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Abstract
This paper mainly deals with the Sturm–Liouville operator

H = 1

w(x)

(
− d

dx
p(x)

d

dx
+ q(x)

)
, x ∈ �

acting in L2
w (�) , where � is a metric graph. We establish a relationship between

the bottom of the spectrum and the positive solutions of quantum graphs, which is a
generalization of the classical Allegretto–Piepenbrink theorem. Moreover, we prove
the Persson-type theorem, which characterizes the infimum of the essential spectrum.
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1 Introduction

The main object of the present paper is the self-adjoint Sturm–Liouville operator in
the Hilbert space L2

w(�) associated with the differential expression
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l f (x) = 1

w(x)

(
− (p(x) f ′(x)

)′ + q(x) f (x)
)

, x ∈ �, (1.1)

where � is a metric graph and the matching conditions imposed at inner vertices
are the Kirchhoff conditions. Throughout this paper, we always assume that 1/p, q,

w ∈ L1
loc (�); in addition, p(·), w(·) > 0 a.e. on �, and q(·) is real-valued.

In the last two decades, differential operators on metric graphs have attracted huge
attentions due to numerous applications in mathematical physics and engineering ([5,
11, 12, 23, 26] and references therein). Particularly, there has been an increasing
interest in the spectral theory of Sturm–Liouville operators on metric graphs (see [5,
6, 8, 11, 12, 15, 16, 25] and references therein). From the mathematical point of view,
such a system is interesting because it exhibits a mixed dimensionality being locally
one-dimensional but globally multi-dimensional of many different types.

Consider the following form in L2
w(�)

t0q [ f ] =
∫

�

[
p(x)

∣∣ f ′(x)
∣∣2 + q(x) | f (x)|2

]
dx

defined on the domain

dom(t0q) = { f ∈ H1
c (�; p, w) : f |∂� = 0}.

Here H1
c (�; p, w) denotes the subspace of H1(�; p, w) with compact support, and

H1(�; p, w) := { f ∈ L2
w(�) : ∫

�
p(x)

∣∣ f ′(x)
∣∣2 dx < ∞,

f is continuous and edgewise absolutely continuous}.

If the form t0q is closable, denoteHtq the self-adjoint operator associated with tq = t0q .
The purpose of this paper is to develop Allegretto–Piepenbrink-type theorem (The-

orem 3.1) and Persson-type theorem (Theorem 4.1) for the operator Htq , which are
classical topics and we refer to the papers cited in this paragraph for historical remarks
[1–4, 18–20, 22]. More precisely, we establish a relationship between the bottom of
the spectrum and the positive solutions of quantum graphs, which is a generalization
of the classical Allegretto–Piepenbrink theorem.Moreover, we prove the Persson-type
theorem, which characterizes the infimum of the essential spectrum. It should be men-
tioned that the quantities inf σ

(
Htq
)
and inf σess

(
Htq
)
are of fundamental importance

for several reasons. For instance, within the framework of parabolic equation theory,
the quantity inf σ

(
Htq
)
can serve as an indicator of the rate at which the system

converges towards equilibrium. Furthermore, the condition inf σess
(
Htq
) = +∞ is

satisfied precisely when Htq possesses a purely discrete spectrum.
In the last decades, Allegretto–Piepenbrink-type theorem has been investigated

for strongly local Dirichlet forms [19], positive Schrödinger operators on general
weighted graphs [17] and Schrödinger operators on R

d with singular potentials [22].
Here, we generalize this theorem to our context and provide a simple proof along
the lines of ([9, 21]). Recently, a Persson-type theorem for the Schrödinger operators
(p = w = 1) on infinite metric graphs has been given in [1] by Akduman and
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Pankov. Moreover, Lenz and Stollmann present a Persson-type theorem valid for all
regular Dirichlet forms satisfying a spatial local compactness condition [18]; they also
discuss a generalization to certain Schrödinger type operators, where the negative part
ofmeasure perturbations has to fulfill someKato condition.In this direction,we present
concrete conditions on the coefficients 1/p, q, w and the lengths of the graph edges,
which guarantee the validity of the Persson-type theorem for the Sturm–Liouville
operator on infinite metric graphs. It is worth noting that, in the case when q ≥ 0, our
results (Theorems 3.1 and 4.1) seem to be covered by the literature on Dirichlet forms,
particularly [19, Corollary 2.4 and Theorem 3.3] and [18, Theorem 5.3]. However, this
paper strives to present a more comprehensible and approachable exposition, making
it more accessible to those who may not be intimately familiar with Dirichlet forms.

Let us now finish the introduction by describing the content of the article. In Sect. 2,
we review necessary notions and facts on infinite metric graphs. Sections3 and4 are
devoted to investigating the Allegretto–Piepenbrink-type theorem and the Persson-
type theorem respectively for the Sturm–Liouville operator Htq on infinite metric
graphs.

