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Abstract
If S denotes the class of all univalent functions in the open unit disk D :=
{z ∈ C : |z| < 1} with the form f (z) = z + ∑∞

n=2 anz
n , then the logarithmic coeffi-

cients γn of f ∈ S are defined by

log
f (z)

z
= 2

∞∑

n=1

γn( f )z
n, z ∈ D.

The logarithmic coefficients were brought to the forefront by I.M. Milin in the 1960’s
as a method of calculating the coefficients an for f ∈ S. He concerned himself
with logarithmic coefficients and their role in the theory of univalent functions, while
in 1965 Bazilevič also pointed out that the logarithmic coefficients are crucial in
problems concerning the coefficients of univalent functions. In this paper we estimate
the bounds for the logarithmic coefficients |γn( f )| when f belongs to the classB(α, β)

of Bazilevič function of type (α, β).
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1 Preliminaries

LetA be the class of analytic functions f defined in the open unit disk D := {z ∈ C :
|z| < 1}, and normalized by the conditions f (0) = 0 and f ′(0) = 1. If f ∈ A, then
f has the following Taylor series

f (z) = z +
∞∑

n=2

anz
n .

Let S be the subclass of A consisting of all univalent (i.e., one-to-one) functions
in D. A function f ∈ A is said to be starlike function if f satisfies the condition
Re

(
z f ′(z)/ f (z)

)
> 0 for all z ∈ D. Similarly, a function f ∈ A is said to be

convex function if f satisfies the condition Re
(
1 + z f ′′(z)/ f ′(z)

)
> 0 for z ∈ D.

A function f ∈ A is said to be close-to-convex if there exists a real number θ and
a function g ∈ S∗ such that Re

(
eiθ z f ′(z)/g(z)

)
> 0 in D. We denote by S∗, C and

K, the classes of starlike functions, convex functions and close-to-convex functions,
respectively. With the class S being of the first priority, its subclasses such as S∗,
C and K have been extensively studied in the literature and they appear in different
contexts (see the books [8, 11, 13].)

A function f ∈ A is called Bazilevič functions of type (α, β) for α > 0 and β ∈ R

if f is given by

f (z) =
[

(α + iβ)

∫ z

0
gα(t) p(t) t iβ−1dt

]1/(α+iβ)

, z ∈ D,

where g ∈ S∗ and p is an analytic function in D with p(0) = 1, and Re p(z) > 0 for
all z ∈ D. It is well-know that this definition is equivalent to

Re

[
z f ′(z)
f (z)

(
f (z)

g(z)

)α (
f (z)

z

)iβ
]

> 0, z ∈ D,

for g ∈ S∗. We denote byB(α, β) the class of Bazilevič function of type (α, β). In [3],
Bazilevič proved that B(α, β) ⊂ S for α > 0 and β ∈ R. For an appropriate choice
of the parameters α and β one can obtain the subfamilies of B(α, β). For example:

(i) the class B(α, 0) =: B(α) is called the Bazilevič function of type α, see [3];
(ii) the class B(1) =: K;
(iii) if we choose g(z) = z and β = 0, then the class B(α, β) reduces to the class

B1(α) of Bazilevič functions with logarithmic growth;
(iv) the class B1(0) = S∗ and the class B1(1) =: R, i.e. the well-known class of

functions whose derivative has positive real part in D.

A Bazilevič function form belongs to the largest known subclass of S which has
specific expressions. Indeed, the following relations are well-known (see [3, 8, 11,
13]):

C ⊂ S∗ ⊂ K ⊂ B(α) ⊂ B(α, β) ⊂ S.
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2 Introduction to the logarithmic coefficients problem

The logarithmic coefficients γn of f ∈ S are defined by the formula

log
f (z)

z
= 2

∞∑

n=1

γn( f )z
n z ∈ D, (2.1)

where log 1 = 0, and we will simply write γn( f ) = γn when there is no confusion.
These coefficients play an important role for various estimates in the theory of univalent
functions, and some authors use γn in place of 2γn . Next note that differentiating (2.1),
and equating the corresponding coefficients we get

γ1 = a2
2

, γ2 = 1

2

(

a3 − a22
2

)

, γ3 = 1

2

(

a4 − a2a3 + a32
3

)

.

For example, the logarithmic coefficients for the Koebe function κ(z) := z/(1 −
eiθ z)2 ∈ S are γn(κ) = e(inθ)/n, and it is well-known that the Koebe function is the
extremal for many basic functionals defined on S. Consequently, it could expected
that if f ∈ S, then |γn| ≤ n holds for n ≥ 1. However, this is not true.

