sample number belonging to Class k is nk, and 

then the weight value of class k is 

1k ks n T  . (11) 

The analysis of Eq. (11) reveals that when the sample number of class k1 is smaller than that of 

class k2, then 
1 2k ks s . By adjusting the class weights, the effect of the class with small-sized samples 

on the classifier can be increased, thereby reducing the misclassification problem caused by the 

unbalanced sample numbers. 

3. AUV Multi-Fault Classification Based on the Hierarchical Strategy 

In the AUV fault modeling process, under the conditions of the same kernel parameters and 

penalty coefficient, the model is established based on the FWSVDD method for the sample data of a 

thruster or sensor of the AUV in a single fault mode to obtain L hyper-spheres that represent different 

fault modes. Based on the overall sample data of the training samples of L hyper-spheres, a larger 

hyper-sphere containing L fault modes is trained to build L+1 hyper-spheres (S1, …, Sl, …, SL, SL+1). 

(S1, …, Sl, …, SL) represent L fault modes F1, …, Fl, …, FL, respectively, which is called the multiclass 

interface of the multi-fault mode. The hyper-sphere SL+1 contains all fault mode samples {F1, …, 

Fl, …, FL}, which comprise the FCDS. The distance from x to the SL+1 center is calculated upon the 

arrival of the new sample point x. 
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(12)

 

If fx(L+1)
2≤r(L+1)

2, x belongs to FCDS which is represented by SL+1. We then calculate the distance 
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from x to the l-th hyper-sphere center, which is in the FCDS SL+1, l=1, …, L. If fxl
2 is smaller than the 

radius of the l-th hyper-sphere, x belongs to the l-th type fault mode represented by Sl; otherwise, x 

belongs to the other fault type. 

In practice, AUV is disturbed by ocean currents and other external disturbances. Thus, the existing 

noise in the sensor data may cause some fault sample points to locate beyond the FCDS SL+1, resulting 

in a fault leakage diagnosis. Thus, the appropriate mode classification cannot be performed for the 

fault. To this end, the inclusion degree threshold is proposed for the class ownership judgment 

problems of the new sample points. When the new sample point needs to be determined to which class 

it belongs, we first determine whether the sample point is located within the fault FCDS or not. If the 

sample point is outside the FCDS, the inclusion degree Rreject
L+1 is calculated based on the new sample 

point to the FCDS SL+1 according to Eq. (13), and the inclusion degree is then compared with the 

pre-set threshold η. If the inclusion degree Rreject
L+1 > η, the new sample point belongs to the fault type 

represented by the FCDS of the thruster or the sensor; otherwise, it belongs to other fault types. In 

order to balance the proportion of samples that do and do not belong, we generally set the threshold η

∈[0.9, 1]. 

11

reject

1 1

1              
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where f is the distance from the new sample point to SL+1 center, which can be calculated by Eq. (12). 

RL+1 is the SL+1 radius. 

4. Class Ownership Judgment of Fuzzy Sample Points 

For the SVDD model, we give sample point x and calculate the distance fxl
2 from point x to 

hyper-sphere center according to Eq. (8). Compared with the corresponding Rl
2, the number b of 

hyper-spheres containing sample points x can be determined. According to different values of b, we 

analyze the following cases. 

4.1 Case for b=1 

In this case, point x is only located within a classification hyper-sphere and point x belonging to this 

fault mode is represented by the hyper-sphere. Thus, we can directly determine the class ownership. 

4.2 Case for b=0 

This case shows that the sample point x is located outside the feature space formed by all 

hyper-spheres that have a defined fault classification and do not belong to any fault category, as shown 

in Fig. 1. 

When the sample point is located between two hyper-spheres, the best classification surface 

established by the traditional method is the center position P between the two spherical surfaces, as 

shown in Fig. 1a. When the sample points are located on both sides of P, they belong to S1 and S2. 

