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robust, and practical and could be used as a reliable frame-
work in HPI research.
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Background

Host-pathogen protein-protein interaction (HP-PPI) plays 
a vital role in proteomics and the pathogenesis of systems 
biology research [1]. Discovery and characterization of pro-
tein-based interactions are of high importance, regarding the 
fact that infectious diseases are still among the major death 
causes in humans. By understanding how the pathogens 
interact with their host for successful invasion, we may have 
a chance to discover appropriate preventive measures and 
develop new drugs against many infections and diseases 
[2]. A pathogen can interact with the host in several ways, 
including proteins, small molecules, nucleic acids, and 
metabolites; with direct protein-protein interaction being 
the most common interaction type [3]. Various studies have 
applied experimental approaches to detect HP-PPIs. For 
example, for virus-host protein-protein interactions, they 
have used methods such as Y2H, AP-MS, GST-pull-down, 
luminescence, SPR, and protease assay, to name a few [4]. 
Some high-throughput experimental techniques have suc-
cessfully led to the development of several HPI databases 
including PHISTO [5], HPIDB [6], and PHI-base [7]. As 
promising as these datasets may seem, they only comprise 
a limited number of pathogens since experimental methods 
are usually costly and highly time-consuming. In fact, given 
that at least hundreds of different species can infect the host, 
thousands of interactions are still unknown.

To enrich host-pathogen interactome and construct 
comprehensive HPI networks, we should try utilizing 
computational models [8]. Numerous studies have used 
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computational methods to build large-scale HPI networks, 
especially for viruses and bacteria [9–11]. Amongst the 
different computational methods that have been proposed 
throughout the years, machine learning-based methods are 
extensively popular. For example, Kshirsagar et al. [12] 
have used multitask learning to predict host-pathogen pro-
tein interactions. It is worth mentioning that Support Vec-
tor Machines (SVMs) are among the most popular machine 
learning-based methods.

Although common machine-learning approaches yield 
promising results, some drawbacks should be considered. 
One of the main challenges is that the features have to be 
predefined before they are fed to the machine and the appro-
priate choice of features affects the outcome of the pre-
diction result. On the other hand, there are limitations in 
changing or updating the models. Considering these issues, 
we can use Deep Learning techniques that reduce the fea-
ture engineering phase; meaning the model itself extracts 
the features while fitting the parameters to the training data 
[13].

Homology-based information, structural information, 
evolutionary information, and physicochemical information 
are amongst the variety of protein features that researchers 
have used to train their machine learning algorithms. These 
methods have some limitations that need to be considered 
though. For example, methods that use genomic informa-
tion by calculating the presence or absence of genes, only 
work on fully sequenced data [14]. As for homology-based 
approaches, they work only if the sequence similarity is 
high. Hence, methods that directly extract information 
from protein sequences have recently gained attention. For 
example, Amino Acid Composition (AAC) and Sequence 
Encoding are some of the most common and simple meth-
ods. In this paper, we use a technique called monoMonoK-
Gap (mMKGap) from the PyFeat library [15] which is also 
a sequence-based feature extraction method.

One of the main obstacles to predicting host-pathogen 
interactions through computational methods is the lack of 
data about non-interacting proteins. Almost all available 
HPI datasets consist of experimentally detected interactions 
between host and pathogen proteins. For a classification 
model to work, we also need a negative dataset (no-interac-
tion dataset) that shows which host-pathogen protein pairs 
will not interact with each other. In most articles, research-
ers have suggested algorithms to create the negative dataset 
from the positive data itself. But there are some limitations 
to these methods that we will cover in the upcoming sections 
of this paper. We tested three different methods to create 
negative interactions, one of which uses a database called 
Negatome [16]. This database consists of experimentally 
derived non-interacting protein pairs and protein families.