If f ∈ S, then |γ1| ≤ 1 and |γ2| ≤ 1

2
+ e−2 = 0.635 . . . (using the Fekete-Szegő

inequality), see [8, Theorem 3.8].
The upper bound of the logarithmic coefficients γn for f ∈ S appears to be more

harder and non-significant for n ≥ 3. But for f ∈ S∗, the inequality |γn| ≤ 1/n and
for f ∈ C, the inequality |γn| ≤ 1/2n holds (see [1, 8]). Attempting to extend this
inequality for the classK is also more difficult because the inequality |γn| ≤ 1/n fails
when n = 2 for f ∈ K, see [10].

Recently, Ponnusamy et al. [14] studied on the problem related to the logarithmic
coefficients bounds for certain subfamilies of univalent functions, while in [15] they
also determined the sharp bounds for the inverse logarithmic coefficients for the class
S and some of its important geometrically characterized subclasses.

In a series of papers in the 1960’s I.M. Milin drew attention to the logarithmic
coefficients as a means of estimating the coefficients an for f ∈ S, and he concerned
himself with logarithmic coefficients and their role in the theory of univalent functions.
According to Milin, |γn| for f ∈ S cannot be much bigger than 1/n in an average
sense. This result is known as Milin’s lemma and holds a prominent place in the
history:

Milin Lemma. [8, p. 151] For each f ∈ S,
n∑

k=1

k|γk |2 ≤
n∑

k=1

1

k
+ δ, for δ < 0.312,

where δ is called the Milin constant and it cannot be reduced to zero. This lemma and
the third Lebedev-Milin inequality leads to the remarkable bound |cn| < eδ/2 < 1.17
for the coefficients of oddunivalent function h(z) = c1z+c2z2+. . . (bymore carefully
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estimation I.M.Milin improved the estimate to 1.14). However,Milin conjectured that:

Milin’s Conjecture. For each f ∈ S
n∑

k=1

k(n − k + 1)|γk |2 ≤
n∑

k=1

(n − k + 1)
1

k
, for n ∈ N. (2.2)

The equality holds in (2.2) only for the Koebe function.
In 1984 Louis de Branges [7] proved this conjecture asserts that δ = 0 in an

average sense (see also [9], and the inequality (2.2)) is known as a de Branges’s
inequality. The de Brange’s inequality is a source of many interesting inequalities
involving logarithmic coefficients of univalent function. In [4, 5] de Branges explored
the problem of logarithmic coefficients and came up with the following inequality for
the class S:
Theorem A If f ∈ S, then

∞∑

k=1

k

∣
∣
∣
∣γk − 1

k

∣
∣
∣
∣

2

≤ 1

2
log

1

α
, (2.3)

where α = lim
r→1

(1 − r2)M(r , f ) is the Hayman index of f and the positive real axis

is the direction of maximal growth.

The proof of the inequality (2.3) is based on Milin’s reformulation of the Grunsky
inequalities (see [8]). Bazilevič also estimated the value

∑∞
k=1 k|γk |2rk which after

multiplication by π is equal to the area of the image of the disk |z| < r < 1 mapped
by the function log( f (z)/z), f ∈ S. He suggested in his review of A.Z. Grinshpan’s
thesis a conjecture that this value does not exceed log

[
1/(1 − r2)

]
for all 0 < r < 1.

After two summations by parts,Milin’s inequality (2.2) leads to the following result
as one of its consequences (see [2, 12]):

∞∑

k=1

k|γk |2rk ≤
∞∑

k=1

rk

k
= log

1

1 − r
, 0 ≤ r < 1. (2.4)

Using the relation (2.4), Ye [16] proved the following logarithmic coefficient bounds
for f ∈ B(α):

Theorem B [16, Theorem 1] If f ∈ B(α), then we have

|γn| ≤ A1n
−1(1 + α) log(1 + n), n ∈ N,

where A1 is a constant. The exponent −1 is the best possible.

Motivated by the above investigations, in this article we study the bound of loga-
rithmic coefficients γn for the class of Bazilevič function of type (α, β). We will prove
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our main result using the relation (2.4) and two previous results presented the next
section. We begin by stating our main result and useful lemmas, while the proof of the
main result will appear in Sect. 4.

3 Main results

Theorem 1 Let f ∈ B(α, β), with α > 0 and β ∈ R. Then the logarithmic coefficients
γn of f satisfy the inequality

|γn| < C(α, β) n−1 log(1 + n), for n ∈ N,

where C(α, β) is an absolute constant given by

C(α, β) = e

2

[
6

log 2
+ 4

(
α + |β| + |α + iβ| )

(
1

log 2
+ 2

)

+ 2
√
2

√
1

1 + log 2
+ 2 ·

√
[(

α + |α + iβ| )2 + 2 |β| (α + |α + iβ| )
] (

1

2 log 2
+ 4

)

+ |β|2
2 log 2

]

.

(3.1)

The exponent −1 is the best possible.

Next we present three useful lemmaswhich are themain tools to prove our theorem.