2 Preliminaries onmetric graphs

In what follows, � = (E,V) will be a graph with countably infinite sets of vertices
V and edges E . A graph is called connected if for any two vertices there is a path
connecting them. For every vertex v ∈ V , we denote the set of edges incident to the
vertex v by Ev and

deg� (v) := # {e : e ∈ Ev}
is called the degree of a vertex v ∈ V . Moreover, the boundary of � is defined as

∂� = {v ∈ V (�) : deg� (v) = 1
}
.

The graph � is said to be a metric graph if each edge e is assigned a positive length
|e| ∈ (0,∞). This enables us to equip � with a topology and metric. By assigning
each edge a direction and calling one of its vertices the initial vertex o (e) and the
other one the terminal vertex t (e), every edge e ∈ E (�) can be identified with a copy
of the interval Ie = [0, |e|]. The distance ρ(x, y) between two points x and y in � is
defined as the length of the shortest path that connects these points. Since the graph is
connected, the distance is well defined. In addition, there is a natural measure, dx , on
� which coincides with the Lebesgue measure on each edge. In particular, integration
over � makes sense. For further details we refer to, e.g., [5, Chapter 1.3].

Throughout this paper, we shall always make the following assumptions.

Hypothesis 2.1 The graph � is connected and locally finite (deg� (v) < ∞ for every
v ∈ V).

Hypothesis 2.2 There is a finite upper bound for lengths of graph edges:

sup
e∈E(�)

|e| = d∗ < ∞.
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In fact, Hypothesis 2.2 is imposed for a convenience only. We denote by L2
w(�)

the space of all complex-valued functions which are weighted square-integrable on �

with respect to the measure dx . More explicitly, this space consists of all measurable
functions f such that fe ∈ L2

w(e) for all e ∈ E(�) and

‖ f ‖2L2
w(�)

=
∑

e∈E(�)

‖ f ‖2L2
w(e) < ∞.

We also need the standard space L1
loc (�) with respect to the measure dx . It consists

of all functions which are absolutely integrable on every edge.
In this paper, we impose at each inner vertex v the following condition:

{
f is continuous at v,∑
e∈Ev

(
p f ′)

e (v) = 0, (2.1)

which is the so-called Kirchhoff vertex condition. Here
(
p f ′)

e (v) is the quasi-
derivative in the outgoing direction at the vertex v, fe denotes the restriction of a
function f onto the edge e.

Notation 2.1 In this paper, N denotes the set of positive integers and N0 denotes the
set of nonnegative integers.

3 Allegretto–Piepenbrink-type theorem onmetric graphs

In this section, we formulate the Allegretto–Piepenbrink-type theorem for the operator
Htq , presupposing that the form t0q is closable. It should be mentioned that we allow
multigraphs, that is, we allow multiple edges and loops. We shall define a function as
a solution of the equation ly = λy, λ ∈ C if it is continuous and edgewise absolutely
continuous on �, satisfies the equation on each edge e ∈ E (�) , and fulfills the
Kirchhoff conditions at inner vertices.

Theorem 3.1 (Allegretto–Piepenbrink-type theorem) For any λ ∈ R,
(1) if there exists a positive solution y > 0 on � for ly = λy, then inf σ(Htq ) ≥ λ;
(2) if inf σ(Htq ) > λ, then there exists a positive solution y > 0 on � for ly = λy.

Proof (1) Let y be a positive solution of ly = λy. Then for any η(·) ∈ dom(t0q) denote

g(x) = η(x)
y(x) , and thus we have g ∈ dom(t0q). Note that

t0q [η] =
∫

�

[p(x) ∣∣η′(x)
∣∣2 + q(x) |η(x)|2]dx,

=
∫

�

[p|g′y|2 + p|gy′|2 + pg′ygy′ + pg′ygy′ + q |η|2]dx,
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and
∫

�

p|g|2|y′|2dx = p|g|2y′y
∣∣∣
∂�

−
∫

�

(p|g|2y′)′ydx

= −
∫

�

(py′)′|g|2ydx −
∫

�

py′y(g′g + g′g)dx .

Therefore, taking into account that y > 0 hence y = ȳ, we get:

t0q [η] =
∫

�

(
p|g′y|2 + λw|g|2|y|2

)
dx ≥ λ

∫
�

w|η|2dx

for every η(·) ∈ dom(t0q). This shows that the lower bound of the form tq and thus the
operator Htq is not less than λ.

(2) Assume that inf σ(Htq ) > λ. Let �′ ⊂ � be any finite compact subgraph obtained
by cutting through the interior of edges. Denote

t0q,�′ [ f ] :=
∫

�′
[p(x) ∣∣ f ′(x)

∣∣2 + q(x) | f (x)|2]dx, (3.1)

and
dom(t0q,�′) := { f ∈ H1(�′; p, w) : f |∂�′ = 0, t0q,�′ [ f ] < ∞}.