When sample points are located within P, the probability that these sample points belong to the fault 

modes represented by S1 and S2 is 0.5. However, when the two hyper-sphere radii are not the same, the 
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sparsity of sample distribution represented also differs. If the best classification surface P is set in the 

middle of the two hyper-spheres according to the traditional method, sparse sample distribution S1 is 

unreasonable. Therefore, we propose an improved strategy based on the relative distance, as shown in 

Fig. 1b. First, a line is drawn over the two hyper-sphere centers, and the line segment between the two 

intersections of the line and the two hyper-spheres is divided by R1/R2. Thus, we obtain the best 

classification surface P . 

 
Fig. 1. Sample point ownership judgment when b=0. 

In order to verify the effectiveness of the improved strategy, we select 100 sample points in the 

classification surface P and P  for classification experiments. We set the two hyper-sphere centers as 

R1 and R2 and R1≠R2, R1≥R2. We gradually increase the hyper-sphere radius ratio R1/R2 in the 

experiment. The average probabilities that the sample point belongs to the fault mode represented by S1 

based on the two methods are shown in Table 1. The probability that sample point x belongs to S1 

increases with the increasing R1/R2 before the method is improved. However, in the improved method, 

the average probabilities are all approximately 0.5. The experimental results show that the improved 

classification surface P’ reflects uneven distribution problems of the sample between the two categories 

and is reasonably removed from the larger hyper-sphere, where the samples distribute loosely. 

Table 1       Probability of x belonging to the larger hyper-sphere R1 when b=0 

R1/R2 1 2 4 8 10 15 20 

Traditional strategy 0.502 0.520 0.594 0.673 0.720 0.791 0.852 

Improved strategy 0.500 0.502 0.502 0.503 0.500 0.510 0.518 

4.3 Case for b>1 

This case shows that the sample point x is in the overlap area of the multiple classification hyper- 

spheres, as shown in Fig. 2. 

 

Fig. 2. Sample point ownership judgment when b>1. 

For this case, the traditional judgment method uses the plane constructed by the intersecting lines 
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of two hyper-spheres as the best classification surface P as shown in Fig. 2a. When the sample points 

are located on both sides of P, they belong to S1 and S2. When sample points are located within P, the 

probabilities that the sample points belong to the fault modes represented by S1 and S2 are 0.5. 

However, this classification method is unreasonable for a small ball, where the samples are distributed 

more densely. Therefore, the improved strategy based on the relative distance is proposed in this paper, 

as shown in Fig. 2b. The plane (R1−d1)/R1=(R2−d2)/R2 is constructed over the intersection point of the 

two hyper-spheres to derive the best classification surface P  where, d1 and d2 are the distances from 

the sample point to the hyper-sphere center. 

In order to prove the effectiveness of the proposed method, 100 sample points in the classification 

surface P and P  are selected for classification experiments. With the increase of the two 

hyper-sphere radius ratio R1/R2, the average probabilities that a sample point belongs to the fault mode 

represented by S1 from the two methods are shown in Table 2. The probabilities that a sample point in 

the classification surface P belongs to the fault mode represented by S1 decrease with the increasing of 

R1/R2 before the method is improved. However, when the classification surface P  is used for 

classification, the probabilities are approximately 0.5 with the increasing R1/R2. The experimental 

results show that the improved classification surface P  reflects the uneven distribution problems of 

the sample between the two categories and is reasonably removed near the larger hyper-sphere in 

which samples distribute loosely. 

Table 2       Probabilities of x belonging to the larger hyper-sphere R1 when b>1 

R1/R2 1 2 4 8 10 15 20 

Traditional strategy 0.500 0.499 0.467 0.446 0.303 0.222 0.148 

Improved strategy 0.500 0.501 0.500 0.500 0.500 0.510 0.512 

In summary, the proposed fuzzy sample point class ownership judgment method based on the 

relative distance is expressed as: 

 
 

2 2

2 2 2

2 2 2

                                1

min           0

min        1

xl l

xl l l

l xl l

f R b

f R R b

R f R b



       


    

   1,  2,  ...,  l L . (14) 

In the process of the judgment, the distances dl from the sample point x to the center of each 

hyper-sphere are calculated. According to different values b of the hyper-sphere containing sample 

point x, Eq. (14) is used to calculate the relative distance θ from the sample point to the corresponding 

fault mode hyper-sphere center. The hyper-sphere to which θ is the smallest is taken as the fault mode 

for the sample point. If the sample point is located in the classification surface of two hyper-spheres 

P , then the sample point belongs to the two fault modes. 

