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ABSTRACT 

A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves 

on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical 

solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the 

nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The 

results show that the propagation of wave trains is significantly affected by a current. A relatively small current may 

substantially affect wave train components and the wave train shape. This is observed for both opposing and following 

current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a 

wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak 

one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying 

the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even 

for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The 

free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear 

model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra 

obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and 

experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, 

including wave spectra with significant nonlinear wave components. 
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1. Introduction 

The prediction of the propagation and transformation of transient nonlinear waves on a current is 

a frequent necessity in coastal and ocean engineering. A reliable description of the propagation and 

evolution of nonlinear waves on a current and understanding of the physics of this phenomenon is of 

fundamental importance for the modeling of a sea state. The description of this phenomenon may also 

provide insight into the formation of extreme waves and wave events, not to mention that its modeling 

is a challenging and interesting problem from a theoretical point of view. 

The first attempt to describe waves on a current focused on the modeling of the propagation of 

periodic waves of small amplitudes on a uniform current. The derived models demonstrated that when 

waves propagate into opposing currents, their group velocity reduces, leading to an increase in wave 

height and eventually to wave blocking (Bretherton and Garrett, 1968, Peregrine and Smith, 1979). 
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These results were confirmed by a number of laboratory investigations including a series of laboratory 

experiments and complementary analyses of practical importance conducted by Chawla and Kirby 

(2002) and Suastika and Battjes (2009).  

The models derived for the propagation of periodic waves of small amplitudes on a uniform 

current are based on linear wave theories. The propagation of weakly nonlinear waves on a current was 

described by applying perturbation methods or shallow-water equations (Baddour and Song, 1990; 

Yoon and Liu, 1989; Teng et al., 2001). These models provide an insight into the features of the 

propagation of nonlinear waves on a uniform current. The problem is that the applicability range of the 

models is rather limited. As it has been expected, the application of weakly nonlinear wave theories 

implies that the derived models can be applied only for sufficiently small Froude numbers. Moreover, 

as it was shown by Chen et al. (1998), the dispersion equation corresponding to shallow-water waves 

can be applied only for small wave numbers. 

The classical approaches describing weakly nonlinear waves on ambient currents, including 

shallow water equations or the Boussinesq equations, are basically applicable to waves of small 

amplitude and weak currents due to their weak nonlinearity or dispersion. A wider applicability range 

possesses extended Boussinesq-type equations (Chen et al., 1998; Madsen and Schäffer, 1998; Ma et 

al., 2009). The modified Boussinesq-type equations contain extra terms to describe nonlinear and 

dispersive wave effects with a good accuracy. The problem is that the higher-order Boussinesq-type 

equations are very complex and their implementation is a tedious task. Moreover, there is no 

appropriate reference dispersion relation for nonlinear waves on a current to adequately modify or 

impose terms in the Boussinesq-type equations to obtain a model for general applications. Finally, 

there is a problem to verify or investigate wave propagation on a current by conducting laboratory 

experiments because of difficulties with input and output boundaries of waves and current or with 

determining initial conditions. It is a widely recognized fact that nonlinear wave-current interactions 

are very difficult subjects to be studied in the laboratory as it is often troublesome to generate and 

control a uniform current field in a wave flume, not to mention more complex situations (Chen et al., 

1998; Chawla and Kirby, 2002; Ma et al., 2009). This deficiency motivates a need to develop different 

models, approaches and combine techniques which can be applied to describe nonlinear waves on an 

ambient current in order to be able to understand and predict processes arising from wave-current 

interactions. 

In this work, a novel theoretical approach is applied to predict the propagation and transformation 

of transient nonlinear waves on a current. First, a semi-analytical solution is derived by applying an 

eigenfunction expansion method to predict the propagation of nonlinear water waves on a current. The 

solution is applied to study the transformation of wave profile and the evolution of wave components 

in a wave train propagating on a current. The main attention is paid to the transformation and evolution 

of wave profile and energy spectrum arising from the nonlinear interactions of wave components in a 

wave train which may lead to the formation of very large waves. Then, theoretical results are compared 

with experimental data and conclusions are specified. 
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2. Theoretical Formulation 

2.1 Statement of Problem  

We consider the propagation and transformation of transient nonlinear water waves on a current 

of speed U. A right-hand Cartesian coordinate system is selected such that the xy plane is horizontal 

and coincides with the undisturbed free surface, and z points vertically upwards.  

It is assumed that: 

(1) The fluid is inviscid and incompressible. 

(2) The fluid motion is irrotational. 

(3) The sea bottom is impervious. 