Applying computational methods to identify large-scale 
HP-PPIs has been used in various recent studies. Fisch et 
al. proposed HRMAn, which is an image analysis platform 
based on machine learning algorithms and deep learning 
[17]. In another study, Lian et al. developed a Random For-
est-based predictor of Yersinia pestis PPIs by incorporating 
host-network properties [18]. Zhang et al. compared various 
machine learning methods to separate infectious from non-
infectious pathogens [19]. Asimet et al. introduces a novel 
approach for generating detailed statistical representations 
of viral-host protein sequences. This is achieved by combin-
ing local and global residue contextual information. These 
representations are then used in a machine learning frame-
work called LGCA-VHPPI, based on a deep forest model. 
This framework effectively extracts important feature corre-
lations for distinguishing interactive viral-host protein pairs 
from non-interactive pairs, even in the presence of com-
plex data characteristics such as non-linearity, noise, and 
limited training set size [20]. Kaundal et al. introduced the 
deepHPI web server, which is the first of its kind to utilize 
convolutional neural network (CNN) models for predicting 
host-pathogen interactions (HPI). deepHPI provides quan-
titative answers and offers enhanced visualization of the 
resulting host-pathogen network. Additionally, it includes 
links to protein annotation resources for further exploration. 
The deepHPI web server offers four distinct host-pathogen 
model types, covering plant-pathogen, human-bacteria, 
human-virus, and animal-pathogen interactions. This broad 
range of models enables the analysis of various scenarios 
and facilitates a wide range of HPI analyses [21]. Karan 
et al. present the development of four computational mod-
els for predicting protein-protein interactions (PPIs) on a 
genome-wide scale between rice and M. grisea. The four 
models include the interolog, domain-based, GO, and phy-
logenetic prediction approaches. By intersecting the results 
obtained from these four methods, high-confidence PPIs are 
identified. The study also introduces a filtering method to 
analyze and identify potential candidate proteins involved 
in interactions. Furthermore, the study shows that the SVM 
model using amino acid composition (AAC) and conjoint 
triad features (CT) of protein sequences showed better accu-
racy [22].

In this study, we propose utilizing Deep Learning meth-
ods to predict HPIs using protein sequences. The proposed 
model introduces a Deep Learning-based approach that 
achieves high accuracy in predicting HP-PPIs (Host-Patho-
gen Protein-Protein Interactions). It effectively addresses 
the challenge of creating a dataset of non-interacting host-
pathogen pairs, known as the negative set. To overcome 
this challenge, the model utilizes the Negatome Database, 
which provides a vast collection of non-interacting protein 
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families. By leveraging this resource, the model improves 
the selection of non-interacting pairs.

Additionally, the model selects a golden standard posi-
tive set from the HPIDB interactions, consisting of known 
interacting human-bacteria protein pairs. This positive set 
serves as a reliable benchmark for evaluating the model’s 
performance. By incorporating these contributions, the 
proposed model enhances the accuracy and effectiveness 
of HP-PPI prediction. It successfully overcomes the chal-
lenges associated with the negative set and utilizes valuable 
resources like the Negatome Database and HPIDB interac-
tions, leading to improved prediction outcomes.

Methods

Datasets

We used HPIDB as the main source for the positive interac-
tion’s dataset. It consists of almost 70 thousand interaction 
samples between different host and pathogen species. Since 
we wanted to limit research to humans as hosts and bacteria 
and viruses as pathogens, we had to filter the data to remove 
non-related interactions. In order to achieve this objective, 
the initial list was refined by excluding certain taxa, namely 
FUNGI, AMOEBOZOA, PROTOZOA, and ARCHAEA, 
originating from the pathogen and the PLANT from the host. 
After cleaning the dataset and removing homologue data, 
we ended up with 45,892 interactions which we labeled as 
the golden standard. Here we should mention that goal was 
to create a balanced dataset, meaning the number of samples 
in the positive set was supposed to be equal to the number of 
samples in the negative set (no-interaction set).

To create a negative dataset, we examined three different 
methods: In the first method, we tried to create the negative 
set from new proteins, meaning that we used random host-
pathogen proteins that neither the host nor the pathogen 
was present in the positive set. At first, this method seemed 
promising but when we tested the trained model with new 
protein pairs, we realized that the machine has become 
biased towards the host proteins that were present in the 
positive set and did not care about the pathogen proteins.

In the second method, we created a negative set directly 
from positive samples. This method was on the presump-
tion that if no report so far has shown a host protein x will 
interact with a pathogen protein y, there is a good chance 
that y will never infect x and the x-y pair can be added to 
the negative set. After training a simple Decision Tree to test 
presumption, we concluded that this method does not gen-
erate a reliable negative set because the difference between 
the positive samples and negative samples is not significant 

enough for the prediction machine to learn how to distin-
guish between interacting and non-interacting pairs.

In the third method, we referred to the Negatome Data-
base as a reliable source of non-interacting protein families. 
According to Negatome, two protein families PF00091 
and PF02195 do not interact. We chose human proteins 
(hosts) from PF00091 and bacteria proteins (pathogens) 
from PF02195. This gave us 136 host proteins and 27,856 
pathogen proteins to choose from, yielding 136 * 27,856 or 
3,788,416 potential non-interacting protein pairs. We then 
randomly selected 45,892 of those protein pairs, equal to the 
number of positive samples we had in golden standard data. 
We repeated this random selection two more times to obtain 
three separate negative sets of protein pairs. This was nec-
essary to make sure that the results of the experiment were 
not dependent on the negative set selection. By combining 
the positive set with these three negative sets, we created 3 
separate datasets to train and test models.