5. Experiments 

5.1 Experimental Conditions 

In order to validate the effectiveness of the proposed FWSVDD in the pattern classification and 
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AUV multi-fault diagnosis, the “Beaver” AUV test prototype shown in Fig. 3 is used for the fault 

simulation experiments in a pool environment. Fig. 4a illustrates the hardware control architecture for 

“Beaver” AUV, and Fig. 4b illustrates the software control architecture for “Beaver” AUV. 

 

Fig. 3. “Beaver” AUV test prototype. 

 

Fig. 4. Control architecture of the “Beaver” AUV. 

The actual faults are difficult to mimic under the pool condition. Thus, the soft simulation method 

is adopted to mimic the faults by analyzing the fault types of sensors and thrusters such that the data 

can be used to demonstrate the efficiency of the proposed fault diagnosis algorithm. 

Different fault types occur on AUV sensors: no output, drift output, and unpermitted deviation 

(Zhu et al., 2009). The following fault model can be used to describe different fault types (Qi and Han, 
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2009): 

(1) Stuck fault model: yout=α, where α is constant, and yout is the state measured by sensor; 

(2) Constant gain fault model: yout =βy, where β is the constant gain coefficient, and y is the real 

AUV state; 

(3) Constant bias fault model: yout=y+Δ, where Δ is constant; and 

(4) Drift fault model: yout=y+Λ, where the value of Λ changes over time. 

Based on the above fault models, this paper sets different values of α, β, Δ, and Λ and then 

substitute y with yout in AUV controller design. Thus, sensor fault is realized via soft simulation. 

Different fault types occur on AUV thrusters: stuck, blade drop, and blade fracture. Thruster faults 

can also be described using models similar to those of sensor faults. However, the thruster faults differ 

from the sensor faults, which cannot be compensated autonomously, because the controller can ensure 

the AUV real-time track target value during AUV operation. An AUV can also track the target value 

even under a thruster fault condition via the close-loop control when the thruster fault is small. 

However, an AUV cannot track the target value in the presence of thruster saturation if the thruster 

fault is large. Thus, this paper classifies thruster faults as compensable and uncompensated faults 

depending on whether an AUV can track the target value when thruster fault occurs. When thruster 

fault occurs, the actual thruster fout would be smaller than theoretical thruster fc, such that the fault 

model can be described as fout=fc−Δ, where Δ is the thruster fault, and Δ·fout>0. Owing to the existence 

of saturated thruster f0, the magnitude of Δ determines the type of thruster fault, i.e., when fc=fout+Δ>f0, 

the fault would be an uncompensated fault, and vice versa. During experiments, the value of Δ can be 

set beforehand, and the output of controller fc can be substituted with fout=fc−Δ, such that thruster fault 

can be realized via soft simulation. 

5.2 Performance Verification for Fuzzy Weighted SVDD Method 

In order to validate the effectiveness in building classifier model and the accuracy in pattern 

classification of FWSVDD method based on positive and negative class samples, the constant gain 

fault u=0.8ur is simulated in the surge speed sensor of “BEAVER” test prototype. The fault time lasts 

from Beat 150 to Beat 250. Where, ur is the actual surge speed and u is the surge speed used in 

controller. The time of the control beat is 0.2 s. Based on the AUV control variable and state variable 

data from the experiments, the original characteristic indexes that include the detailed and observed 

residual signals are processed using the wavelet coefficient fusion method and neural network observer 

in Zhang et al. (2010), as shown in Fig. 5. The detailed residual contains the details of the original 

signal lost during wavelet coefficient reconstruction, whereas the observed residual is the deviation 

between the measured values of sensors and the output values of the observer. 

The original characteristic indexes from Beat 201 to Beat 400 are selected as learning samples. 

