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ABSTRACT 

For accurate prediction of the deformation of cable in the towed system, a new finite element model is presented 

that provides a representation of both the bending and torsional effects. In this paper, the cubic spline interpolation 

function is applied as the trial solution. By using a weighted residual approach, the discretized motion equations for the 

new finite element model are developed. The model is calculated with the computation program complier by Matlab. 

Several numerical examples are presented to illustrate the numerical schemes. The results of numerical simulation are 

stable and valid, and consistent with the mechanical properties of the cable. The model can be applied to kinematics 

analysis and the design of ocean cable, such as mooring lines, towing, and ROV umbilical cables. 

Key words: tension stiffness; bending stiffness; torsion stiffness; cubic spline curve; Galerkin criterion; finite element 

model 

1. Introduction 

The towed system is widely applied to the fields of data collection with ocean hydrology, deep 

sea mining, and anti-submarine warfare, and it consists of support vessel, towed cable, towing 

equipment and so on. The work efficiency and operation stability are improved distinctly by 

predicting the motion response of drag system. The stress of the cable may be small, even zero or 

negative in the low speed, and thus the bending stiffness and torsion stiffness will become the main 

factors of cable motion. The motion performance and response cause great difference compared with 

the normal speed. The motion of towed system in the low stress state is studied, which has an 

important guiding significance for further controlling the motion of towed system. 

Ablow and Schechter (1983) developed a three-dimensional algorithm that includes inertial 

forces and discretized the problem in both space and time using a finite difference method. 

Triantafyllou (1984) and Dowling (1988) showed that it is essential to introduce the bending stiffness 

of the cable near zero tension points. Howell (1991) and Burgess (1992) developed a finite difference 

method for solving low-tension cable problems in consideration of bending stiffness in the governing 

equation and proved that the method is stable regardless of the cable tension magnitude. Grosenbaugh 
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et al. (1993) and Banerjee and Do (1994) respectively proposed a numerical technique for calculating 

the two-dimensional and three-dimensional motions of a tethered underwater vehicle, which can 

simulate accurately the dynamics of cables that are under low tensions. Sun et al. (1994) developed an 

algorithm to predict the transient response of a system of serially connected cables and bodies during 

unsteady deployment from a surface vessel. Park et al. (2003) presented a numerical and experimental 

investigation into the dynamic behavior of a towed low tension cable applicable to a towed array 

sonar system for detecting submarines, in which an implicit finite difference algorithm is employed 

for solving the three-dimensional cable equations. Buckham et al. (2004) showed an efficient and 

novel third-order finite element method that provides a representation of both the bending and 

torsional effects and accelerates the convergence of the model at relatively large element sizes. Zhu et 

al. (2006) established the nonlinear towing system dynamic model of the towing ship and the towed 

ship connected with a cable based on the equations governing the motion of the ship and three- 

dimensional equations of the towed cable system. Zhu et al. (2008) discussed the principle of a strong 

nonlinear coupling movement among the support ship, umbilical tether, cage, and vehicle. Afterwards, 

he modeled the strong nonlinear hydrodynamics performances on underwater remotely operated 

vehicle including the umbilical cable (Zhu et al., 2010). Fang et al. (2012) published a new finite 

element computer program to accurately calculate the deformation of cable in the towed system in 

consideration of the bending and torsional effects. 

In this paper, the 3-D nonlinear motion equation of a cable is modeled by using the spline 

interpolation functions to simulate the cable element curve and considering the nonlinearity of cable 

based on the theory of slender rods, and the cable motion is simulated by programs in the Matlab. 

2. Equations of Motion 

To model the cable easily, we define an inertial reference frame (X, Y, Z), and a local coordinate 

systems (t, n, b) for cables with reference to Fig. 1, which illustrates the towed system, where X and Y 

point in perpendicular, and Z is aligned with gravity. The n axis is normal, b axis is bi-normal, t axis is 

tangent to the element pointing in the direction of increasing tether length. The transform between the 

local coordinate and inertial frames, D, is formed from a set of Euler angles ( , , )Z Y X      . 