According to the assumptions, the velocity vector, V(x, z, t), has a potential (x, z, t), such that 

V=. The fluid motion is governed by the Laplace equation 
2 0   (1a) 

and the Bernoulli equation 

21 1
0

2t P gz 


     , (1b) 

where   is the fluid density, P is the pressure, and g is the gravitational acceleration. 

At the free surface, the velocity potential, (x, z, t), has to satisfy the kinematic boundary condition  

0,    ( , )t x x z z x t         (2a) 

and the dynamic boundary condition 
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At the sea bottom, the following boundary condition must be satisfied: 

0,  z z h    . (2c) 

Moreover, the velocity potential must satisfy boundary conditions at infinity and initial conditions 

(Wehausen, 1960; Kinsmann, 1965). 

The propagation and transformation of transient nonlinear water waves on a current is a complex 

phenomenon and the solution of Eqs. (1) and (2) is troublesome because the free-surface boundary 

conditions contain nonlinear terms. Moreover, the boundary conditions are applied on the free surface 

which is unknown and is a part of a final solution. In order to achieve a solution, various techniques 

and simplifications are applied. One of the most popular solution techniques is to expand the kinematic 

free-surface boundary condition and the dynamic free-surface boundary condition in a Taylor series 

about a mean position  
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which helps to obtain a solution because the boundary conditions are applied on z=0 (Sulisz and 

Hudspeth, 1993).  
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By expanding the free-surface boundary conditions in a Taylor series, one can obtain the 

following boundary value problems: 
2 0  ; (4a) 
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0,z z h    , (4d) 

where the summation in Eqs. (4b)(4c) is limited to third-order terms in wave amplitude. Moreover, the 

velocity potential must satisfy boundary conditions at infinity and initial conditions. 

2.2 Solution Technique  

The solution is sought by applying eigenfunction expansion method. This method is a widely 

recognized technique applied to solve boundary-value problems in mathematics and theoretical physics 

and has been shown to be an efficient method in the modeling of the propagation and transformation of 

nonlinear waves (Fenton, 1999; Sulisz and Paprota, 2004, 2008).  According to the method, the free-

surface elevation, , and the velocity potential, , are sought in the following forms:  
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where 0 and 0 are known functions related to imposed initial conditions, and   

2π( 1)
n

n

b
 

 , (5c) 

in which b is the length of a sector over which the solution is assumed to be periodic. 

The coefficients of the eigenfunction expansions in Eq. (5) are determined by applying a time-

stepping procedure. The procedure is based on the AdamsBashfordMoulton predictor-corrector 

method that enables prediction of the value of a function f from its time derivatives f’ (Press et al., 

1988). Accordingly, the boundary conditions, Eqs. (4b)(4c), are combined with the Adams-Bashford 

predictor  
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and the AdamsMoulton corrector 
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to predict the free-surface elevation, , and the velocity potential, , at a new time level. Then, in 

analogy to the approach applied by Sulisz and Paprota (2004), the coefficients an, bn, An, and Bn are 

determined by applying a fast Fourier transform. 
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The solution procedure requires an initial space distribution of the free-surface elevation and the 

velocity. The problem is that data available in coastal and offshore engineering are based on wave 

records provided by waverider buoys or stationary wave gauges. In order to obtain a spatial 

distribution of the free-surface elevation and the velocity potential, a Fourier transform of a recorded 

time series of the free-surface elevation and a linear wave theory is applied.  Accordingly, the 

following formulas are applied to calculate initial conditions (t<0): 
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where a0n and b0n are the amplitudes arising from the Fourier transform of the free-surface elevation 

recorded at x0, n is the wave frequency (n=2/Tn), and kn is the corresponding wave number 

(kn=2/Ln). 

The described solution technique is very efficient. The application of eigenfunction expansions 

and a Fourier transform makes it possible to obtain reliable results even for large spatial or time 

domains. This provides an opportunity to analyze the propagation of nonlinear waves on a current for 

realistic times and to assess the interaction of wave components in a wave train in large domains, 

where the application of numerical techniques may provide inaccurate results due to round-off errors. 

3. Results 

The model derived to predict the propagation of transient nonlinear waves on a current was 

applied to investigate the effect of wave parameters on the evolution of wave components in a wave 

train propagating on a uniform current. The evolution of transient nonlinear waves on a current is 

predicted for a wide range of wave parameters and currents. The analysis of the results is conducted to 

evaluate the effect of wave frequency and wave steepness on the propagation and transformation of 

transient nonlinear waves on a current. The analysis concentrates on wave profiles, wave amplitude 

spectrums, and the changes of wave profile and wave amplitude spectrum due to the interaction of wave 

components in the wave train propagating on a current. Moreover, some attention is paid to conditions 

for which freak waves may be formed in a wave train. The nonlinear interaction of wave components 

in a wave train propagating on a current is believed to be one of the potential sources of the formation 

of freak waves. This indicates eyewitness reports on formations or propagations of large waves on an 

ambient current.    

