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Abstract
Type 1 diabetes (T1D) is characterized by the progressive destruction of insulin-producing beta cells in the pancreas. Despite 
improvements in insulin monitoring techniques, there remains no cure for T1D. Individuals with T1D require lifelong insulin 
therapy and some develop life-threatening complications. T1D is a complex, multifactorial, autoimmune condition. Under-
standing why people get T1D and how it progresses has advanced our knowledge of the disease and led to the discovery 
of specific targets that can be therapeutically manipulated to halt or reverse the course of T1D. Scientists investigating the 
potential of immunotherapy treatment for the treatment have recently had some encouraging results. Teplizumab, an anti-CD3 
monoclonal antibody that has been approved by the FDA, delays the onset of clinical T1D in patients ≥ 8 years of age with 
preclinical T1D and improves beta cell function. Therapies targeting beta cell health, vitality, and function are now thought 
to be an essential component of successful combination therapy for T1D. The idea that the beta cells themselves may influ-
ence their own destruction during the development of T1D is a notion that has recently been gaining acceptance in the field. 
Researchers have recently made remarkable strides in beta cell replacement therapy and beta cell regeneration techniques. 
This review offers a detailed exploration of the pathophysiological mechanisms of T1D. It discusses the intricate interplay 
of factors leading to T1D development and the innovative approaches being explored to discover new treatments and a cure 
for the millions of people living with T1D worldwide.
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Physiological function of the pancreas

The pancreas is the organ which produces insulin, one of the 
main hormones that helps to regulate blood glucose levels. 
The pancreas is located behind the lower part of the stom-
ach, in front of the spine. It measures about 15 cm in length 
and is divided into the head, body, and tail, with the head 
adjacent to the duodenum and the tail near to the spleen. It 
is vascularized by branches of the celiac and superior mes-
enteric arteries, with a microvasculature that supports and 
regulates beta cell functions, including insulin production 

[4]. Additionally, it is richly innervated by sympathetic and 
parasympathetic nerves [6]. The pancreas plays a part in 
both the endocrine system and the exocrine system. The 
endocrine system includes organs which produce hormones, 
which are delivered via the blood to help regulate our mood, 
growth, metabolism, and reproduction. In the pancreas, the 
endocrine component is organized into the Islets of Langer-
hans, and includes various hormone-producing cells such 
as alpha cells (production of glucagon), beta cells (insulin), 
delta cells (somatostatin), pancreatic polypeptide cells (pan-
creatic polypeptide), and epsilon cells (ghrelin), which are 
essential for blood glucose regulation and metabolic bal-
ance [7]. The exocrine system is comprised of glands which 
release substances such as sweat (to the skin), saliva (in the 
mouth) or, in the case of the pancreas, digestive enzymes 
such as amylase, lipase, and proteases which assist with car-
bohydrate, fat, and protein digestion.
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Susceptibility to T1D

A combination of genetic predisposition and environ-
mental triggers determines an individual’s susceptibility 
to develop T1D [8]. Specific genes, notably those in the 
human leukocyte antigen (HLA) complex class II, are 
strongly associated with the risk of developing T1D. In 
addition, overexpression of HLA class I is thought to pre-
dispose islet cells for recognition by immune cells such as 
CD8+ T cells. The occurrence of increased HLA class I 
expression on insulin-positive beta cells is a characteristic 
feature of both T1D and its pre-diabetic stages [9]. The 
upregulation of HLA class I in patients with T1D occurs 
prior to immune cell infiltration and the cause, although 
as yet unknown, is thought to be due to environmental 
factors [10]. There is a striking correlation between the 
levels of STAT1 measured in the beta cells of patients with 
T1D and HLA class I hyperexpression. STAT1 is elevated 
in beta cells soon after T1D diagnosis but its expression 
declines with disease duration, thereby correlating with a 
similar decline in HLA class I. It is possible that the two 
may be coordinately regulated or that increased produc-
tion of HLA class I in beta cells occurs as a consequence 
of enhanced STAT1 expression. STAT1 is a critical pro-
tein involved in mediating antiviral responses to interfer-
ons, and its early upregulation in the progression of T1D 
would be expected to place beta cells in a heightened state 
of responsiveness to these cytokines [10]. The upregu-
lation of HLA class I affects the immune system’s abil-
ity to distinguish self from non-self, making individuals 
more prone to autoimmune reactions against their own 
beta cells. Epigenetic modifications (such as changes in 
DNA methylation and histone modifications) [11–13] 
can also be influenced by both genetic and environmental 
factors and may further contribute to the pathogenesis of 
T1D. Defects in antigen presentation by thymic cells con-
tribute to the escape of autoreactive T cells from negative 
selection [14]. Regulatory T cells, which are crucial for 
maintaining self-tolerance and suppressing autoimmune 
responses, may also be deficient or defective in individ-
uals with T1D. Genetic and cellular studies in patients 
with T1D point to an imbalance between effector T cells 
and regulatory T cells as a potential driver of the disease 
[15–20]. However, the exact role of regulatory T cells in 
the progression of T1D remains uncertain [21, 22].