Note that dom(t0q,�′) ⊂ dom(t0q) in the sense that every function in dom(t0q,�′) can

be extended to be in dom(t0q) by setting it zero on remaining edges. Thus the form

t0q,�′ is lower semibounded and closable. Now we define the Dirichlet operatorH�′
D as

follows:

H�′
D f = l f ,

dom(H�′
D ) = { f ∈ L2

w(�′) : f |∂�′ = 0, f is edgewise absolutely continuous

and satisfies (2.1) at inner vertices, l f ∈ L2
w(�′)}.

Then according to the representation theorem, it is standard to show that the self-

adjoint operator associated with the closure tq,�′ = t0q,�′ is the Dirichlet operatorH�′
D

in L2
w(�′),which directly yields that

inf σ
(
H�′

D

)
> λ. (3.2)

By cutting through the interior of edges of �, we can establish a sequence of finite
subgraphs �n, with n ∈ N, that collectively constitute an increasing exhaustion of �.
Then in view of [24, Theorem 4.1 and Theorem 5.2.2] and (3.2), it is easy to see that
there exists a solution un (x) of ly = λy that is positive on �n . Define yn (x) = un(x)

un(o)
.

Then it can be seen that

lyn = λyn , inf
x∈�n

yn (x) > 0 and yn (o) = 1.
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Next, we shall prove that {yn}∞n=m and
{
py′

n

}∞
n=m are uniformly bounded and

equicontinuous on each e ∈ E (�m) . By using the Harnack inequality given by F.
Gesteszy and Z. Zhou in their work [7] and the Kirchhoff conditions at inner vertices,
it is easy to obtain that for each positive integer n, there exist positive constants Cm1
and Cm2 (depending only on m) such that

Cm2 ≤ inf
x∈�m
m<n

yn (x) ≤ sup
x∈�m
m<n

yn (x) ≤ Cm1. (3.3)

This means that {yn (x)}∞n=m is uniformly bounded on �m . For each e ∈ E (�m) and
x1, x2 ∈ e,

|yn (x1) − yn (x2)| =
∣∣∣∣
∫ x2

x1

1

p
py′

ndt

∣∣∣∣ ≤ sup
x∈e
∣∣py′

n

∣∣ ∫ x2

x1

1

p
dt,

thus we can show that {yn (x)}∞n=m is equicontinuous on each e ∈ E (�m) if{
py′

n (x)
}∞
n=m is uniformly bounded on e ∈ E (�m) . Note that yn(x) is a solution

of the equation ly = λy on �n, which yields that py′
n(·) is absolutely continuous on

each e ∈ E (�n) . Therefore, following the mean value theorem for integrals, one has
for each e ∈ E (�m) , there exists a point xe ∈ e such that

py′
n(xe) =

∫
e
1
p · py′

ndt∫
e
1
pdt

≤
2max

x∈e |yn(x)|∫
e
1
pdt

≤ 2Cm1∫
e
1
pdt

. (3.4)

Since lyn = λyn, for x ∈ e, one has

|py′
n(x) − py′

n(xe)| ≤
∫
e
(|q| + |λ|w) |yn(t)|dt

and thus

|py′
n(x)| ≤ |py′

n(xe)| +
∫
e
(|q| + |λ|w) |yn(t)|dt .

Then the uniform boundedness of
{
py′

n (x)
}∞
n=m on each e ∈ E (�m) follows from

( 3.4) and the uniform boundedness of {yn (x)}∞n=m on �m . Moreover, for each e ∈
E (�m) and x1, x2 ∈ e,

∣∣py′
n (x1) − py′

n (x2)
∣∣ ≤

∫ x2

x1
(|q| + |λ|w) |yn(t)|dt ≤ C · |x1 − x2| ,

which yields the equicontinuity of
{
py′

n (x)
}∞
n=m on each e ∈ E (�m) .

Then it follows from Arzela-Ascoli Theorem that there exists a subsequence{
yn j

} ⊂ {yn}∞n=m such that
{
yn j

}
and

{
py′

n j

}
are uniformly convergent on each

edge of �m .
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By diagonalization, we can extract a subsequence
{
yn j, j (x)

}
and edgewise

continuous functions f and g defined on � such that for all �m ⊂ �,

sup
x∈�m

∣∣yn j, j − f
∣∣+ sup

x∈�m

∣∣∣py′
n j, j

− g
∣∣∣→ 0, as j → ∞.

Based the above considerations, now we aim to prove that the function f is a positive
solution of the equation ly = λy on �. For each e ∈ E (�) ,

yn j (x) − yn j (o (e)) =
∫ x

o(e)

1

p
· py′

n j
dt .

