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Abstract
The notion ofm-quasi-Einsteinmanifolds originates from the study of Einsteinwarped
product metrics and they are influential in constructing for many physical models. For
example, these manifolds arises for extremal isolated horizons in the theory of black
holes. In a recent work by Cochran (arXiv:2404.17090v1, 2024), the author studied
Killing vector fields on closedm-quasi-Einstein manifolds. In this short paper, we will
give another proof of his main result involving the scalar curvature, which holds for
all values of m and is based on the use of known formulae related to quasi-Einstein
metrics.
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1 Introduction

Because of their relevance in both geometric analysis and general relativity, the study
of Riemannian (or semi-Riemannian) manifolds admitting an Einstein-like structure
is an attractive subject in modern Mathematical Physics and Differential Geometry.
Among the enormous literature on the topic, we indicate Deshmukh and Al-Sodais in
[9], Andrade and de Melo in [1], Wylie in [15] and Araújo, Freitas and Santos in [2].

In this sense, an n-dimensional Riemannian manifold (Mn, g), n ≥ 2, is called
an m-quasi-Einstein manifold, for a non-null constant m ∈ R, if there exist a smooth
vector field X on M and a scalar λ ∈ R satisfying the following equation

Ric + 1

2
LX g − 1

m
X � ⊗ X � = λg, (1.1)
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where Ric, LX g, X � and ⊗ stand for the Ricci tensor, the Lie derivative of the metric
g in the direction of X , the dual 1-form to X associated the metric g and the tensorial
product, respectively. We notice that, when X vanishes identically Mn is an Einstein
manifold.

These manifolds play an essential role in investigating the solutions of the Einstein
field equations. Naturally, whenm is a positive integer them-quasi-Einstein manifolds
correspond to some warped product Einstein metrics. See, for instance, Barros and
Ribeiro in [5].

In this branch, a fundamental application of the called smooth metric measure
spaces is as a description of quasi-Einstein manifolds (see Case in [7]). It is worth
pointing out that, commonly, the study of m-quasi-Einstein manifolds is considered
when X is a gradient of a smooth function on Mn (see Ribeiro and Tenenblat in [14]).
Furthermore, non-gradient m-quasi-Einstein metrics has been playing an important
role in the theory of near-horizon geometries and can be taken in the formulation of
perfect fluid spacetimes.Moreover,whenm goes to infinity, this structure reduces to the
one associated to a Ricci soliton. For more details we refer to Bahuaud, Gunasekaran,
Kunduri and Woolgar in [3] and references therein. See also Poddar, Sharma and
Subramanian in [12].

In this setting, we quote to Bahuaud, Gunasekaran, Kunduri and Woolgar in [4],
Güler and De in [11] and Ghosh in [10] for some examples of m-quasi-Einstein
manifolds and related facts.

In what follows, S denotes the scalar curvature of (Mn, g), defined as the trace of
Ric. Recall that a smooth vector field X defined on a Riemannian manifold (Mn, g)
is said to be a Killing vector field if LX g = 0. Killing vector fields have a number
of notable features. Besides, on the impact in the geometry as well as in the topology
of a spacetime, there is a rich variety of questions where Killing vector fields play a
central role. Equally, the assumption of admitting a Killing vector field on a compact
manifold has been used in the literature from several points of view.

In this direction, very recently Cochran in [8] established, among other properties,
the following interesting result.

Theorem 1.1 Let (Mn, g) be a closed m-quasi-Einstein manifold. Then,

a) S is constant if and only if X is a Killing vector field.
b) If X is divergence-free, then X is a Killing vector field.

Our purpose in this note is to give an alternative and unified proof of the above
fact, making use of a classical integral formula involving the Lie derivative and well-
known identities referring to m-quasi-Einstein metrics. The new approach is valid for
allm �= 0, in contrast to this previous proof which also assumed the constantm �= −2.

As a consequence of our discussion, we also reobtain a triviality result form-quasi-
Einstein manifolds due to Bahuaud et al. in [4].

2 Proof of theorem

In this sectionwe present the proof of theorem1.1. To beginwith,we recall some useful
auxiliary results. All Riemannian manifolds (Mn, g) are assumed to be connected and
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oriented. The Lie derivative of the metric g in the direction of Y reads as

(LY g)(U , V ) = 〈∇UY , V 〉 + 〈U ,∇V Y 〉,

for all smooth vector fields Y , U and V on Mn, where ∇ stands for the Levi-Civita
connection of g. Taking trace in above equality, we see that tr(LY g) = 2 divY , where
div denotes the divergence of a vector field. In general, for an arbitrary smooth vector
field Y on Mn one has

div(Y � ⊗ Y �) = (divY )Y � + (∇Y Y )�. (2.1)

We also find that

div(|Y |2Y ) = |Y |2divY + 2〈∇Y Y ,Y 〉. (2.2)

Similarly, we have

div((divY )Y ) = (divY )2 + 〈∇(divY ),Y 〉. (2.3)

On the other hand, it can be proved (see Poor in [13], page 170) that for each vector
field Y on a closed Riemannian manifold (Mn, g) it holds that

1

2

∫
M

|LY g|2 dM =
∫
M

(|∇Y |2 + (divY )2 − Ric(Y ,Y )) dM . (2.4)

Next, notice that the trace of the Eq. (1.1) provide us

S + divX = 1

m
|X |2 + nλ. (2.5)

At this point, we remember the following key identity obtained by Barros and
Ribeiro, which can be found in [5], page 215. Below,� denotes the Laplacian operator
on Mn .