These successive rotations bring the inertial Z-axis into alignment with the tangent direction of the 

cable segment, and the orientation of the n and b axes is constrained by setting one of the Euler angles, 

the initial   rotation about the inertial Z-direction, to zero. Thus, 

cos sin 0

cos sin cos cos sin

sin sin sin cos cos

 
    
    

 
   
   

D , (1) 

where   and   can be considered as traditional pitch and roll of the cable. 

The changing orientation of the Frenet frame is quantified by two parameters: the curvature, k, 

and the torsion,  . The base unit vectors are defined as:  

t r , / kn r , / k  b r r  (2) 
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The curvature, k, defines the bend of the cable within an osculating plane that is formed by t and n 

at the point considered. Both k and   are defined in terms of the spatial derivatives of the space 

curve: 

1/2( )k   r r , 
( )

   


 
r r r

r r
. (3) 

To create a numerical model that includes the desired bending and torsion effects, it is necessary 

to derive the dynamics equations for a continuous tether, considering the tortuous profile that a tether 

forms in three-dimensional space. In existing literature, the cable is modeled as a slender flexible rod 

that sustains environmental, gravitational, and buoyancy forces. 

The centerline of the cable in the deformed state is a space curve r(s, t), as illustrated in Fig. 1. 

The space curve is defined by the position vector r which is a function of arc-length s (measured along 

the curve) and time t. 

A cable segment is analyzed, as shown in Fig. 2. If the outward normal vector at the point of P 

and P  is consistent with the direction of arc length increasing, the section is the normal section, 

otherwise, it is negative. The forces acting on the negative cross section of point P from the adjacent 

section is –F, and the principal moment is –M. Those acting on the normal section are ( ) F F  and 

( ) M M , respectively. 

      

  Fig. 1. Sketch of the mooring system.                 Fig. 2. Infinitesimal element force analysis. 

The vector dynamic equation is obtained by applying Newton’s second law of motion to the 

cable-array system element of infinitesimal stretched length ds, as illustrated in Fig. 2. 

2

c

1
π

4
d      

 
F q r . (4) 

where d and c  are the diameter and the density of the cable, respectively. 

The balance of forces at the point of P may be written 

0    M r F m , (5) 

where q is the vector of applied forces per unit length, and m represents the applied moment per unit 

length.  
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For cable with equal principal stiffness, the bending moment is proportional to curvature and is 

directed along the bi-normal. The resultant moment M can be written as: 

EIk GJ M b t ,  (6) 

where E is the elasticity modulus, I is the moment of inertia of cross section, k is the curvature, G is the 

shear modulus, J is the polar moment of inertia of cross section,   is the torsion deformation, and   

is the overall twist of the cable at the point. 

     .  (7) 

The vector of applied forces per unit length consists of the distributed weight, buoyancy, and 

hydrodynamic force, which is defined using Morison’s well-known approximation. 
2

c w

π
( )

4

d  w g ;  (8) 

T

A f DM D r ;  (9) 

p
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q
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
  
      
    

u u

h D v v

w w

, (10) 

where w  is the density of sea water, MA is the additional mass matrix, fp is the normal drag 

coefficient of water on cable, and fq is the tangential drag coefficient of water on cable. 

Substituting Eq. (6) into Eq. (5) yields 

[( ) ] ( ) 0EIk GJ k GJ       t n b F t m . (11) 

The scalar product of Eq. (11) with t yields  

( ) 0GJ    m t . (12) 

If there is no distributed torsion moment (Garret, 1982), it follows from Eq. (12) that the torque 

( )GJ  is independent of arc length s. In the following, both ( )GJ  and m are assumed to be zero, so 

that Eq. (11) becomes 

EIk EIk GJ k          F T t n b b . (13) 

where T is the axial tension. 