It is believed that environmental factors can also exac-
erbate the susceptibility to T1D. Epidemiological studies 
showing variations in the incidence of T1D both season-
ally and geographically, support this hypothesis [23]. Viral 
triggers, for example, are known to cause the immune 
system to become overactive or misdirected, leading to 
an autoimmune attack on the beta cells [24–27]. Viral 

infections can also disrupt the thymic selection process. 
Other environmental factors, such as diet, early childhood 
nutrition, and exposure to toxins, can also influence the 
course of T1D. Diet and exposure to environmental tox-
ins and pollutants may also contribute to the disruption 
of immune tolerance, further amplifying the autoimmune 
response.

The combination of genetic susceptibility, immune sys-
tem dysregulation, and environmental triggers, results in a 
breakdown in self-tolerance, allowing autoreactive T cells 
to evade elimination. The resulting autoimmune destruction 
of pancreatic beta cells, is a defining characteristic of T1D.

The initiation of T1D

T1D is thought to start in a few isolated islets within the pan-
creas. Insulitis is the process of inflammation in which cells 
of the immune system invade the pancreas and accumulate 
in proximity to, and within, pancreatic islets [28]. In rodents, 
this process occurs intensively as the disease progresses 
until most islets display extensive infiltration. However, this 
feature of intense insulitis is largely absent in the human 
pancreas. Studies from pre-diabetic pancreata have shown 
that the damage is initially self-limiting and progresses in 
a relapsing/remitting pattern within a marginal number of 
islets, and therefore, does not initially affect glycemic con-
trol. However, the autoimmune response progresses swiftly 
within a given islet and the eventual destruction of beta cells 
(following the initial targeting of self-antigens), leads to the 
release of danger signals that amplify the immune response. 
A critical point is reached at an as yet unpredictable point 
of time, when the situation becomes uncontrollable and the 
majority of islets are affected, leading to clinical manifesta-
tion of the disease.

In T1D, the antigens which are targeted by the patient’s 
own immune system include proteins expressed by beta 
cells, including insulin, glutamic acid decarboxylase 
(GAD), islet-specific glucose 6 phosphatase catalytic 
subunit-related protein (IGRP), and insulinoma-associ-
ated protein 2 (IA-2). It is possible that the autoimmune 
response may be initiated by molecular mimicry, where 
external pathogens display antigens that closely resem-
ble self-antigens, causing cross-reactivity. The immune 
system may react to these pathogen-derived antigens and 
inadvertently attack beta-cell antigens, which sets off an 
autoimmune inflammatory cascade [29]. Ordinarily, auto-
reactive cells are either eradicated or strictly regulated 
to prevent the development of autoimmunity. However, 
a failure in regulatory mechanisms occurs during T1D 
development, which leads to the activation of autoreac-
tive T cells that mistakenly target beta-cell antigens [30]. 
The immune system then initiates insulitis, the immune 
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system’s way of trying to eliminate the perceived threat. 
However, this process inadvertently causes collateral 
damage to healthy tissues within the pancreas. Autore-
active T cells (the majority of these being CD8+) recog-
nize and attack beta cells in the pancreas leading to their 
destruction and subsequent insulin deficiency.

Immunopathology at different stages of T1D 
development

Overt hyperglycemia, metabolic imbalance, and clini-
cal symptomatology form the basis of the T1D diagnosis. 
However, the critical immunological events leading to islet 
cell damage occur prior to diagnosis, which is one of the 
many difficulties of studying T1D pathology in humans. In 
addition, access to human pancreatic samples (especially 
samples pre-diagnosis) is difficult and researchers often have 
to study the immunopathology of human T1D using cells 
from peripheral blood rather than from within the pancreas. 
Sharing of postmortem pancreatic material from patients 
with recent-onset disease has given researchers a chance 
to increase our knowledge about the pathology of T1D in 
humans.