Then it follows from the dominated convergence theorem that

f (x) − f (o (e)) =
∫ x

o(e)

1

p
gdt,

which yields that p f ′ = g. Also,

py′
n j, j

(x) − py′
n j, j

(o (e)) =
∫ x

o(e)
(q − λw) yn j, j (t)dt,

which yields that g′ = (q − λw) f . Clearly, f satisfies the Kirchhoff conditions at
inner vertices. Moreover, it is immediately seen from ( 3.3) that f > 0 on �. The
proof is completed. ��
Remark 3.1 Observe that following the proof of Theorem 3.1, one can also easily
derive the inequality inf σ(Htq ) ≥ λ if there exists a positive function y that satisfies
ly − λy ≥ 0 on every edge e ∈ E (�) , and if this function fulfills the Kirchhoff
conditions at inner vertices, along with the requirement that y and its derivative py′
are edgewise absolutely continuous.

4 Persson-type theorem onmetric graphs

In this section, we illustrate that under the following Hypothesis 4.1, the Persson-
type theorem for Htq can be given, see Theorem 4.1. Here and thereafter we use the
following notation a+ = max {a, 0} and a− = −min {a, 0}.
Hypothesis 4.1 (1) 1/p ∈ Lη (�) , η ∈ [1,+∞] , q ∈ L1

loc (�) , w ∈ L1
loc (�) ;

(2) there exists a compact subgraph �c ⊂ � such that

Cw := ess inf
x∈�\�′w > 0;

(3) inf
e∈E(�)

|e| = d∗ > 0; (4) Cq := sup
e∈E(�)

∫
e q−dt < +∞.
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Remark 4.1 Taking into account Lemma 4.3, it is apparent that the lower semibounded
form t0q is closable whenever Hypothesis 4.1 is satisfied.

Remark 4.2 Due to [6, Theorem 3.5 (viii)] and Hypothesis 4.1 (3), the essential
spectrum of Htq is always non-empty, i.e., σess

(
Htq
) 
= ∅.

Notation 4.1 Fix a vertex o ∈ �. Throughout this section, for any integer n > 0, let
�(n) ⊂ � be the union of all edges e such that both endpoints of e are at a distance at
most n from o.

To give the Persson-type theorem, let us introduce the form t0q,n as follows:

t0q,n [ f ] =
∫

�\�(n)

p(x)
∣∣ f ′(x)

∣∣2 + q(x) | f (x)|2 dx,

and

dom(t0q,n) = { f ∈ H1
c (�\�(n); p, w) : f |

∂
(
�\�(n)

) = 0, f |
�\�(n)∩�(n) = 0}.

In view of Remark 4.5, it follows that t0q,n is closable whenever Hypothesis 4.1 is

satisfied. Thenwe denoteHtq,n as the self-adjoint operator associatedwith tq,n := t0q,n .

Theorem 4.1 (Persson-type theorem) Suppose Hypothesis 4.1 holds. Then

inf σess
(
Htq
) = lim

n→∞ inf σ
(
Htq,n

)
.

Remark 4.3 Based on the definitions of Htq,n , one observes that the sequence{
inf σ

(
Htq,n

)}
is nondecreasing. Consequently, the limit limn→∞ inf σ

(
Htq,n

)
either

exists as a finite value or diverges to +∞.

Before proving the Persson-type theorem, we need some preliminary lemmas and
notations.

Lemma 4.1 Suppose the conditions (1)−(3) in Hypothesis 4.1 are satisfied. For every
ε > 0, there exists a constant Cε such that for all e ∈ E (�) ,

sup
x∈e

| f (x)|2 ≤ ε

∫
e
p(x)

∣∣ f ′(x)
∣∣2 dx + Cε

∫
e
w(x) | f (x)|2 dx (4.1)

for every f ∈ H1(�; p, w).

Proof Since 1/p ∈ Lη (�) for some η ∈ [1,+∞] , for every ε > 0, there exists δ > 0
such that for all e ∈ E (�) and x ∈ e, one has

∫
e∩�(x;δ)

1

p(t)
dt <

ε

2
, (4.2)
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where �(x; δ) = {y ∈ � |ρ (x, y) ≤ δ } .We can assume that δ < d∗
2 . In fact, it is easy

to prove the case when η = 1 or η = +∞; for η ∈ (1,+∞) , this can be seen with the
help of the Hölder inequality. For instance, if 1/p ∈ L2 (�) , for every ε > 0, there
exists δ (ε) > 0 such that for all x ∈ �,

∫
e∩�(x;δ)

1

p(t)
dt ≤

(∫
e∩�(x;δ)

12dt
∫
e∩�(x;δ)

1

p2(t)
dt

) 1
2

< d∗ ·
(∫

e∩�(x;δ)
1

p2(t)
dt

) 1
2

<
ε

2
.