Every classification algorithm must have access to both 
interacting and non-interacting protein pairs to learn how to 
distinguish between the two classes. For positive data (inter-
acting proteins), we used HPIDB which includes almost 70 
thousand samples of interacting host-pathogen proteins. 
Many of these samples are obtained from other famous 
databases like VirHostNet [23], IntAct [24], and MINT [25].

To create the negative data (non-interacting proteins), 
many previous studies have focused on generating samples 
from the positive dataset. Urquiza et al. proposed a hierar-
chical k-means clustering based on the statistical concept 
of mutual information using the mRMR criterion [26]. In 
terms of performance, their study shows that this method is 
better than randomly selecting a negative dataset. In another 
study, Ben-Hur and Noble found that annotations of cellular 
localization - which is a very common method for choosing 
negative examples - lead to biased estimates of prediction 
accuracy [27]. They demonstrated the effects of this bias in 
the context of both sequence-based and non-sequence-based 
features.

To overcome the biases mentioned above, we decided to 
use the Negatome database, which contains lots of protein 
families that have been experimentally proven to be non-
interacting. This helped us create very reliable negative 
datasets of protein pairs that were derived from humans and 
bacteria.

Feature extraction

Many aspects of proteins can be used to derive features 
for predictors and the features extract directly from protein 
sequences. They mainly use physicochemical information or 
amino acid sequence information. Shen et al. [28] grouped 
the 20 naturally occurring amino acids into seven classes 
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not so suitable for large datasets due to the rapid increase of 
the support vector. We have used Support Vector Machines 
with a radial basis function kernel. Due to the computational 
costs of SVM, we only utilized one-fifteenth of the training 
samples to optimize parameters. In this study, we set C = 20 
and γ = 0.1.

Artificial Neural Networks are a field in machine learn-
ing that is evolved from the idea of simulating the human 
brain. They can detect complex relations between depen-
dent and independent variables. A typical neural network 
consists of an input layer, an output layer, and a few hid-
den layers between them. As the number of hidden layers 
increases, the network can solve more complex nonlinear 
problems. This leads to the notion of deep neural networks 
and in general, Deep Learning. For deep learning models to 
work robustly, they need to be trained with a lot of data. An 
increase in the number of hidden layers or the number of 
input features would most definitely require a larger dataset. 
This is one of the reasons that deep learning methods have 
not been used widely in HP-PPI prediction research so far.

Tools

We used the Python programming language in different 
stages. PyFeat is a Python library that we used for feature 
extraction [15]. PyFeat is a Python library that provides a 
set of tools for feature engineering, which is the process of 
creating new input features from raw data to improve the 
performance of machine learning models. It provides lots of 
different feature extraction methods like zCurve, gcContent, 
atgcRation, pseudoKNC, etc. These algorithms can be used 
to extract features from DNA, RNA, and protein sequences. 
We utilized its monoMonoKGap method to generate the 
protein features used in the classification algorithm. We also 
used the Tensorflow [31] and Propy [32] libraries; the first 
one was for creating Convolutional Neural Network (CNN) 
models and the other one was for extracting Dipeptide Com-
position features from the protein sequences.

Another tool is a stand-alone toolkit called H2O (https://
h2o-release.s3.amazonaws.com/h2o/rel-3.46.0/2/index.
html) which provides state-of-the-art machine-learning 
algorithms with a sophisticated UI/UX [33]. In this study, 
the tool is installed locally, allowing users to fully utilize its 
capabilities on their own machines. It also has tools to work 
with big data technologies like Hadoop and Spark. We used 
its implementation of Deep Neural Networks as classifica-
tion algorithm. It helped us analyze results by generating a 
variety of charts and graphs.

based on their dipole and side-chain volumes. The features 
were then extracted based on amino acid classes of protein 
pairs. In another study, Chou [29] proposed a Pseudo Amino 
Acid Composition which extracts a set of discrete numbers 
from a protein’s amino acid sequence, while preserving the 
sequence-order information as well.