Earlier diagnosis of T1D in first- or second-degree rela-
tives of individuals with T1D has also enabled further 
research into the underlying mechanisms of T1D pathology 
and led to the design of T1D prevention clinical trials, with 
enrollment criteria and end points based on specific disease 
stages [31–33]. Recent multinational studies have included 
both people at high risk of developing T1D and those with 
recent onset disease.

The results of these studies have shown that T1D pro-
gresses sequentially in a variable but predictable manner 
through distinct identifiable stages prior to the onset of 
symptoms (Table 1) [34]. The rate of progression from onset 
of beta cell autoimmunity to glucose intolerance and then 

to symptomatic disease can last from months to decades 
(Fig. 1) [35]. 

Immunopathology during Stage 1 of T1D 
development (prediabetes)

Proteins and peptides such as insulin, proinsulin, GAD65, 
IA-2, and ZnT8 have been identified as target antigens 
in T1D and autoantibodies secreted by autoreactive B 
cells which are specific for these islet antigens can be 
detected in the serum of peripheral blood [36]. Children 
who develop ≥ 2 of these autoantibodies have an increased 
likelihood of developing clinical T1D later in life, com-
pared with children who have fewer autoantibodies 
[37–39]. In this stage of T1D development, ≥ 2 autoanti-
bodies directed towards these peptides can be detected but 
the beta cells are still able to produce insulin and control 
blood sugar levels.

Why do some people produce the autoantibodies that pre-
cede the development of T1D? It is very difficult to deter-
mine which of the factors that are present in this early stage 
of T1D are triggers or accelerators of the autoimmune pro-
cess, and which factors are caused by the disease process 
itself. There is some evidence to suggest that abnormal lipid 
metabolism may precede seroconversion to autoantibody 
positivity [40, 41]. Furthermore, in the TRIGR study, Lud-
vigsson et al. showed that increased glucose concentration 
in peripheral blood was related to the initial production of 
islet cell autoantibody. This beta cell stress hypothesis [42] 
suggests that an increased amount of sugar in peripheral 
circulation will place a high demand on insulin secretion, 
leading to beta cell stress that contributes to a rapid progres-
sion to symptomatic T1D [43–45]. The progression rate of 
T1D at this very early stage of disease can be influenced by 
age at the time of seroconversion and high titers of insulin 
autoantibodies [46].

Table 1   The stages of T1D development

Stage 1 Stage 2 Stage 3

Immunopathology • Autoantibodies
• No evidence for beta cell loss

• Autoantibodies
• CD4+ and CD8+ T cells contribute to 

autoimmunity
• Some islets are lost

• A loss of beta cells, 
and acinar cells

• Immune cell infiltra-
tion

• Substantial damage 
to islets

Clinical relevance • Normoglycemia
• No clinical symptoms
• Circulating autoantibodies indicate an 

increased likelihood of developing clinical 
T1D

• This stage can last from weeks to decades

• Dysglycemia
• No clinical symptoms
• Biomarkers, including autoantibodies, 

which predict transition to Stage 3

• Dysglycemia
• Clinically sympto-

matic disease
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Pancreas volume declines early in the course of T1D pro-
gression [47–55]. The reason for the smaller pancreas is not 
known but it is thought that changes in the exocrine pancreas 
may be important in T1D pathogenesis and both reduced aci-
nar cell number and evidence of fibrosis have been reported 
[55–57]. Although the mechanism is not known, it is pos-
sible that the process affecting the exocrine compartment 
ultimately leads to beta cell loss [58, 59]. Indeed, reduced 
pancreatic function (fecal elastase) and pancreatic exocrine 
insufficiency have been reported in some individuals with 
T1D [56, 60].

Immunopathology during Stage 2 of T1D 
development (prediabetes)

During this stage of T1D development some initial islet 
destruction is present along with signs of beta cell autoim-
munity and some associated dysglycemia, but there are no 
other clinical symptoms of T1D.

The nonpathogenic autoantibodies are viewed as bio-
markers of the autoimmune process, with the presence 
of multiple autoantibodies being predictive of the transi-
tion from Stage 2 to Stage 3 disease [37, 61, 62]. CD4+ 
and CD8+ T cells can be detected and isolated from islets 
and pancreatic lymph nodes of patients with T1D and these 
cells and their associated cloned cell lines have been shown 

to react to a range of islet antigens and post-translationally 
modified peptides or neoantigens [63–65].