Under the condition on w, there exists c > 0 such that for all x ∈ �,

∫
�(x; δ

2 )

w(t)dt > c. (4.3)

For f ∈ H1(�; p, w) and x, y ∈ e ∈ E (�) , one has

| f (x)|2 ≤ 2 | f (y)|2 + 2 | f (x) − f (y)|2 = 2 | f (y)|2 + 2

∣∣∣∣
∫ y

x
f ′ (t) dt

∣∣∣∣
2

≤ 2 | f (y)|2 + 2
∫ y

x
p (t)

∣∣ f ′ (t)
∣∣2 dt

∫ y

x

1

p(t)
dt . (4.4)

We multiply ( 4.4) by w(y) and integrate over I (x, e) = e ∩ �(x; δ) for arbitrary
e ∈ E (�) and x ∈ e. Note that the volume of I (x, e) is no less than δ. Then

| f (x)|2
∫
I (x,e)

w(y)dy

≤ 2
∫
I (x,e)

| f (y)|2 w(y)dy + 2
∫
I (x,e)

w(y)

(∫ y

x
p (t)

∣∣ f ′ (t)
∣∣2 dt

∫ y

x

1

p(t)
dt

)
dy

≤ 2
∫
I (x,e)

| f (y)|2 w(y)dy + 2
∫
I (x,e)

w(y)dy
∫
e
p (y)

∣∣ f ′ (y)
∣∣2 dy

∫
I (x,e)

1

p(y)
dy.

(4.5)

Dividing the both sides of the last inequality from (4.5) by
∫
I (x,e) w(y)dy and letting

Cε = 2
c , one proves the statement. ��

Lemma 4.2 Suppose Hypothesis 4.1 holds. Then for every ε > 0, there exists a
constant Cε such that

∫
�

q−(x) | f (x)|2 dx ≤ ε

∫
�

p(x)
∣∣ f ′(x)

∣∣2 dx + Cε

∫
�

w(x) | f (x)|2 dx (4.6)

for all f ∈ H1(�; p, w). Moreover, the form t0q is lower semibounded.
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Proof The claim ( 4.6) is a direct consequence of Lemma 4.1 in virtue of

∫
�

q−(x) | f (x)|2 dx =
∑

e∈E(�)

∫
e
q−(x) | f (x)|2 dx

≤
(

sup
e∈E(�)

∫
e
q−(x)dx

) ∑
e∈E(�)

∥∥∥ f 2
∥∥∥
L∞(e)

.

Taking into account inequality ( 4.6) and letting ε = 1
2 , we obtain

t0q [ f ] =
∫

�

[p(x) ∣∣ f ′(x)
∣∣2 + q+(x) | f (x)|2]dx −

∫
�

q−(x) | f (x)|2 dx

≥ −C 1
2

∫
�

w(x) | f (x)|2 dx,

which implies that the form t0q is lower semibounded. ��
Remark 4.4 Suppose Hypothesis 4.1 holds. Then Lemma 4.2 also holds for the graphs
�\�(n) according to the definition of �(n).

Lemma 4.3 Suppose Hypothesis 4.1 holds. The following form

s0q [ f ] =
∫

�

[p(x) ∣∣ f ′(x)
∣∣2 + q(x) | f (x)|2]dx,

dom(s0q) =
{
f ∈ H1(�; p, w) : s0q [ f ] < ∞, f |∂� = 0

}

is lower semibounded and closed. Moreover, tq ⊂ s0q .

Proof Define

q− [ f ] := −
∫

�

q−(x) | f (x)|2 dx,
dom(q−) := { f ∈ L2

w(�) : |q− [ f ]| < ∞}.

It follows from Lemma 4.2 that the form q− is infinitesimally s0q+ bounded. It is

obvious that s0q+ is lower semibounded and closed. Applying KLMN theorem [13],
we complete the proof. ��
Remark 4.5 Suppose Hypothesis 4.1 holds. The forms

s0q,n [ f ] =
∫

�\�(n)

[p(x) ∣∣ f ′(x)
∣∣2 + q(x) | f (x)|2]dx,

dom(s0q,n) =
{
f ∈ H1(�\�(n); p, w) : s0q,n [ f ] < ∞, f |

∂
(
�\�(n)

) = 0, f |
�\�(n)∩�(n) = 0

}

are lower semibounded and closed. Moreover, tq,n ⊂ s0q,n .
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Lemma 4.4 Let s be a closed quadratic form on L2
w (�) that is bounded from below

and letH be the corresponding self-adjoint operator. Assume that there is a normalized
sequence fn in dom (s) that converges weakly to zero. Then

inf σess (H) ≤ lim inf
n→∞ s[ fn].

Proof see [10]. ��
Now we are in a position to prove the Persson-type Theorem for the operator Htq .

Proof of Theorem 4.1 Firstly, we prove that

inf σess
(
Htq
) ≥ lim

n→∞ inf σ
(
Htq,n

) =: r . (4.7)

For any λ ∈ σess
(
Htq
)
, we shall prove that λ ≥ r . From Weyl theorem, one can

choose a sequence {um}∞m=1 ⊂ dom
(
Htq
)
such that

‖um‖L2
w(�) = 1 for all m, (4.8)

um
w−→ 0 as m → ∞,∥∥Htq um − λum

∥∥
L2

w(�)
→ 0 as m → ∞.