After examining different options like the ones explained 
above, we decided to use monoMonoKGap as the main fea-
ture extraction algorithm which is also a sequenced-based 
technique. This method counts the number of X_X, X__X, 
X___X, etc. in a protein’s sequence with X being an amino 
acid and the distance between these Xs will be determined 
by the K parameter. When implementing the feature extrac-
tion algorithm with a gap size (K) set at 2, the output will 
consist of 32 features for both DNA and RNA sequences 
and 800 features for protein sequences. Specifically, these 
features correspond to individual nucleotides represented 
by letters A, C, G, or T within each respective sequence 
type. Features will be numbers of A_A, A_C, A_G, A_T, 
C_A, C_C, C_G, C_T, G_A, G_C, G_G, G_T, T_A, T_C, 
T_G, T_T, A__A, A__C, A__G, A__T, C__A, C__C, C__G, 
C__T, G__A, G__C, G__G, G__T, T__A, T__C, T__G, and 
T__T of the whole sequence of DNA respectively [15]. 
The resulting feature vectors would then be fed to the deep 
learning algorithm for further processing. We compare this 
method with the Dipeptide Composition algorithm which 
comes from the Amino Acid Composition feature group.

Classification

To determine whether a pair of proteins would interact or 
not, a machine learning algorithm has to be trained with the 
available data and their labels, which is called supervised 
learning. Many methods have been used in the field of HP-
PPI throughout the years but the most common ones are 
as follows. Naïve Bayes is a statistical classifier that cal-
culates conditional probability without taking into account 
the dependence between the features. Another famous algo-
rithm is Random Forest (RF) [30] which uses an ensemble 
of classification trees. This method is heavily dependent on 
the number of trees and the number of randomly selected 
features. RF can be useful classifiers for host-pathogen 
protein-protein interaction prediction tasks because they 
can handle nonlinear relationships and complex hierarchi-
cal structures well. However, the effectiveness of multiple 
decision trees depends on various factors such as the quality 
of training data, feature selection, pruning strategies, and 
hyperparameter optimization. We optimized the maximum 
number of trees to 50, while the optimized learning rate was 
set to 0.01. SVM is one of the most commonly used clas-
sifiers in HP-PPI prediction. The most challenging part of 
using SVM is choosing a good kernel function. It is also 
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algorithms like SVM are sensitive to the size of feature vec-
tors. We utilized a typical Deep Learning algorithm. In order 
to optimize the performance of our convolutional neural 
network (CNN) model, we chose the hyperparameters based 
on extensive experimentation and validation.

Neural Networks (ANNs) are characterized by their rela-
tively shallow architecture, typically comprising a single 
or a few hidden layers. They learn to approximate complex 
functions through the connections between neurons, rely-
ing on manual feature engineering and limited depth. While 
ANNs provide a basic understanding of neural network 
principles, they may struggle with complex patterns in large 
datasets due to their shallow architecture and limited feature 
representation capabilities.

In contrast, Deep Neural Networks (DNNs) are dis-
tinguished by their depth, containing many hidden layers 
that enable them to learn hierarchical representations of 
data. DNNs excel at representation learning, automatically 
extracting features directly from raw data without the need 
for manual feature engineering. Despite being more com-
putationally intensive to train, DNNs have demonstrated 
superior performance in tasks involving large datasets and 
complex relationships, making them a significant advance-
ment in neural network technology. The optimized hyperpa-
rameters are given in Table 1.

These hyperparameters were carefully selected to strike a 
balance between model complexity and generalization abil-
ity, leading to improved accuracy and outperformance rela-
tive to previous approaches.

Finally, Fig. 1 shows a graphical abstract of methods.

Evaluation criteria

The following criteria, such as Accuracy, Precision, Recall, 
and F1 score were utilized to assess the work [42]. Accu-
racy is a ratio of correctly predicted observations to the total 
observations. It describes the overall system error. Since 
dataset is symmetric, accuracy can be used as a reliable 
metric. Precision is the ratio of correctly predicted positive 
observations to all the observations that we have labeled as 
positive. The Recall metric is the ratio of correctly predicted 
positive observations to all the actual positive cases. Finally, 
the F1 score is a weighted average of Precision and Recall, 
which works better than Accuracy in situations where the 
dataset is not symmetric. These indicators are defined below:

Accuracy =
TN + TP

TN + FN + TP + FP

Pr ecision =
TP

TP + FP

monoMonoKGap

As we discussed earlier, we used monoMonoKGap as the 
main feature extraction algorithm. By changing the param-
eter K in the algorithm, the number of features in the output 
will differ. monoMonoKGap yields 400 features by setting 
K equal to 1. If we increment K by 1 each time, we will 
get 400 more features, meaning we will have 800 and 1200 
features for K = 2 and K = 3 respectively. Having more fea-
tures in the output is on one hand beneficial because it lets 
the prediction machine find more complex patterns. But on 
the other hand, it makes the training process more time-con-
suming and might even lead to overfitting the machine. For 
determining the best value for K, we referred to the results 
of [34]. The paper analyzes different feature extraction 
methods, one of which is monoMonoKGap. It compares the 
results of different values for the K parameter and concludes 
that K = 2 is the very best option. By setting K equal to 2 we 
get 800 features that will be fed to Deep Learning algorithm 
for further processing.