Studies from autopsy pancreas samples, from patients 
who died soon after the diagnosis of T1D, have revealed that 
the principal cells involved in the destructive process in the 
islets are likely to be CD8+ cytotoxic T cells [66–69]. How-
ever, other immune cells such as macrophages and CD20+ 
B cells are also found to infiltrate the islets. At this stage the 
progression of T1D occurs in a lobular manner across the 
pancreas, which is indicative of a process that includes local 
as well as systemic drivers (Fig. 2) [70–73].

Immunopathology during Stage 3 of T1D 
development

By Stage 3, when T1D is often clinically diagnosed, auto-
immune damage has occurred throughout the pancreas. 
Signs and symptoms of T1D, which can range from diabetic 
ketoacidosis to modest hyperglycemia, are usually present, 
and insulin therapy can be initiated. Although there will have 
been a loss of both beta cells and acinar cells, some beta 
cells are still present and functional. Beta cells from many 
patients with longstanding T1D still secrete small amounts 
of insulin [55]. However, by the time of clinical presentation 
most of the remaining islets are insulin-negative with only 
occasional rare islets present which contain functional beta 

Fig. 1    Inflammation in the pancreas at different stages of T1D.  This 
human, formalin-fixed, paraffin-embedded section from a donor with 
T1D (#6247) from the Network for Pancreatic Organ Donors with 
Diabetes (nPOD) was stained with whole-slide immunofluorescence 
for insulin (green), CD45 (magenta) and Hoechst as the nuclei stain 
(blue). Insulin-deficient islets (IDI) were identified in a consecutive 
slide stained for glucagon, and a pixel classifier was trained to iden-
tify IDI based on the glucagon signal. The map with IDI was cre-

ated and then transferred to the insulin-stained slide showed in the 
picture. Insulin-containing islets (ICI) were manually added based 
on the insulin signal. ICI were classified depending on the amount 
of CD45 + cell infiltration into: ≤ 3 cells (no infiltration, blue), > 3 
but < 15 cells (low infiltration, yellow), ≥ 15 cells (high infiltration, 
red), and IDI (white). The images at the bottom of the Figure are a 
visual representation of the process of beta cell destruction at differ-
ent stages of T1D development
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cells. It is estimated that ~ 60–90% of beta cell mass has been 
lost by this time [74]. Immune cell infiltration can be seen 
both in the islets and the exocrine pancreas [69].

A “honeymoon phase” often occurs soon after diagno-
sis, during which patients with T1D experience a period of 
partial remission in which they have reduced insulin require-
ments [75–80]. A longer remission period is associated with 
better residual beta cell function and a reduced risk of acute 
and long-term T1D complications [75–78, 81] It is possible 
that novel treatments could be utilized to promote, extend 
and enhance the remission period by targeting the subset of 
immune cells which facilitate a naturally occurring mecha-
nism of protection during this time [82]. Treatment during 
this therapeutic window may further protect the remaining 
beta cells and reduce long-term complications.

Factors involved in the progression of T1D

The conditions that drive the progression of T1D from 
autoantibody positivity to islet cell destruction are unclear 
but are likely to be multifactorial in nature. Metabolomics 
studies suggest that metabolic dysregulation precedes the 
clinical presentation of T1D [83–85]. In particular, specific 
sugar derivatives and microbial metabolites differ between 
rapid and slow progressors to T1D at this stage in disease 
development [44]. The Finnish T1D Prediction and Preven-
tion study (DIPP) has given an insight into the mechanisms 
that may underlie progression to clinical disease. In this 
study, the participants, who had increased HLA suscepti-
bility to T1D, were prospectively observed for various islet 
cell antibodies from the age of 3 months to 15 years of age 
or to the diagnosis of T1D [44, 86]. Increasing levels of 

sugar derivatives in the peripheral circulation were found to 
contribute to accelerated progression to T1D [44].

Studies have also shown that dysregulated microbial 
metabolites in the gut microbiota are associated with the 
development of T1D [87–92]. Microbiota-derived indole 
metabolites promote intestinal homeostasis and are known 
for their immunomodulatory signaling activity [88, 93, 94]. 
Microbiota-derived metabolite 3-indole-acetic acid was 
found to be upregulated in children who rapidly progressed 
to T1D following the appearance of autoantibodies [44]. 
An increase in such tryptophan catabolites suggests a shift 
from saccharolytic to proteolytic fermentation in the gut [44, 
89]. This shift in microbial fermentation could dysregulate 
microbial tryptophan catabolism and exacerbate the devel-
opment of T1D.