Substituting Eq. (13) into Eq. (4) yields 

2 2

c

1
( ) [( ) ] [ ( )] π

4
EI EIk GJ d I                

 
r T r r r q r , ( ) 0iGJ   . (14) 

3. Finite Element Formalization 

Because of the tether’s geometrically nonlinear profile, the strong nonlinearities are contained in 

the hydrodynamic term, and the wide range of tether states that can occur during ROV operation, we 

look to find an approximation to the true solution of the differential equations of Eq. (14) using 

numerical techniques.  
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The discrete form of the differential equations of motion is: 
2( ) [( ) ] [ ( )] ( ) 0i i i i i i i i i i iEIr EIk GJ GJ               T r r r q M r , (15) 

where iM  represent the quality of cables, including the added mass aroused by the movement of 

cable. 

To develop the element formulation, we consider a single element of length L and approximate 

r(s, t) and   by twisted cubic spline (Howard and Syck, 1992) and a linearly varying quantity 

(Logan, 1993; Rao, 1989) 
1

( 1) ( )

, ,1
( , ) : [ , ] ( ) ( )

p
i i

i i j i jj
s t s s s t s 





   r r   1, 2,3, 4j  ; (16) 

1
( 1) ( )

1 1

i i
i i

i i i i i

s s s s

s s s s
  




 

 
 

 
.  (17) 

Take iδr  as the weighted function for ( , )s tr  

i ,δ δ ( )i j sr . (18) 

Using Eq. (16) and Eq. (17), Eq. (15) may be reduced to ordinary differential equations by the 

Galerkin’s method of weighted residuals.  
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(19)

 

( )( )

( 1) ( 1), ,( ) d [ ]      1,3
ii

i i

ss

i i i j i i js s
GJ s GJ j     

     (20) 

The equations of motion in Eq. (19) for an element may be written as:  

B A e( ) 0i i i i i i i    K K K X M X q  (21) 

where the 12×12 system matrices BiK , AiK  and iK  embody generalized bending, axial, and 

torsion forces, respectively, that are applied at the element nodes and resulted from the curvature, axial 

strain, and twist experienced throughout the cable element; Mei is the element mass matrix of the cable; 

i i i i  q W H B , where the generalized load vectors Wi , Hi , and Bi define the weight and buoyancy, 

hydrodynamic, and boundary forces, respectively; and the 12×1 vector, iX ={ ( 1)Ti

i

r  ( 1)Ti

i

r  ( )Ti

ir  

( )Ti

i
r T} .  

B ,0
d

l

i i i jEI s  K r             =1, 2, 3, 4j ; (22) 

A ,0
d

l

i i i i j s   K r              =1, 2, 3, 4j ; (23) 

,0
( ) d

l

i i i i i jGJ s     K r r       =1, 2, 3, 4j ; (24) 

 e ,0
d

l

i i i j s M M             =1, 2, 3, 4j ; (25) 

  ,0
d

l

i i j s  q w f h          =1, 2, 3, 4j . (26) 
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i  can be written as: 

1 2( )i

i iT EI    r r , (27) 

where Ti is the elastic force in the element. 

Eq. (20) may be written as: 
1

11 1

1 1

i
i i i

i
i i ii

GJGJ
GJ

GJL

  
  


      

               
 (28) 

where, the boundary terms 1i

iGJ   and i

iGJ  represent the internal restoring torque at the boundaries 

of the element. 

To create the overall equation of motion, we concatenate a series of the twisted cubic spline 

elements. This process, referred to as assembly, is represented mathematically by the application of Eq. 

(21) for i=1, 2, …, N. This assembly process forms the global system of motion equations (Fang et al., 

2009): 

  TT T T T T T

BG AG τG 0 0 1 1 G G G G=N N
      K K K r r r r r r H W B M D , (29) 

where BGK , AGK  and GK  are the global bending, axial, and torsion stiffness matrices, respectively; 

GH  is the global vector of hydrodynamic forces acting on the node points of the assembled model; 

GW  is the assembly of weight and buoyancy forces; GB  defines the boundary loads applied over the 

assembled tether; and GM  is the total mass matrix of the cable. 

In addition to the global system of motion equations, the torsion constraint equations given by Eq. 