Deep learning

Neural Networks are nonlinear statistical classifiers that 
extract complex relationships between variables. The use of 
Neural Networks in proteomics is a relatively new concept 
and still has room to grow. One of the first researches that 
utilized it was [35] in which the writers predicted protein 
secondary structure. Xue et al. [36] introduced DeepT3 as a 
Deep Convolutional Neural Network to identify gram-neg-
ative bacterial type 3 secreted effectors. Ahmed et al. [37] 
predicted human-bacillus anthracis protein-protein interac-
tions by using Multilayer Neural Networks. Furthermore, 
it is worth mentioning that there are recent studies [38–41] 
that specifically focus on this approach. These studies con-
tribute to the growing body of research in this area and pro-
vide valuable insights into the topic.

A typical Deep Learning method receives the input data, 
extracts feature from it and then classifies the result. Another 
type of Deep Neural Network is called Auto-encoder which 
usually gets the input and represents it with a smaller set 
of features. This is normally applied because classification 

Table 1 Proposed CNN model hyper-parameters optimal configuration 
values
Hyper-Parameters Optimal values
k-fold cross-validation:
Activation function:
Learning rate:
Epochs:
Adaptive learning rate:
Initial weight distribution:
Distribution function:
Adaptive learning rate time decay factor:

10-fold
Rectifier
0.1
10
Enabled
UniformAdaptive
Bernoulli
0.99
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from database but the pathogen was chosen from a different 
dataset.

The second approach was to randomly create host-patho-
gen pairs from the positive set. We were already skeptical 
of this approach because such random data creations usu-
ally need further preprocessing or else the machine won’t be 
able to distinguish between the positive class and the nega-
tive class. We tested the algorithm and it resulted in a nearly 
50% accuracy which was not acceptable at all.

Finally, we assessed the third approach in which we uti-
lized the Negatome database to create negative interactions. 
Table 2 depicts the results summary of 10-fold cross-valida-
tion on the validation data of the first dataset. Furthermore, 
Table 3 shows the prediction performance of the proposed 
method on the three separate datasets that we created by 
combining the positive set with the three different negative 
sets obtained from the Negatome database. Analyzing these 
data allows concluding that the approach yields a very sat-
isfactory result, where the mean accuracy is above 99.6%. 
As well as, by changing the threshold, we obtained the 

Re call =
TP

TP + FN

F1 =
2 ∗ Pr ecision ∗ Re call
Pr ecision+ Re call

Where TP is the number of correctly predicted interact-
ing pairs. FP is the number of falsely predicted interacting 
pairs. TN is the number of correctly predicted noninteract-
ing pairs. Finally, FN is the number of falsely predicted non-
interacting pairs.

Results

Results of the proposed method

We allocated 80% of the data for training, 10% for valida-
tion, and the last 10% for testing the model. Furthermore, 
a 10-fold cross-validation method was used in the training 
phase, so that predictions would be independent of the train-
ing data. To implement the Deep Learning phase, we utilized 
a stand-alone toolkit named H2O which will be explained 
in the upcoming sections. We tried to keep the network as 
simple as possible so we just used 3 hidden layers of sizes 
512, 256, and 128 respectively, with the Rectifier algorithm 
as the activation function. We also set the number of itera-
tions (epochs) to 10.

We took three different approaches to create the negative 
dataset. In the first one, we used completely new proteins 
for both the host and the pathogen and created random host-
pathogen pairs. This technique yielded a 90.81% accuracy 
on the test data. The main problem with this approach was 
that the system became biased towards human proteins 
and did not care about the pathogen that much. This led 
to wrong predictions in cases where the host was chosen 

Table 2 10-fold cross-validation results summary on the first valida-
tion set
Validation set Accuracy 

(%)
Precision 
(%)

Recall (%) F1 
score 
(%)

1 99.986 99.973 100 99.986
2 99.986 100 99.973 99.986
3 99.986 99.973 100 99.986
4 99.986 99.973 100 99.986
5 99.972 100 99.945 99.973
6 99.932 99.945 99.918 99.932
7 99.986 99.973 100 99.986
8 99.919 100 99.835 99.918
9 99.959 99.973 99.945 99.959
10 99.959 100 99.920 99.960
Mean 99.967 99.981 99.954 99.967

Fig. 1 A graphical abstract of the framework. To create the input data-
set, the negative data created from the Negatome database is combined 
with the positive data obtained from HPIDB. Then the mMKGap 

feature extraction algorithm is applied to create the feature vectors. 
Finally, a Feed Forward Neural Network (Deep Learning algorithm) 
is used for classification
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Composition method which comes from the commonly 
used AAC feature group.