The growing prevalence of overweight and obese children 
with T1D has led to much interest in the coexistence of these 
conditions. Higher body mass index (BMI) in children is 
associated with preserved C-peptide at T1D onset [95–97], 
however, it does not protect from a rapid decrease in beta 
cell function in these patients. Among a pooled European 
cohort of teens with T1D over 1 year of follow-up [98], 
higher BMI at diagnosis was associated with a greater rate 
of fasting C-peptide decrease, thus more rapid disease pro-
gression. The significant decrease in residual beta cell func-
tion in children with the highest BMI may be the result of a 
negative impact of elevated levels of inflammatory cytokines 
on pancreatic beta cells in the course of obesity [95–97].

Persistent infection by pathogens that can evade or sup-
press the immune system and establish a long-term infection 
may also drive the progression of autoimmunity in T1D [99]. 
In addition to molecular mimicry, persistent infections can 
induce polyclonal B cell activation, leading to the production 

Fig. 2    T1D occurs in a lobular 
manner. This image shows a 
whole pancreatic tissue section 
from a donor with T1D. There 
are some remaining insulin-pro-
ducing cells (green) and many 
alpha cells (red). The progres-
sion of T1D occurs in a lobular 
manner across the pancreas
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of autoantibodies [100]. Furthermore, persistent infections 
can lead to the activation of toll-like receptors which can 
trigger the production of pro-inflammatory cytokines and 
chemokines, leading to chronic inflammation and tissue 
damage [101].

Heterogeneity of autoimmunity in T1D 
and T2D

The extent and timing of beta cell loss varies significantly 
with age. Individuals in whom T1D develops early in life 
(before the age of 7 years) lose beta cells more quickly/more 
extensively than those who receive a diagnosis after the age 
of 7 years of age [69, 102, 103]. The existence of distinct 
profiles of insulitis, which are associated with very different 
rates of beta cell loss [68, 69], or intrinsic age-related differ-
ences in the function of the immune system may contribute 
to these age-related differences.

The American Diabetes Association classification of type 
2 diabetes (T2D) is “a non-autoimmune progressive loss of 
adequate beta cell insulin secretion, frequently on the back-
ground of insulin resistance and metabolic syndrome” [104]. 
However, many patients who are initially diagnosed with 
T2D, may also have undiagnosed beta cell autoimmunity. 
The prevalence of T2D is increasing and if 10% of these 
patients are positive for islet autoantibodies then testing for 
them during the diagnostic assessment will be of benefit to 
many patients [105]. Such assessments may reveal patients 
who are likely to have a higher rate of progression to insulin 
requirement and, may therefore, help to personalize treat-
ment plans for these patients [106].

Individuals with T1D are prone to develop diabetic 
ketoacidosis (DKA) which is a serious metabolic compli-
cation [107]. Certain individuals with T2D also develop 
DKA without precipitating factors, (referred to as ketosis-
prone T2D [KPD]). Because KPD often presents with acute 
hyperglycemia and DKA, just like acute-onset T1D, it is 
very important to differentiate between these two types of 
diabetes at the onset. Unprovoked KPD is characterized by 
male predominance, onset at a young age, obesity, sudden 
onset of DKA without precipitating factors, and a transient 
decrease in insulin secretion capacity, which can be recov-
ered with temporary intensive insulin therapy. It is possible 
that the mechanism of transiently impaired insulin secretion 
in these cases is associated with glucotoxicity or lipotoxicity.

The diagnostic criteria for slowly progressive T1D (slowly 
progressive insulin dependent diabetes mellitus; SPIDDM) 
have recently been revised by the Committee on T1D of 
the Japan Diabetes Society [108]. All of the following three 
criteria must be met: (1) presence of anti-islet autoantibodies 
at some point in time during the disease course; (2) absence 
of ketosis or ketoacidosis at diagnosis with no immediate 

requirement for insulin treatment; and (3) gradual decrease 
of insulin secretion over time. The phenotype of progressive 
beta cell dysfunction in patients with SPIDDM which occurs 
at > 30 years of age is similar to that of latent autoimmune 
diabetes of the adult (LADA), which is generally defined by 
diagnosis at > 30 years of age, presence of circulating islet 
autoantibodies, and lack of insulin requirement for 6 months 
after diagnosis. However LADA is a concept that includes 
both insulin-dependent and non-insulin-dependent states 
with anti-islet autoantibody positivity [109].