Lemma 2.1 Let (Mn, g) be a m-quasi-Einstein manifold. Then,

1

2
�|X |2 = |∇X |2 + 2

m
|X |2div X − Ric(X , X).

As an application of Lemma 2.1 and for the sake of completeness, we would like
to present a proof of Proposition 2.4 in [4], page 8, by following the argument used
in that work. It is worth mentioning that essentially the authors in [4] also proved the
above Lemma. We state the following result:

Proposition 2.2 Let (Mn, g) be a closed m-quasi-Einstein manifold with divergence-
free vector field X . If m < 0 and λ ≤ 0, then X is identically zero.
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Proof According to (1.1),

Ric(X , X) + 〈∇X X , X〉 = 1

m
|X |4 + λ|X |2.

Setting divX = 0 in (2.2), by the divergence theorem we have

∫
M

〈∇X X , X〉 dM = 0.

Hence, Lemma 2.1 implies that

∫
M

(|∇X |2 − 1

m
|X |4 − λ|X |2) dM = 0,

which gives, under the assumptions, X = 0.
Alternatively, wemay invoke the second item fromTheorem 1.1 and apply themax-

imum principle for the Laplacian to deduce that |X |2 is constant. Again by Lemma 2.1,
we verify that Mn is an Einstein manifold. 
�

In order to prove the main result, we also need the following nice formula due to
Barros and Gomes in [6], page 244. Namely,

Lemma 2.3 Let (Mn, g) be a m-quasi-Einstein manifold. Then, for all vector field Y
on Mn, we have

div ((LX g)Y ) = 2div

(
λY + 1

m
(X � ⊗ X �)Y

)
− g(∇S,Y ) − 2〈∇Y ,Ric〉.

Now, we are in position to procced with the proof of the theorem.

Proof Initially, suppose that S is constant. We have from (2.5) that

∇(divX) = 1

m
∇|X |2.

Thus, taking into account the expression (2.3) we get that

div((divX)X) = (divX)2 + 2

m
〈∇X X , X〉.

From (2.2) and the above equality, applying the divergence theorem we obtain

∫
M

|X |2divX dM = m
∫
M

(divX)2 dM . (2.6)

Note that, from identity (2.4), Lemma 2.1 and by the divergence theorem, we have

1

2

∫
M

|LX g|2 dM = − 2

m

∫
M

|X |2divX dM +
∫
M

(divX)2 dM .
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Plugging the relation (2.6) in the above equality we derive that

1

2

∫
M

|LX g|2 dM = −
∫
M

(divX)2 dM ≤ 0.

Therefore, we deduce that LX g = 0.
Reciprocally, let us suppose that X is a Killing vector field on Mn . In this case, the

fundamental Eq. (1.1) becomes

Ric = λg − Jm, (2.7)

where Jm = − 1
m X � ⊗ X �. Next, choosing Y = ∇S and using again the divergence

theorem, we are able to use Lemma 2.3 and identity (2.7) to obtain that

∫
M

|∇S|2 dM = −2
∫
M

〈∇2S,Ric〉 dM = 2
∫
M

〈∇2S, Jm〉 dM . (2.8)

Here, ∇2 stands for the Hessian operator on Mn . Now, on the one hand, we have that

div(Jm(∇S)) = (divJm)(∇S) + 〈∇2S, Jm〉. (2.9)

On the other hand, according to formula (2.1) and divX = 0, from (2.9) we infer that

div(Jm(∇S)) = − 1

m
〈∇X X ,∇S〉 + 〈∇2S, Jm〉. (2.10)

Thus, by integrating in (2.10) and using that X is a Killing field we have

∫
M

〈∇2S, Jm〉 dM = 1

m

∫
M

〈∇X X ,∇S〉 dM = 1

2m

∫
M
S�|X |2 dM .

Therefore, from (2.8) and (2.5) we get that

∫
M

|∇S|2 dM = 1

m2

∫
M

|X |2�|X |2 dM = − 1

m2

∫
M

|∇|X |2|2 dM ≤ 0.

Hence, (Mn, g) has constant scalar curvature (implying that |X | also is constant),
and we finish the proof of the first item.

The second item is immediate. Indeed, supposing divX = 0, we make use of
Lemma 2.1 to conclude

1

2
�|X |2 = |∇X |2 − Ric(X , X).

Finally, on integrating this identity and comparing with the formula (2.4) we can
write ∫

M
|LX g|2 dM = 0.
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So, X is a Killing vector field, completing the proof of the theorem. 
�
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