(20) are assembled to produce a global system of constraint equations that define the torsion deformation 

throughout the tether: 

1 1
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       
                             
                             
   

     (30) 

In order to enforce smoothness and continuity of the twisted spline elements across the node 

points, the curvature vectors at the nodes must satisfy a series of constraint equations defined over the 

scope of the concatenated twisted spline elements. For a cable with N elements that are concatenated to 

extend between nodes 0 and N, these constraint equations (Press et al., 1992) take the form: 
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 (31) 

4. Solution Procedure 

Recalling that the node curvatures are an explicit function of the node positions, the left-hand side 

of Eq. (21) is seen to be an explicit function of the node positions and, through the hydrodynamic 

terms, node velocities. The series of global motion equations in Eq. (21) thus forms a series of 3(N+1) 

second-order differential equations of the form 

G( ) F D, D M D  . (32) 

Consider the dynamic response of rope in the three dimensional space, Eq. (32) can be treated as a 
series of first-order equations and calculated by the method of Runge-Kutta. Thus, give an initial state 

of the tether,  T T T T T

0 0 0 0 0 1 0 0 0( ) ( ) ( ) ( )  ( ) ( )N Nt t t t t t  Y r r r r r . The entire solution process is to calculate 

1( )tY , 2( )tY , 3( )tY ,…, ( )ktY , 1( )kt Y , ( )ftY , and ft  is the duration of the simulation. The procedure 

of calculations from the k-th step to the (k+1)-th step following the sequence is shown in Fig. 3. 

 

 

 

 

 

Fig. 3. Flow chart of the calculation. 
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5. Numerical Application 

In this paper, the mode is used for an existing experiment to verify its correctness. The initial state 

is that the cable suspends in the sink, and the velocity of water is 3 kn. The weight of objects hanging 

at the cable is 8.9 N, the length of the cable is 3.66 m, the diameter of the cable is 3.05 mm, and the 

simulation time is 12 s. According to Fig. 4, the cable gets to its steady state from 8 s, which is 

consistent with the experimental results (Zhu et al., 2002).  

 

Fig. 4. Comparison of the modeling results with the test results. 

Based on the cable model previously discussed, the model is used for the cable releasing and 

recycling by increasing the number of node and changing the first element length. Get the changes of 

the shape and tension of cable in the process of releasing the cable. 

The whole process is as follows: the initial length of the cable is 60 m, stationary vertical 

downward. The weight of objects hanging at the cable is 1200 N and its hydraulic resistance is 1025 N. 

The ship speeds up from 0 to 5 s, and then keeps the preset speed until 360 s. The cable is relaxed from 

0 to 1 m/s during 2 s, and then keeps the speed of 1 m/s until 420 s. Followed by 2 s, the speed of 

relaxing cable slows down to zero. At this time, the length cable reaches 120 m, and then it will keep 

moving at the preset velocity. In this paper, we analyze the movement of cable when the speed is 1.543 

and 3.086 m/s. 

Fig. 5 shows the change of cable-shape during the process of the drag by the velocity of 1.543 m/s. 

The depth-time curves of towed vehicle are shown in Fig. 6. We can obtain that when the drag speed is 

larger, the change of depth is smaller at the same relax length, which is consistent with the experimental 

results. 

Fig. 7 shows the tension-time curves. The larger the drag speed, the larger the tension. Beside, 

the tension has large changes when the speed of the relax cable increases or decreases. The tension of 

the cable increases steadily when the relaxing speed of cable is constant. 
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    Fig. 5. Change of cable-shaped with time.            Fig. 6. Depth change of towed vehicle with time. 

 

Fig. 7. Tension change of cable during the process of cable relaxing. 

6. Conclusion 

A finite element model for low tension cable in the towed system is developed and implemented. 

The cable model is represented by the discretized motion equations by using a weighted residual 

approach that treats the cubic spline interpolation function as the trial solution. Compared with the 

existing finite element models, the model has less number of variables and maintains the advantages 

of simpler linear finite element approaches. This work captures the dynamics characteristic of low- 

tension cable in three dimensions correctly and stably, and thus makes it suitable for solving a series 

of undersea cable dynamics problems. 
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