In the first step of the comparison phase, we wanted to 
make sure whether Deep Learning methods yield better 
results compared to the RF and SVM, which are more com-
monly used classification methods in HP-PPI studies. For 
this experiment to be fair, we applied the latter 2 classifi-
ers to the same 3 datasets that we used for Deep Learning 
method. The same feature extraction method (mMKGap 
with K = 2) was applied to the experiments as well. We used 

ROC curve was calculated. The procedure was repeated 50 
times to reduce the variation introduced by the selection of 
the negative testing data. For this purpose, the ROC curve 
and the AUC for comparing the results of three different 
approaches is shown in Fig. 2. Also, in Table 4, we have 
shown a prediction performance comparison of the three 
approaches that we used to create the negative dataset.

Comparison with other approaches

To highlight the feasibility of Deep Learning method, we 
compared it with other classification algorithms, which 
were RF, SVM, and CNN. We also compared the main fea-
ture extraction algorithm (mMKGap) with the Dipeptide 

Table 3 The prediction performance of the proposed method on three 
separate datasets
Dataset Accuracy (%) Precision (%) Recall (%) F1 score (%)
1 99.65 99.96 100 99.65
2 99.52 99.98 100 99.52
3 99.66 99.93 100 99.66
Average 99.61 99.96 100 99.61

Table 4 The prediction performance comparison of three different 
approaches
Negative dataset creation approach Accu-

racy 
(%)

Preci-
sion 
(%)

Recall 
(%)

F1 
score 
(%)

Random pairs from new proteins 
(First approach)

90.81 99.74 100 90.43

Random pairs from the positive set 
(Second approach)

50.48 60.56 100 66.70

Random pairs from the Negatome 
database (Third approach)

99.61 99.96 100 99.61

Fig. 2 ROC curve for comparing the three different approaches. (A) Random pairs from new proteins (First approach), (B) Random pairs from the 
positive set (Second approach), and (C) Random pairs from the Negatome database (Third approach)
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800 features per protein, while the DPC method yields 400 
features per each. Since we combine the feature vectors of 
the host and pathogen before feeding them to the classi-
fier, we end up with feature vectors of sizes 1600 and 800 
respectively. CNN filters are usually N*N, so the features 
which are fed to it should be N*N as well. We can reshape 
the vectors of size 1600 to a 40 * 40 array, but this does not 
apply to the vectors of size 800. To overcome this limitation, 
we use the “padding” approach to expand the feature vector 
and reshape it to a 29 * 29 array.

Table 6 shows the prediction performance comparison 
of the four different approaches mentioned earlier. The first 
obvious observation is that CNN does not yield significant 
results compared to FFNN. This could be because CNN 
works best when there are spatial relationships in the data. 

Python’s Scikit-Learn [43] library to implement both the RF 
and SVM algorithms.

The classification results of the RF, SVM, and Deep 
learning classifiers on three datasets are listed in Table 5. As 
we can see, the average result of the RF method achieved 
99.54% accuracy, 99.88% precision, 99.20% recall, and 
99.54% f1 score. The average results of the SVM method 
yielded 99.45% accuracy, 99.94% precision, 98.95% recall, 
and 99.45% f1 score. Finally, the average results of the 
Deep Learning method achieved 99.61% accuracy, 99.96% 
precision, 100% recall, and 99.61% f1 score. Taking into 
account the interpretability and ease of implementation, 
the RF method may be a more suitable choice compared 
to Deep Learning, even though the Deep Learning method 
achieved a slightly higher average accuracy.

The AUC value for the Random pairs from new proteins 
(First approach) is 0.999533, for Random pairs from the 
positive set (Second approach) is 0.984489, and for Ran-
dom pairs from the Negatome database (Third approach) 
is 0.925098. Also, by comparing the AUC values of the 
three approaches, it can be concluded that deep learning 
network results are better in comparison between the three 
approaches.