Denote

˜�(n) := �(n) ∪
{
e ∈ E (�) : e is an edge with only one vertex v in �(n)

}
.

Then �\˜�(n) is the union of all edges which do not have vertices in �(n). Now define
functions ϕn on � such that

ϕn = 0 for x ∈ �(n), (4.9)

ϕn = 1 for x ∈ �\˜�(n), (4.10)

0 ≤ ϕn ≤ 1, (4.11)

√
p√
w

ϕ′
n bounded in �.

Let e be an edge with only one vertex ve in �(n). Without loss of generality, assume

that ve is the initial vertex of e. Then for x ∈ e, we can define ϕn (x) = 1−
∫ t(e)
x

√
w√
p dt∫

e

√
w√
p dt

.

Now denote fm,n : = ϕnum . We are going to prove that
{
fm,n

}∞
m=1 ⊂ dom(tq,n)

and as m → ∞,

tq,n
[
fm,n

] ≤ λ + o(1) (4.12)
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and ∥∥ fm,n
∥∥2
L2

w(�\�(n))
= 1 + o(1). (4.13)

We observe that for any um ∈ dom
(
Htq
)
, there exists a sequence

{
gk,m

}∞
k=1 ⊂

dom
(
t0q
)
such that ∥∥gk,m − um

∥∥
tq

→ 0 as k → ∞. (4.14)

In order to prove
{
fm,n

}∞
m=1 ∈ dom(tq,n), it is enough to prove that ϕngk,m ∈

dom
(
t0q,n

)
and

∥∥ϕngk,m − ϕnum
∥∥
tq,n

→ 0 as k → ∞. In fact, by use of the properties

of ϕn and the fact
{
gk,m

}∞
k=1 ⊂ dom

(
t0q
)

, we get
{
ϕngk,m

}∞
k=1 ⊂ dom(qn) and

∫
�\�(n)

p
∣∣∣(ϕngk,m

)′∣∣∣2 dx ≤ 2

(∫
�\�(n)

p
∣∣ϕng

′
k,m

∣∣2 dx +
∫

�\�(n)

p
∣∣ϕ′

ngk,m
∣∣2 dx

)

≤ C

(∫
�\�(n)

p
∣∣g′

k,m

∣∣2 dx +
∫

�\�(n)

∣∣gk,m∣∣2 wdx

)
,

where C is some constant, which implies that ϕngk,m ∈ dom
(
t0q,n

)
. From Lemma

4.2, it follows that

∥∥gk,m − um
∥∥
tq

= tq
[
gk,m − um

]+ (c + 1)
∫

�

w
∣∣gk,m − um

∣∣2 dx
≥ 1

2

∫
�

p
∣∣∣(gk,m − um

)′∣∣∣2 dx +
∫

�

q+
∣∣gk,m − um

∣∣2 dx
−C 1

2

∫
�

w
∣∣gk,m − um

∣∣2 dx +
∫

�

(c + 1) w
∣∣gk,m − um

∣∣2 dx,

where c > 0 is some positive constant such that tq ≥ −c. Therefore, we see from (
4.14) and Lemma 4.2 that the expressions

∫
�

p
∣∣∣(gk,m − um

)′∣∣∣2 dx,
∫

�

w
∣∣gk,m − um

∣∣2 dx and
∫

�

|q| ∣∣gk,m − um
∣∣2 dx

all tend to zero as k → ∞. Hence

∥∥ϕngk,m − ϕnum
∥∥
tq,n

=
∫

�\�(n)

p
∣∣∣(ϕn

(
gk,m − um

))′∣∣∣2 + (q + (cn + 1) w)
∣∣ϕn
(
gk,m − um

)∣∣2 dx
≤ C

(∫
�

p
∣∣∣(gk,m − um

)′∣∣∣2 dx +
∫

�

w
∣∣gk,m − um

∣∣2 dx
)

+
∫

�

(|q| + (cn + 1) w)
∣∣gk,m − um

∣∣2 dx → 0, as k → ∞,
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where cn > 0 are positive constants such that tq,n ≥ −cn . This proves
{
fm,n

}∞
m=1 ⊂

dom(tq,n).