Fifty groups of fault samples from Beat 201 to Beat 250 are negative class samples with a label of −1. 

One-hundred fifty groups of normal samples from Beat 251 to Beat 400 are positive class samples with 

a label of 1. Selecting the same kernel parameter σ=0.5 and the same penalty coefficients C1=C2=2.0, 

optimized solving is performed based on the FWSVDD and traditional SVDD methods to obtain the 

classifier model shown in Fig. 6. The thick solid line in Fig. 6 denotes the model boundary obtained by 
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the traditional SVDD method, whereas the thin dotted line is the model boundary obtained by the 

FWSVDD method. 

 

Fig. 5. Original characteristic indexes. 

In Fig. 6, the hyper-sphere radius obtained from the SVDD method is 0.915, whereas the radius 

obtained from the FWSVDD method is 0.887. The results show that the classifier model boundary 

established by the FWSVDD method is more compact and surrounds the target sample better than that 

established by the SVDD method. 

In order to validate the accuracy of the established classifier model in terms of the pattern 

classification, the data between Beat 151 and Beat 200 are selected for validation, as shown in Fig. 5. The 

distances from the sample point to the two feature sphere centers are calculated according to Eq. (8), as 

shown in Fig. 7. Where, ‘+’ is obtained by the FWSVDD classifier model, whereas ‘*’ is obtained by the 

SVDD classifier model. The thick solid line denotes the hyper-sphere radius from the traditional method, 

whereas the thin dashed line denotes the hyper-sphere radius from the proposed method. 

For the selected 50 groups of testing samples in Fig. 7, the SVDD method misjudges four sample 

points, and the classification accuracy is 92%. The proposed method misjudges two sample points, and 

the classification accuracy is 96%. By comparing the experimental results, the FWSVDD method 

classifier model can obtain more compact classifier hyper-sphere boundary surface after adding the 
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non-target samples and introducing the local density and category weights of samples, improving the 

classification accuracy by 4%. The experimental results show that the proposed FWSVDD method 

based on positive and negative class samples can effectively build the classifier model and has higher 

accuracy in pattern classification.

 
Fig. 6. Modeling comparison of the proposed method 

with the traditional method. 

 
Fig. 7. Distance from the test sample point to the feature 

sphere center.

5.3 AUV Multi-Fault Diagnosis Experiments 

In order to validate the effectiveness of AUV multi-fault classification method based on the 

FWSVDD method, the compensable concurrent fault of the right main thruster and the constant 

deviation fault of the angle sensor are simulated by “BEAVER”. The fault of the right main thruster is 

fout=0.9fc and the fault of angle sensor is φ=φr−15o. The fault has lasted from 48 s to the end of the 

experiment. φr is the actual yaw angle, and φ is the yaw angle used in controller. For the compensable 

fault fout=0.9fc, the fault leakage diagnosis is generated easily by external interference because the fault 

is small. For the constant deviation fault of the angle sensor, the yaw angle mutates only at 48 s, and 

the motion controller then controls the AUV yaw angle sensor output value to follow the desired goals, 

causing the AUV status change attributed to the fault to be similar to the external interference. The 

results of the thruster control signal and the state variable from the water tank experiments are shown 

in Fig. 8. The thick solid line in Fig. 8 denotes the control signal of the left main thruster and the thin 

dashed line is the control signal of the right main thruster. For the above simulated fault, multi-fault 

diagnosis aims to locate the thruster and sensor with fault, as well as to identify the fault mode. 

As the AUV engages in the level motion, the fault diagnosis of the left and right main thrusters, 

the longitudinal velocity sensor, and the yaw angle sensor is considered, and the adopted contain 

detection surface includes the normal state contain detection surface as well as the FCDS of the left 

main thruster, the right main thruster, the yaw angle sensor, and the longitudinal velocity sensor. The 

class ownership analysis of sample points is performed on the experimental data shown in Fig. 8. The 

inclusion degree from the sample points to the AUV normal state hyper-sphere and the FCDS of each 

thruster and sensor is calculated according to Eqs. (12) and (13), as shown in Fig. 9. The inclusion 

degree threshold in the process of fault diagnosis is set as η=0.95, which is denoted by dotted lines. 
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Fig. 8. AUV control and state variables. 