Patients with LADA need insulin earlier during disease 
progression and are likely to respond poorly to oral anti-
diabetic mediation. However, these patients could respond 
favorably to immunomodulator therapy. Anti-inflammatory 
and immunomodulatory therapies have also proven effective 
in improving the metabolic profile of many patients with 
T2D, by disrupting autoimmune processes and inhibiting 
the decline of beta cell function [105, 110]. The presence of 
self-reactive T cells in autoantibody-negative patients with 
T2D also identifies an autoimmune process that is associ-
ated with metabolic dysregulation [111]. Further research is 
needed to understand the complex immune interactions rel-
evant to T2D and specific immunomodulation strategies to 
treat these patients. However, in the meantime it is important 
to remember that lifestyle changes also repress inflammation 
and autoimmune reactions, and are therefore, a major tool to 
help decrease beta cell stress.

Another subset of T1D, fulminant T1D (FT1D), is char-
acterized by extremely rapid pancreatic beta cell destruc-
tion with rapid progression of hyperglycemia and ketoaci-
dosis. It was initially classified as idiopathic T1D due to 
the absence of autoimmune markers. However, subsequent 
studies showed evidence for the involvement of autoimmun-
ity in the rapid beta cell loss in FT1D pathogenesis [112]. 
Since the introduction of immune checkpoint inhibitors for 
the treatment of cancer, several cases of FT1D have been 
reported. However, it is unclear if FT1D and immune check-
point inhibitor-induced diabetes share the same pathology. In 
FT1D, beta cells are destroyed very rapidly and are almost 
absent at diagnosis, compared to the relatively slow destruc-
tion that takes place in conventional acute‐onset T1D, 
which can occur over several months/years. The speed of 
disease development in patients with immune checkpoint 
inhibitor‐related FT1D is placed between conventional 
acute‐onset T1D and FT1D in terms of timing of beta cell 
destruction, with destruction happening within the first 
few weeks. Regarding the trigger for disease initiation, in 
immune checkpoint inhibitor‐related FT1D blocking of the 
PD‐1/PD-1 ligand pathway is the known trigger. In contrast, 
viral infection has been suggested as a potential trigger in 
patients with FT1D, with common cold‐like symptoms fre-
quently observed prior to symptom-onset and IGRP-specific 
CD8 + T cells are thought to significantly contribute to the 
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pathogenesis [113]. It is currently unknown whether immune 
checkpoint inhibitor molecules are involved in the destruc-
tion of beta cells in other subsets of T1D [114, 115].

While the fundamental pathophysiological process 
remains consistent across different populations, there are 
notable variations in clinical presentation and genetic pre-
disposition between Eastern and Western countries. Under-
standing these differences is crucial for tailoring effective 
management strategies and advancing our global approach 
to the treatment of T1D. The frequency of T1D in Japan 
and most East Asian countries is very low and typically less 
than one-tenth that seen in white populations of European 
descent. In contrast, most people with FT1D are from East 
Asian countries and only a limited number of cases have 
been reported in white European populations. [116–120]

Western populations: in Western populations, exten-
sive research has established a strong association 
between T1D and specific HLA class II alleles. Nota-
bly, HLA-DR3-DQ2 and HLA-DR4-DQ8 haplotypes 
are critical risk factors. These alleles play a central role 
in immune recognition and activation, contributing to 
the autoimmune attack on pancreatic beta cells.
Eastern populations: contrastingly, Eastern popu-
lations exhibit distinct genetic profiles. A recent 
genome-wide association study conducted by the 
Japan Diabetes Society focused on Japanese patients 
with FT1D. The study not only confirmed the strong 
association with Class II HLA genes but also revealed 
a novel genetic locus: the CSAD/lnc-ITGB7-1 region 
on chromosome 12. Interestingly, these SNPs did not 
show any linkage to autoimmune T1D, suggesting a 
distinct pathogenesis in FT1D.

Despite genetic and environmental differences, the core 
pathophysiological process—autoimmune destruction of 
beta cells—remains consistent. Autoreactive T cells play a 
central role in both Eastern and Western T1D. Collabora-
tive efforts between Eastern and Western researchers can 
enhance our understanding of T1D. Comparative studies 
may reveal additional genetic loci and provide insights into 
shared mechanisms.

Do beta cells play an active role 
in the development of T1D?

It had previously been thought that during the development 
of T1D, the beta cell was an “innocent victim” of an unpro-
voked “attack” by an overactive or under-regulated immune 
system. However, the idea that the beta cells themselves may 
influence their own destruction during the development of 

T1D is a notion that has recently been gaining acceptance 
in the field [121].