Next, we aim to prove ( 4.12). In virtue of the properties of {um}∞m=1 ,

tq [um] − λ = (Htq um, um) − λ ≤ ∥∥Htq um
∥∥
L2

w(�)
‖um‖L2

w(�) − λ ‖um‖L2
w(�)

≤ ∥∥Htq um − λum
∥∥
L2

w(�)
,

and thus
tq [um] ≤ λ + o(1). (4.15)

Therefore, it follows from Lemma 4.2 that as m → ∞,

∫
�

p
∣∣u′

m

∣∣2 dx ≤ λ +
∫

�

q− |um |2 dx + o(1) (4.16)

≤ λ + 1

2

∫
�

p
∣∣u′

m

∣∣2 dx + C 1
2

∫
�

w |um |2 dx + o(1) (4.17)

which implies that ∫
�

p
∣∣u′

m

∣∣2 dx ≤ 2
(
λ + C 1

2
+ o(1)

)
. (4.18)

We also observe that for fixed n,

∫
�(n)

|um |2 wdx → 0 as m → ∞. (4.19)

Let eo be an edge incident to o. Then um(o) = um(t) − ∫ to u′
m(s)ds for t ∈ eo.

Multiplying the both sides of the last equality by w(t) and integrating over eo, we get:

um(o)
∫
eo

w(t)dt =
∫
eo

w(t)um(t)dt −
∫
eo

w(t)
∫ t

0
u′
m(s)dsdt,

then

|um(o)|
∫
eo

w(t)dt ≤
∣∣∣∣
∫
eo

w(t)um(t)dt

∣∣∣∣+
∣∣∣∣
∫
eo

w(t)
∫ t

0
u′
m(s)dsdt

∣∣∣∣
≤
(∫

eo
w(t)dt

∫
eo

w(t) |um(t)|2 dt
) 1

2

+
(∫

eo
w(t)dt

∫
eo

1

p(t)
dt
∫
eo

p(t)
∣∣u′

m(t)
∣∣2 dt

) 1
2

.

Therefore, it follows from ( 4.8) and ( 4.18) that {um(o)} is bounded. Moreover, for
any x1, x2 ∈ �(n)

|um (x1) − um (x2)| =
∣∣∣∣
∫ x2

x1
u′
m (t) dt

∣∣∣∣ ≤
(∫ x2

x1

1

p
dt ·

∫ x2

x1
p
∣∣u′

m

∣∣2 dx
) 1

2

. (4.20)
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Relation (4.20) together with ( 4.18) and the boundedness of {um(o)} yields that {um}
are uniformly bounded and uniformly equicontinuous on �(n). Then it follows from
Arzela-Ascoli theorem that there is a subsequence

{
umk

}
, which is convergent in

L2
w(�(n)). Since umk

w−→ 0 as k → ∞, the limit function must be zero, that is∥∥umk

∥∥
L2

w(�(n))
→ 0 as k → ∞. But then the original sequence itself must have this

property, since otherwise we could get a contradiction by applying the arguments
above to a suitable subsequence. Hence ( 4.19) is proved.

By use of the definition of ϕn, ( 4.18) and ( 4.19), one has

∫
�\�(n)

p
∣∣(ϕnum)′

∣∣2 dx
≤
∫

�\�(n)

p
∣∣ϕnu

′
m

∣∣2 dx + 2
∫

�\�(n)

p
∣∣ϕnu

′
m

∣∣ ∣∣ϕ′
num

∣∣ dx +
∫

�\�(n)

p
∣∣ϕ′

num
∣∣2 dx

≤
∫

�\�(n)

p
∣∣u′

m

∣∣2 dx + C

(∫
˜�(n)

p
∣∣u′

m

∣∣2 dx
∫
˜�(n)

|um |2 wdx

) 1
2 + C

∫
˜�(n)

|um |2 wdx

≤
∫

�

p
∣∣u′

m

∣∣2 dx + o(1) as m → ∞. (4.21)

From Lemma 4.1, it follows that for every ε > 0, there exists a constant Cε such that

∫
˜�(n)

|q| |um |2 dx =
∑

e∈E
(̃
�(n)

)
∫
e
|q| |um |2 dx ≤

⎛
⎜⎝ sup

e∈E
(̃
�(n)

)
∫
e
|q| dt

⎞
⎟⎠ ∑

e∈E
(̃
�(n)

)
∥∥u2m∥∥L∞(e)

≤ εCn

∫
˜�(n)

p
∣∣u′

m

∣∣2 dx + CεCn

∫
˜�(n)

w |um |2 dx,

where Cn := sup
e∈E

(̃
�(n)

) ∫
e |q| dt . This together with ( 4.18) and ( 4.19) yields that

∫
˜�(n)

|q| |um |2 dx = o(1) as m → ∞.