The selected basic features of waves on a current and some fundamental differences in wave 

profiles arising from the opposing and following currents are demonstrated in Fig. 1. The plots show 

wave trains corresponding to waves of kh=0.5, kh=1, and kh=2 at Fr =U/(gh)0.5 =0. The results are 

intuitive and show that water waves on an opposing current are shorter than waves propagating without 

current. The following current causes further expansion of a wave train in space, which shows the 

results plotted in Figs. 1b and 1c. The dependence on wave frequencies is complex and the results 

show that the effects of wave frequencies on the waves are more pronounced for opposing currents. 

Additional calculations conducted for shorter waves indicate that in drastic cases i.e. for relatively 
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short waves, the propagation of a wave train may be completely blocked, which confirms laboratory 

experiments and field observations (Chawla and Kirby, 2002; Suastika and Battjes, 2009).    

         

Fig. 1a. Wave trains at Fr= 0.1.                                             Fig. 1b. Wave trains at Fr=0. 

     

 

 

 

 

Fig. 1c. Wave trains at Fr=0.1. 

The effects of the propagation of the wave trains presented in Fig. 1 are demonstrated in Fig. 2 

and Fig. 3. The results are presented for waves of moderate steepness and correspond to A/h=0.06 for 

kh=0.5, A/h=0.05 for kh=1, and A/h=0.04 for kh=2. Figs. 2 and 3 also show the results predicted by 

applying the solution derived within the frame of linear wave theory. The outcome of the Fourier analysis 

is included because information obtained by applying a Fourier analysis is helpful in the analysis of the 

interaction of waves in a wave train and the wave evolution process.  

The results shown in Figs. 2 and 3 indicate that the propagation of wave trains is significantly 

affected by a current. A relatively small current may significantly affect wave train components and 

the wave train shape. This is observed for both opposing and following currents. The plots in Figs. 2 

and 3 indicate that the application of the nonlinear model has a substantial effect on the shape of a 

predicted wave spectrum. A train of originally linear and very narrow-banded waves changes its one-

peak spectrum to a multi-peak one in a fairly short period of time. The nonlinear effects are more 

pronounced in shallow water. The analysis shows that for waves of intermediate lengths theoretical 

results provided by the linear model are in reasonable agreement with the results obtained by applying 
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the nonlinear approach often even for fairly steep waves. This indicates that the model derived for 

linear waves can be applied far beyond its expected range of applicability. 

             

Fig. 2a. Effect of wave length on nonlinear wave train                       Fig. 2b. Effect of wave length on nonlinear wave train  
propagation on a current, Fr= 0.1, linear                                     propagation on a current, Fr=0, linear solu- 
solution,  nonlinear solution.                                                          tion,  nonlinear solution. 

 
 
 
 
 
 

Fig. 2c. Effect of wave length on nonlinear wave train 
propagation on a current, Fr = 0.1,  linear 
solution,  nonlinear solution. 

 

 

                   

Fig. 3a. Effect of wave length on the amplitudes of Fourier          Fig. 3b. Effect of wave length on the amplitudes of Fourier 
series, Fr= 0.1,  linear solution,  nonlinear                        series, Fr=0,  linear solution,  nonlinear solution. 
solution. 
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Fig. 3c. Effect of wave length on the amplitudes of Fourier 
series, Fr = 0.1,  linear solution,  nonlinear 
solution. 

The features of the nonlinear model can be further demonstrated by applying the model to wave trains 

of different wave steepnesses. The outcome of the model for wave trains of low, moderate, and high waves 

is presented in Figs. 4 and 5. The results correspond to initial wave trains of A/h=0.01 for low waves and 

double moderate wave heights for high waves. Figs. 4 and 5 also show the results predicted by applying 

the solution derived within the frame of linear wave theory. 

             
Fig. 4a. Effect of wave steepness on nonlinear wave train            Fig. 4b. Effect of wave steepness on nonlinear wave train 

propagation on a current, Fr= 0.1,   linear solu-                         propagation on a current, Fr=0,  linear solution, 
tion,  nonlinear solution.                                                               nonlinear solution. 
 