Beta cells are certainly the primary targets of the immune 
system in the context of T1D. However, the extent to which 
they contribute to their own targeting, either by facilitating 
or resisting it, is not fully understood. Pre-diabetes typically 
lasts several years before clinical manifestation and during 
this time, beta cells often display signs of stress and mal-
function even before they become the direct targets of the 
immune response [122, 123]. It is now hypothesized that the 
progression towards T1D is partly due to the highly secretory 
nature of the beta cells and a well-vascularized environment, 
which make them more susceptible to changes in the cellular 
environment [70, 124–126]. Paradigm-shifting research has 
suggested that beta cells may actively “reveal” themselves by 
presenting their own antigens when they experience cellular 
stress [121]. There are likely multiple mechanisms at play 
including beta cell dysfunction; altered interactions between 
beta cells and immune cells; and increased immunogenicity. 
These mechanisms may also be amplified by internal factors 
such as endoplasmic reticulum stress or external stress from 
viral infections and inflammatory cytokines.

Heightened expression of HLA class I molecules on 
the surface of beta cells is largely attributed to inflamma-
tory stress within the cellular environment [127, 128]. The 
consequence of this hyperexpression is believed to be an 
enhanced visibility of these beta cells to CD8+ T cells infil-
trating the islets. These T cells identify and destroy beta cells 
that display surface class I molecules presenting autoanti-
genic epitopes [129] essentially “revealing” themselves as 
targets for the immune system. Islets from different regions 
of the pancreas are differentially affected, creating a mul-
tifocal pattern [71]. The cause of this lobularity remains 
unclear, although viral infections, the inflammatory milieu 
in the pancreas, innervation, and the intrinsic etiology are 
all thought to play a role.

In situations where the stress on beta cells is heightened 
and the demand for insulin throughout the body surpasses 
the ability of the cells to secrete it, the system responsible 
for processing proinsulin (an inactive precursor of insulin) 
can become overloaded. An increase in the expression of 
proinsulin relative to insulin has been observed in beta cells 
in the islets of donors with T1D (both early in the develop-
ment of T1D and in long-standing T1D) [130, 131]. The 
accumulation of proinsulin within beta cells may be due to 
various factors, including endoplasmic reticulum stress and 
impaired processing.

These new insights into T1D pathology underscore the 
intricate relationship between beta cell dysfunction, immune 
inflammation, and the role of beta cells themselves in trig-
gering the autoimmune response. The limited long-term effi-
cacy of immune intervention therapies and the continued 
presence of beta cells even after diagnosis and progression 
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of T1D, suggests that both beta cells and the immune sys-
tem, play an active role in the development of T1D and that 
both will need to be targeted to provide an effective therapy. 
Therapeutic strategies that aim to prevent or treat T1D at its 
earliest stages by preserving beta cell function, are therefore, 
currently undergoing rigorous assessment.

Novel therapeutic approaches 
for the treatment of T1D

By the time that we detect T1D, it is normally too late to 
prevent it, so we need to learn to identify which individuals 
are at risk, watch out for very early signals, and treat the 
underlying immunological mechanisms. The complexity of 
the pathways that lead to inflammation in T1D and the num-
ber of mechanisms that are involved means that it has been 
difficult to find a suitable method to treat all individuals. 
Currently available therapies include daily insulin injections 
to maintain blood glucose levels, suppressive immunother-
apy to decrease the symptoms associated with autoimmun-
ity, and islet transplantation to replace destroyed beta cells 
and restore insulin production. Lifestyle modifications are 
also recommended to increase sensitivity to insulin, control 
blood sugar levels and lower the risk of heart disease and 
nerve damage. An immune-targeted therapy that has recently 
been shown to have efficacy for the treatment of T1D is the T 
cell-specific anti-CD3 antibody teplizumab, which delayed 
disease onset in participants at high risk for T1D in the Tri-
alNet 10 study [5, 132, 133]. The mechanisms of action of 
other T1D therapies that are being studied in clinical trials 
are discussed in Table 2.

Several therapies currently in development aim to boost 
the regulatory T cell population in patients with T1D [145] 
and other potential future therapies include anti-IL21, con-
version of alpha cells to beta cells, GLP-1 receptor agonists, 
calcium channel blockers, such as verapamil and low-dose 
anti-thymocyte globulin (ATG). The treatment strategy will 
differ depending on the stage/severity of disease and can 
include treatment before the development of autoimmunity 
to islet autoantigens (primary prevention); after the devel-
opment of humoral or metabolic markers of high risk of 
progression to diabetes (secondary prevention); maintenance 
of residual beta‐cell function after the onset of diabetes (ter-
tiary prevention), and/or islet cell transplantation (Table 3).