Therefore,

∫
�\�(n)

q |ϕnum |2 dx =
∫
˜�(n)\�(n)

q |ϕnum |2 dx +
∫

�\˜�(n)

q |um |2 dx

=
∫
˜�(n)

q |ϕnum |2 dx +
∫

�

q |um |2 dx −
∫
˜�(n)

q |um |2 dx

=
∫

�

q |um |2 dx + o(1) as m → ∞. (4.22)

Relation (4.22) together with ( 4.15) and ( 4.21) implies ( 4.12).
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To prove ( 4.13), we note from ( 4.9), ( 4.10), ( 4.11) and ( 4.19) that

0 ≤
∫

�

|um |2 wdx −
∫

�\�(n)

|ϕnum |2 wdx =
∫

�

|um |2 wdx −
∫

�

|ϕnum |2 wdx

=
∫

�

|um |2 wdx −
[∫

�\˜�(n)

|ϕnum |2 wdx +
∫
˜�(n)

|ϕnum |2 wdx

]

=
∫
˜�(n)

|um |2 wdx −
∫
˜�(n)

|ϕnum |2 wdx → 0 as m → ∞.

Hence ( 4.13) follows from ( 4.8).
It follows from the definition of r that for any given number ε > 0, there exists a

positive number N such that for all n > N ,

inf σ
(
Htq,n

) ≥ r − ε, i.e., inf
f ∈ dom(tq,n)

tq,n [ f ]

‖ f ‖2
L2

w(�\�(n))

≥ r − ε.

This yields that for every f ∈ dom
(
tq,n
)
,

tq,n [ f ] ≥ (r − ε) ‖ f ‖2L2
w(�\�(n))

.

Combining this with ( 4.12) and ( 4.13) we immediately get

(r − ε) [1 + o(1)] ≤ tq,n
[
fm,n

] ≤ λ + o(1) as m → ∞.

Since ε is arbitrary, ( 4.7) is proved.
The reverse inequality follows from Lemma 4.4. In fact, we can pick a sequence of

functions fn ∈ dom
(
tq,n
)
vanishing on �(n) and satisfying ‖ fn‖2L2

w(�)
= 1 such that

∣∣inf σ
(
Htq,n

)− tq,n [ fn]
∣∣ ≤ 1

n

for all n ∈ N. Then { fn} converges weakly to zero. Moreover, by construction

lim
n→∞tq [ fn] = lim

n→∞tq,n[ fn]= lim
n→∞ inf σ

(
Htq,n

)
.

Now Lemma 4.4 gives the desired inequality. ��
Remark 4.6 With slightlymodifications, Theorem4.1 can be extended to the casewhen
we only assume 1/p, w ∈ L1

loc (�) and q ≥ 0 without the restriction infe∈E(�) |e| =
d∗ > 0.

Remark 4.7 Theorem 4.1 admits an obvious extension to the following general case.
Suppose Hypothesis 4.1 holds. Define



75 Page 16 of 17 Y. Liu et al.

sq [ f ] =
∫

�

[p(x) ∣∣ f ′(x)
∣∣2 + q(x) | f (x)|2]dx, (4.23)

sq,n [ f ] =
∫

�\�(n)

[p(x) ∣∣ f ′(x)
∣∣2 + q(x) | f (x)|2]dx (4.24)

on the respective domains

dom(sq) = { f ∈ H1(�; p, w) : |q [ f ]| < ∞},
dom(sq,n) = { f ∈ H1(�\�(n); p, w) : |qn [ f ]| < ∞}.

By a similar proof to that of Lemma 4.3, one has sq and sq,n are all semibounded and
closed; respectively, denote Hsq and Hsq,n the corresponding self-adjoint operators.
Then

inf σess
(
Hsq
) = lim

n→∞ inf σ
(
Hsq,n

)
.
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19. Lenz, D., Stollmann, P., Veselić, I.: The Allegretto–Piepenbrink theorem for strongly local Dirichlet
forms. Doc. Math. 14, 167–189 (2009)

20. Persson, A.: Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator.
Math. Scand. 8, 143–153 (1960)

21. Pinsky, R.G.: Positive Harmonic Functions and Diffusion. Cambridge Stud. Adv. Math., vol. 45,
Cambridge University Press, Cambridge (1995)

22. Prashanth, S., Lucia, M.: Criticality theory for Schr ödinger operators with singular potential. J. Differ.
Equ. 265, 3400–3440 (2018)

23. Pokornyi, Y.V., Pryadiev, V.L.: Some problems of the qualitative Sturm–Liouville theory on a spatial
network. Russian Math. Surv. 59, 515–552 (2004)

24. Pokornyi, Y.V., Pryadiev, V.L.: The qualitative Sturm–Liouville theory on spatial networks. J. Math.
Sci. 119, 788–835 (2004)

25. Solomyak, M.: On the spectrum of the Laplacian on regular metric trees. Waves Random Media 14,
155–171 (2004)

26. von Below, J., Mugnolo, D.: The spectrum of the Hilbert space valued second derivative with general
self-adjoint boundary conditions. Linear Algebra Appl. 439, 1792–1814 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.


	Spectral properties of Sturm–Liouville operators on infinite metric graphs
	Abstract
	1 Introduction
	2 Preliminaries on metric graphs
	3 Allegretto–Piepenbrink-type theorem on metric graphs
	4 Persson-type theorem on metric graphs
	References