These data show that the Deep Learning model yields 
better results compared to the other two models.

While all these algorithms performed impressively, Deep 
Learning proved to be the most suitable for our problem 
due to its superior performance metrics, especially in recall 
and precision. This indicates that Deep Learning can effec-
tively capture complex patterns in the data, which is crucial 
for accurate prediction in HP-PPI studies. Additionally, the 
scalability and ability to handle large datasets make Deep 
Learning a more robust and versatile choice for our specific 
application.

In the second step of the comparison phase, we wanted 
to examine whether more sophisticated deep networks such 
as CNNs yield better results compared to simple “Feed For-
ward” deep network. We also needed to test whether the 
mMKGap feature extraction algorithm is the right choice 
for the proposed approach. Hence, we decided to compare 
it to the Dipeptide Composition (DPC) method. We used 
Python’s Tensorflow library (27) to implement the CNN 
algorithm and the Propy library (28) to implement the DPC 
method. We compared four different approaches:

1 Feed Forward neural network (FFNN) + mMKGap
2 FFNN + DPC
3 CNN + mMKGap
4 CNN + DPC

Figures 3 and 4 shows CNN models for the mMKGap and 
DPC approaches respectively. mMKGap with K = 2 yields 

Table 5 The prediction performance comparison of RF, SVM, and 
Deep Learning
Model Dataset Accuracy 

(%)
Preci-
sion 
(%)

Recall 
(%)

F1 
score 
(%)

RF 1 99.52 99.89 99.15 99.52
2 99.58 99.91 99.26 99.58
3 99.52 99.84 99.19 99.52
Average 99.54 99.88 99.20 99.54

SVM 1 99.43 99.91 98.95 99.43
2 99.47 99.97 98.95 99.46
3 99.45 99.95 98.95 99.45
Average 99.45 99.94 98.95 99.45

Deep 
Learning

1 99.65 99.96 100 99.65
2 99.52 99.98 100 99.52
3 99.66 99.93 100 99.66
Average 99.61 99.96 100 99.61

Table 6 The prediction performance comparison of four different deep 
learning approaches
Approach Dataset Accu-

racy 
(%)

Preci-
sion 
(%)

Recall 
(%)

F1 
score 
(%)

FFNN + mMKGap 1 99.65 99.96 100 99.65
2 99.52 99.98 100 99.52
3 99.66 99.93 100 99.66
Average 99.61 99.96 100 99.61

FFNN + DPC 1 99.55 99.75 99.54 99.64
2 99.54 99.6 99.54 99.57
3 99.58 99.78 99.5 99.64
Average 99.56 99.71 99.53 99.62

CNN + mMKGap 1 88.03 94.29 81.37 87.35
2 84.98 84.23 86.16 85.16
3 89.04 93.13 85.33 89.06
Average 87.35 90.55 84.29 87.2

CNN + DPC 1 74.7 84.55 65.9 74.07
2 75.37 94.57 54.15 68.87
3 76.38 94.71 56.6 70.86
Average 75.48 91.28 58.88 71.27
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this outcome to the “padding” that we had to apply in the 
DPC approach. It adds some noise to the data and CNN’s 
sensitivity to noise results in a decrease in the prediction 
performance. All in all, we can conclude that the approach 
performs well compared to other methods.

So here we can conclude that there aren’t many significant 
spatial relationships among the amino acids in the protein 
sequences.

The next observation is that for FFNN, it does not matter 
that much whether we use DPC or mMKGap; the perfor-
mance parameters are almost the same in both approaches. 
But for CNN, the difference is significant. We can relate 

Fig. 4 CNN model for the DPC approach. We applied padding to the 
input features and increased their size from 800 (2 * 400 from DPC) to 
841, to create 29 * 29 squares

 

Fig. 3 CNN model for the mMKGap approach. The input features are 
of size 40 * 40, equal to the number of features extracted from mMK-
Gap for host and pathogen, combined (1600)
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The classification results show that all three machine 
learning methods - Random Forest (RF), Support Vector 
Machine (SVM), and Deep Learning - achieved excep-
tional performance on the given datasets. The Deep Learn-
ing method demonstrated the best overall results, with an 
average accuracy of 99.61%, precision of 99.96%, recall of 
100%, and F1-score of 99.61%. The RF and SVM methods 
also performed very well, with the RF method achieving 
average accuracy of 99.54% and the SVM method achiev-
ing average accuracy of 99.45%. The high and consistent 
metrics across all three models indicate their strong ability 
to accurately classify the data. By employing 10-fold cross-
validation, the results provide a more reliable and unbiased 
assessment of the RF, SVM, and Deep Learning models’ 
performance. The consistently high accuracy, precision, 
recall, and F1-score across the folds suggest that these mod-
els are able to capture the underlying patterns in the data and 
make accurate predictions, even on data points they have 
not been trained on.