Primary prevention

Asymptomatic children and adolescents at high risk for 
T1D according to genetic predisposition (a positive fam-
ily history or by the occurrence of known genes associ-
ated to T1D) can receive primary prevention strategies. 

Such measures can include changes to diet or the addition 
of physical exercise to prevent childhood obesity and vac-
cination of children against infectious diseases [2].

The US FDA has also recently approved the use of 
teplizumab for the treatment of T1D. In a clinical trial, 
teplizumab delayed T1D by an average of three years in 
people who were at high risk of developing the condition 
[5]. In the United States, teplizumab can now be pre-
scribed to people who are at high risk of developing T1D. 
There have also been encouraging results with the use of 
Vitamin D in primary prevention studies of T1D. How-
ever, such data have not been confirmed in larger trials. 
Studies are also currently underway with (amongst oth-
ers) oral insulin, GAD, GAD plus vitamin D3, or drugs 
that regulate T cells (e.g. abatacept [CTLA-4 Ig]).

Secondary and tertiary prevention

Most prevention studies are tertiary in nature (conducted 
in children, adolescents and adults with newly diagnosed 
T1D) with the aim of prolonging the remission phase. 
Tertiary prevention studies can also provide important 
information on the pathophysiology of T1D.

Studies investigating treatment with autoantigens 
(alone or in combination) or with monoclonal antibodies 
(teplizumab, otelixizumab, rituximab, abatacept) have 
shown good clinical results including transient preserva-
tion of C-peptide and brief metabolic improvement. How-
ever, beta cell activity tends to decline after the initial 
phase of treatment and patients often become dependent 
on exogenous insulin administration [2].

Cardiovascular disease, is an established cause of pre-
mature death among patients with T1D and insulin use is 
associated with increased risk of weight gain, which is a 
known risk factor for cardiovascular disease. Medications 
that can improve glycemic control while reducing insulin 
requirements and weight gain may therefore be promis-
ing adjunctive treatments for T1D. While glucagon-like 
peptide 1 (GLP-1) receptor agonists are not approved for 
the treatment of T1D, long-acting GLP-1 medications are 
commonly prescribed off label in clinical practice. For 
example, liraglutide has been used as an add-on therapy 
to insulin and despite the limited number of patients and 
varying study durations in the clinical trials, results are 
relatively consistent across studies [3].

Advances in islet cell transplantation

Whole pancreas transplants can be successfully per-
formed with relatively high graft survival rates. Islet cell 
transplantation is therefore a potential long-term ther-
apy for patients with T1D. However, there are limited 
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numbers of eligible donors [1] and long-term treatment 
with immunosuppressants, (to protect the graft from host 
rejection) can lead to severe side effects.

The use of stem cell-derived beta cell transplantation has 
recently received considerable focus. However, the ischemic 
conditions of the transplant site and immune rejection, 
(which destroys approximately half of the islets one-week 
post-transplantation) are still problems that need to be over-
come. Advances in biomedical engineering have led to the 
development of novel devices which can be used to encap-
sulate and protect islets and islet cells [1]. These devices 
can also contain molecules/gels to support the function of 
the islet following transplantation. In addition, devices have 
also been developed to enhance the vascularization of the 
implant as well as to protect islets from the host’s immune 
system. The current goal of islet replacement therapy is to 
find a regimen that reduces the treatment burden of immune 
modulation while maximizing the efficacy of islet replace-
ment therapy. Finding the ideal strategy will require a deli-
cate balancing act and it is unlikely that a single solution 
alone will protect the transplanted cells and enhance their 
functionality. Scientists will also need to further identify the 
developmental pathways that drive the differentiation of stem 
cells into insulin-producing cells, thus providing an endless 
source of cells.

Conclusion

Understanding why people get T1D and how it progresses 
has advanced our knowledge of the disease and led to the 
discovery of specific targets that can be manipulated to 

change the lives of the millions of people who are living 
with T1D worldwide. Recent advances in the treatment of 
T1D include immunotherapies targeting T cells and the 
development of innovative technologies to enable islet cell 
transfer to be an effective and well-tolerated treatment. 
Hopefully, future research will lead to strategies to not only 
treat T1D, but also to prevent and reverse it.
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