 

 

 

 

 

Fig. 9. Inclusion degree from the sample point 

to each FCDS. 

From the inclusion degree of sample points shown in Fig. 9 to the FCDS of each thruster and 

sensor, we find that the inclusion degree from the sample points to the AUV normal mode is 1, and the 

inclusion degree to each thruster and sensor is smaller than 0.95 before 48.8 s. The inclusion degree 
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from 196 sample points to the normal mode is smaller than 0.95 between 48.8 s and 88 s, which shows 

that the AUV is in normal operation before 48.8 s. The inclusion degree from 83 sample points to the 

FCDS of the right main thruster is 1 between 48.8 s and 65 s. According to the proposed sample point 

judgment strategy, these sample points belong to the right main thruster fault. Between 65 s and 75 s, 

the inclusion degree from 50 sample points to the FCDS of angle sensor is 1. These sample points 

belong to the angle sensor fault. Between 48.8 s and 88 s, the inclusion degree from all of the sample 

points to the FCDS of the right main thruster and the angle sensor is larger than 0.95, and the inclusion 

degree to the FCDS of the left main thruster and the longitudinal speed sensor fault components is 

smaller than 0.95. According to the proposed sample point judgment strategy, the AUV system has a 

fault in the right main thruster and the angle sensor. 

After the detection of fault location, the fault modes of the right main thruster and the angle 

sensor are further analyzed. For the thruster fault, fault modes mainly include the compensable and 

uncompensated fault. For the sensor fault, the fault modes mainly include constant deviation fault, 

constant gain fault, drift fault, and stuck fault. According to Eq. (14), the distances from sample points 

to their corresponding fault mode hyper-sphere center are shown in Fig. 10. 

 

 

 

Fig. 10. Fault mode classification results. 
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Given that the fault of the AUV thruster and sensor is detected from 48.8 s, 196 sample points 

between 48.8 s and 88 s are selected for analysis in the fault mode classification. From the fault mode 

classification results in Fig. 10, among the 196 sample points between 48.8 s and 88s, the relative 

distances from 42.13% of the sample points to the compensable fault mode of the right main thruster 

are smaller than 1, and the distances from 25.38% of the sample points to the constant deviation fault 

mode of angle sensor are smaller than 1. Other sample points located between these two fault modes’ 

hyper-spheres are classified as fuzzy sample points. According to the proposed fuzzy sample point 

judgment strategy used to calculate the class attribution, 10.77% of the sample points belong to the 

compensable fault mode of the right main thruster, 16.92% of the sample points belong to the constant 

deviation fault mode of the angle sensor, and 72.31% of the sample points belong to the two fault 

modes that can determine the kind of fault modes that occur in the AUV. Experimental results show 

that the AUV multi-fault diagnosis results using the proposed FWSVDD method based on the positive 

and negative classes are consistent with actual fault conditions. The experimental results verify the 

effectiveness of the AUV multi-fault mode classification method proposed in this paper. 

6. Conclusion 

In this paper, we study the AUV multi-fault pattern classification problem based on the FWSVDD 

method and present the selection method for the local density and the class weight of samples. In the 

process of the unknown sample point judgment based on the classification model, a hierarchical 

strategy classification method is proposed. In consideration of the class ownership and judgment 

problem for fuzzy sample points that are in the overlapping area of hyper-spheres or that do not belong 

to any hyper-sphere in the process of fault classification, a relative distance judgment method is 

established. Experimental results obtained from water tank experiments using an AUV test prototype 

show that the FWSVDD method based on the positive and negative class samples modeling proposed 

in this paper has higher classification accuracy than traditional SVDD methods do. The proposed 

method effectively accomplishes the multi-fault mode classification in the case where the compensable 

fault of the thruster and constant deviation fault of the AUV sensor occurs simultaneously. 
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