 

 
 
 
 
 
 
 

Fig. 4c. Effect of wave steepness on nonlinear wave train 
propagation on a current, Fr=0.1, linear solution, 
 nonlinear solution. 
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Fig. 5a. Effect of wave steepness on the amplitudes of Fourier       Fig. 5b. Effect of wave steepness on the amplitudes of Fourier 
series, Fr=0.1, linear solution,  nonlinear solution.                   series, Fr=0,  linear solution,  nonlinear solution. 

 
 
 
 
 
 
 

Fig. 5c. Effect of wave steepness on the amplitudes of 
Fourier series, Fr=0.1, linear solution,  
nonlinear solution. 

 

The results in Figs. 4 and 5 show that, for waves of very low steepness, the nonlinear effects and 

the changes of wave profile and wave spectrum arising from nonlinear interactions of wave 

components in a wave train may be neglected. Accordingly, linear or weakly nonlinear wave theories 

can be applied to describe the propagation of a wave train on a current. The higher the waves, the 

stronger the nonlinear effects arising from nonlinear interactions of wave components in a wave train. 

As a consequence, a train of originally linear and very narrow-banded one-peak wave spectrum drastically 

changes its form in a fairly short distance from its initial position. The results in Figs. 4 and 5 indicate a 

need to apply nonlinear approaches in the modeling of waves on current for steep waves and demonstrate 

the significance of nonlinear terms in the free-surface boundary conditions.  

Finally, the effect of current speed on wave dispersion is analyzed. The results for Ak=0.05 are 

presented in Fig. 6. The plots show the results corresponding to the linear solution reported by Dean 

and Dalrymple (1984) and the outcome of the present nonlinear model. It can be seen that linear 

solution underpredicts the phase speed of the regular waves. The results indicate that the longer the 

waves, the larger the differences become. Additional analysis indicate that wave dispersion also 

depends on wave steepness. The discrepancies between linear and nonlinear solutions increase with the 

increasing wave steepness.   
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Fig. 6. Effect of current speed on dispersion,  linear 
solution, +  nonlinear solution. 

4. Experimental Verification 

4.1 Laboratory Experiments  

In this study, a series of laboratory experiments were conducted to verify theoretical results 

obtained from the nonlinear wave model. Because it is not easy to generate a uniform steady current 

field with waves, and experimental data with adequate information to formulate an initial boundary 

value problem for starting calculations are not available, at this stage only the verification of the 

derived model corresponding to its applications related to the prediction of wave propagation and 

transformation was carried out.  As a matter of fact, difficulties to verify wave-current interaction 

models for uniform currents are well known and are widely recognized in coastal and ocean 

communities, as it is hard to generate and control a uniform current field with waves in a wave flume 

(Chen et al., 1998; Chawla and Kirby, 2002; Ma et al., 2009). On the other hand, for nonlinear wave 

models for simple current fields, more advanced approaches are necessary to be developed valid for a 

wider class of currents which can be eventually verified.  

Laboratory experiments were conducted in the wave flume at the Institute of Hydroengineering, 

Polish Academy of Sciences, Gdańsk. The wave flume at the Institute of Hydroengineering is 64 m long, 

0.6 m wide and 1.4 m deep. It is equipped with a programmable piston wave generator. A wave absorber is 

supplied at the end of the wave flume. The absorber is built from porous material and can efficiently 

dissipate even large waves. Wave reflection from the absorber is usually smaller than 5% for typical 

experiments (Sulisz, 2003). 

The experiments in the wave flume were conducted at a water depth h=0.6 m. The wavemaker 

generated trains of waves of different frequencies to verify the derived model. Additional series of 

experiments were conducted to analyze the effect of wave steepness on the propagation and transformation 

of nonlinear waves. The generation of waves of higher wave steepness was achieved by increasing the 

amplitude of the wavemaker motion. The experimental verification was restricted to the free-surface 

elevation (x,t).  
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A group of resistance-type wave gauges were installed in the wave flume to measure the free-

surface elevation. The distances of the gauges from the wavemaker mean position were 4 m, 8 m, 12 m, 

16 m, 20 m, 24 m, and 28 m, respectively (Fig. 7). The free-surface elevation was measured for each 

wave train for about 100 s and was sampled at the rate of 100 Hz. Data recording started simultaneously 

with the wavemaker oscillation. 

 

Fig. 7. Wave flume with a system of wave gauges. 

The measured time series of free-surface elevations, the evolution of wave components in the 

generated wave trains, and the measured wave energy spectrum were used to conduct verification of the 

theoretical approach. The recorded free-surface elevation was analysed by applying a Fourier method and a 

Kalman filter. 