Although this study shows promising results, some limi-
tations should be considered when using the approach. First, 
we should note that Deep Learning methods need lots of 
data for their training process. Fortunately, we had access to 
a big database of HPIs for bacteria and viruses. But patho-
gens are not limited to these two main categories. Fungi and 
parasites are two other groups of pathogens that can cause 
deadly infections as well. But the amount of data available 
for these groups is not as big as the other two. On the other 
hand, we should bear in mind that in this study we used 
a simple Deep Learning network with only 3 hidden lay-
ers. Using more complex Deep networks might need more 
configurations and could cost more in terms of hardware 
equipment.

Conclusions

Prediction of HP-PPIs plays a vital role in preventing bacte-
rial and viral infections. A plethora of methods have been 
proposed throughout the years but they still have lots of 
room to get improved and yield higher accuracies. The 
application of artificial intelligence and machine learning 
methods has gained much attention in recent years. In this 
paper, we present a Deep Learning-based approach to pre-
dict HP-PPIs with high accuracy. One of the most impor-
tant problems in HP-PPI machine learning approaches is 
to create a dataset of non-interacting host-pathogen pairs, 
i.e., the negative set. We tackle this problem by utilizing the 
Negatome database, which is a large dataset of non-inter-
acting protein families. We select a golden standard (posi-
tive) set from the HPIDB interactions and then randomly 
create 3 sets of noninteracting human-bacteria protein pairs 

Discussion

One of the most common ways of interaction between hosts 
and pathogens is through their proteins. Our understand-
ing of protein structures and interaction mechanisms has 
improved rapidly during the past decades, but there is still 
much more to be discovered.

Modern researchers have analyzed HP-PPIs using a vari-
ety of experimental methods but most of them are highly 
costly and time-consuming. Even if the results of such 
experiments are accurate enough, still many more infections 
are being discovered every day that cannot be analyzed fast 
enough to prevent pandemics. One of the best solutions to 
such problems is to use novel computational methods and 
machine learning algorithms.

Our contributions to this study can be summarized as fol-
lows: First, utilizing the Negatome database to create three 
separate balanced datasets of positive and negative protein-
protein interactions. Second, using the monoMonoKGap 
sequence-based feature extraction algorithm to obtain pro-
tein features, which are later used in the classification phase. 
Third, apply Deep Learning methods to further extract fea-
tures from data and predict interacting and non-interacting 
host-pathogen protein pairs. The rest of this section briefly 
reviews related research in each phase.

Our goal in this study was to find a practical, efficient, 
and robust approach that could predict HP-PPIs with very 
high accuracy. With that in mind, we decided to utilize Deep 
Learning methods which have been proven to be highly 
accurate and reliable. To use Deep Learning methods, we 
needed to have a high volume of data to train a model. We 
addressed this issue by using HPIDB and the Negatome 
database - two highly valuable datasets available to create 
a positive set and a negative set (respectively) for predictor. 
We also used the mMKGap algorithm as a feature extraction 
method.

The high accuracy, precision, and recall that we obtained 
from this study proved that with enough data and a good set 
of features, we can build a machine that can predict HPIs 
with high accuracy in a short time. Our study introduces 
a highly accurate and reliable Deep Learning-based frame-
work in HP-PPI research, which has not been proposed in 
previous studies. This can help researchers validate their 
findings and predict potential protein infectors in their 
future works. We also proved that using Deep Learning 
methods can lead to better results in terms of performance; 
compared to other famous machine learning methods such 
as SVMs and RF. We should also note that another reason to 
use Deep Learning methods over other classification algo-
rithms is that Deep Learning algorithms have been proven 
to yield better results on Big Data, which is the case in HP-
PPI research.
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from two noninteracting protein families of the Negatome 
database. We used a simple 5-layered Deep Learning model 
with 10-fold cross-validation and obtained mean accuracy, 
precision, recall, and F1 scores of 99.61%, 99.96%, 100%, 
and 99.61% respectively. We also compared the prediction 
performance of Deep Learning method with the RF, SVM, 
and CNN algorithms and proved that our approach performs 
well compared to the other approaches. These results sug-
gest that method is very robust and can be used in future 
studies for developing vaccines and other preventive medi-
cines to cure various pathogenic infections.
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