4.2 Comparisons with Experimental Data 

The comparisons between theoretical results and experimental data are shown in Fig. 8. The plots 

show time series of the free-surface elevation predicted by the derived model and corresponding 

experimental data. Theoretical results and comparisons with experimental data are presented for seven 

locations along the wave flume where the free-surface elevation was recorded by installed wave 

gauges. A standard laminar damping was incorporated in the theoretical model to calculate theoretical 

results for comparisons with experimental data. This is because water waves in a wave flume are 

exposed to laminar damping and it is recommended to include a damping in a theoretical modeling, 

especially, if comparisons between theoretical results and experimental data are conducted for 

locations far away from the wavemaker.  

The comparisons between theoretical results and measurements presented in Fig. 8 show that the 

results obtained by the application of the derived model are in good agreement with experimental data. The 

plots show that a reasonable agreement between the theoretical results and experimental data is observed 

for both amplitudes and phases.  It is important to note that a good agreement between theoretical results 

and experimental data is observed even after the formation of a large wave. Usually, wave models 

poorly predict complex changes of a wave train due to the formation of a large wave, especially, a 

wave train formed after a large wave event. The plots indicate that the model can predict interaction of 

wave components in a wave train with sufficient accuracy as well as fairly accurately highly nonlinear 

wave events. 

The ability of the model to adequately predict nonlinear wave transformation may be further 

demonstrated by applying a Fourier analysis and comparing wave amplitude spectra obtained from 

theoretical results and experimental data. This type of comparisons of theoretical results and 

experimental data provides information about the ability of the model to properly describe nonlinear 
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interactions of wave components in a wave train which may lead to the formation of very dangerous 

large waves. The outcome of the Fourier analysis is presented in Fig. 9. The plots in Fig. 9 show the 

amplitudes of wave components for the time series presented in Fig. 8.   

       

Fig. 8a. Free-surface elevation, L/h=4,   theoretical results,             Fig. 9a. Outcome of Fourier analysis, L/h=4,    
experimental data.                                                                                      theoretical results,  experimental data. 

       

Fig. 8b. Free-surface elevation, L/h=8,   theoretical results,              Fig. 9b. Outcome of Fourier analysis, L/h=8,    
experimental data.                                                                                      theoretical results,  experimental data.  

       

Fig. 8c. Free-surface elevation, L/h=12,   theoretical results,        Fig. 9c. Outcome of Fourier analysis, L/h=12,    
experimental data.                                                                                  theoretical results,  experimental data. 

The comparisons between theoretical results and measurements presented in Fig. 9 show that the 

results obtained by the application of the derived model are in good agreement with experimental data. A 

fairly good agreement between predicted results and the experimental data is observed for a wide range of 

wave frequencies. The model predicts fairly well multi-peak spectra, including wave spectra with 

significant nonlinear wave components. It is worth to note that it is not an easy task to predict nonlinear 
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wave transformation effects with such a good accuracy as it is achieved by applying the derived model. On 

the other hand, the ability to accurately predict wave evolutions in a wave train is of significant 

practical importance because nonlinear effects may lead to resonant interactions of wave components 

in a wave train, formation of extreme waves, substantial changes of wave spectrum etc., and the 

understanding of these processes is of vital interest to scientists and engineers. 

5. Conclusions 

A novel theoretical approach is applied to predict the propagation and transformation of transient 

nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method. 

The derived semi-analytical solution was employed to study the transformation of wave trains and the 

evolution of wave components in a wave train propagating on a current. Substantial attention is paid to 

the changes of wave profile and energy spectrum arising from the nonlinear interactions of wave 

components in a wave train. 

The results show that the propagation of wave trains is significantly affected by a current. 

Relatively small currents may significantly affect wave train components and the wave train shape. 

This is observed for both opposing and following currents. The results demonstrate that the application 

of the nonlinear model has a substantial effect on the shape of a predicted wave spectrum. A train of 

originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a 

fairly short period of time. The discrepancies between the results predicted by applying the linear and 

nonlinear models increase with the increasing wavelength and become significant for long waves. The 

analysis shows that for waves of intermediate lengths theoretical results provided by the linear model 

are in reasonable agreement with the results obtained by applying the nonlinear approach often even 

for fairly steep waves. This indicates that the linear model can be applied far beyond its expected range 

of applicability. 

Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-

surface elevations recorded by a system of wave gauges were compared with the results provided by 

the nonlinear model. Additional verification was achieved by applying a Fourier analysis and 

comparing wave amplitude spectra obtained from theoretical results and experimental data. The 

comparisons show that theoretical results are in good agreement with experimental data. A reasonable 

agreement between theoretical results and experimental data is observed for both amplitudes and 

phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant 

nonlinear wave components. 
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