Lemma 1 [16, Lemma 1] Let f ∈ S. Then, for z = reiθ , 1/2 ≤ r < 1, we have

(i) L1 = 1

2π

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

2

dθ < 1 + 4

1 − r
log

1

1 − r
,

and

(i i) L2 = 1

2π

∫ r

1/2

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

2

dθdr < 1 + 2 log
1

1 − r2
.

Lemma 2 Let f ∈ B(α, β) with α > 0, β ∈ R and g ∈ S∗. Then, for z = reiθ ,
1/2 ≤ r < 1, we have

N1 = 1

2π

∣
∣
∣
∣
∣

∫ 2π

0

z f ′(z)
f (z)

exp

(

i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

dθ

∣
∣
∣
∣
∣

≤ 3 + 2
(
α + |β| + |α + iβ|)

(

1 + 2 log
1

1 − r2

)

. (3.2)
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Proof Set w(z) := z f ′(z)
f (z)

= u(z) + iv(z) , that is Rew = u, Imw = v. Since

f ∈ B(α, β) ⊂ S, the function w is analytic in D, hence from the Cauchy-Riemann
relations we easily get the well-known formula

∂w(z)

∂r
= ∂u(z)

∂r
+ i

∂v(z)

∂r
= 1

r

(
∂v(z)

∂θ
− i

∂u(z)

∂θ

)

, z = reiθ . (3.3)

According to (3.3), for any 1/2 ≤ r0 ≤ r < 1 and θ ∈ [0, 2π ] we have

w
(
reiθ

)
− w

(
r0e

iθ
)

=
∫ r

r0

∂w(z)

∂r
dr =

∫ r

r0

1

r

(
∂v(z)

∂θ
− i

∂u(z)

∂θ

)

dr .

Since z = reiθ , using the triangle inequality in the above relation, one can obtain

N1 = 1

2π

∣
∣
∣
∣
∣

∫ 2π

0

(
w

(
r0e

iθ
)

+ w
(
reiθ

)
− w

(
r0e

iθ
))

exp

(

i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

dθ

∣
∣
∣
∣
∣

≤ 1

2π

∣
∣
∣
∣
∣

∫ 2π

0
w

(
r0e

iθ
)
exp

(

i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

dθ

∣
∣
∣
∣
∣

+ 1

2π

∣
∣
∣
∣
∣

∫ r

r0

1

r

∫ 2π

0

(
∂v(z)

∂θ
− i

∂u(z)

∂θ

)

exp

(

i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

dθdr

∣
∣
∣
∣
∣

= N11 + N12, (3.4)

where

N11 := 1

2π

∣
∣
∣
∣
∣

∫ 2π

0
w

(
r0e

iθ
)
exp

(

i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

dθ

∣
∣
∣
∣
∣

and

N12 := 1

2π

∣
∣
∣
∣
∣

∫ r

r0

∫ 2π

0

1

r

(
∂v(z)

∂θ
− i

∂u(z)

∂θ

)

exp

(

i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

dθdr

∣
∣
∣
∣
∣
.

Next, we find convenient upper bounds for the above two integrals N11 and N12.
First, setting r0 = 1/2, from the distortion theorem for the class S [6] it follows

that

N11 ≤ 1

2π

∫ 2π

0

∣
∣
∣w

(
r0e

iθ
)∣
∣
∣ dθ ≤ max

θ∈[0,2π ]

∣
∣
∣w

(
r0e

iθ
)∣
∣
∣ ≤ 1 + r0

1 − r0
= 3. (3.5)
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Secondly, if we denote

I1(z) := exp

(

i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

= exp

(

i arg

{(
f (z)

z

)α+iβ (
z

g(z)

)α
})

= exp

(

i arg

(
f (z)

z

)α+iβ
− i arg

(
g(z)

z

)α
)

,

a simple computation shows that

∣
∣
∣
∣
∂ I1(z)

∂θ

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
I1

∂

∂θ

(

i arg

(
f (z)

z

)α+iβ

− i arg

(
g(z)

z

)α
)∣

∣
∣
∣
∣

=
∣
∣
∣
∣i(α + iβ)

∂

∂θ

(

arg
f (z)

z

)

− iα
∂

∂θ

(

arg
g(z)

z

)∣
∣
∣
∣ , (3.6)

hence

∣
∣
∣
∣
∂ I1(z)

∂θ

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∂

∂θ
arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
}∣

∣
∣
∣
∣
. (3.7)

Since

Re
z f ′(z)
f (z)

= 1 + ∂

∂θ

(

arg
f (z)

z

)

,

and similarly for the function g, from (3.6) and the triangle’s inequality, we deduce
that

∣
∣
∣
∣
∂ I1(z)

∂θ

∣
∣
∣
∣ =

∣
∣
∣
∣(α + iβ)

(

Re
z f ′(z)
f (z)

− 1

)

− α

(

Re
zg′(z)
g(z)

− 1

)∣
∣
∣
∣

=
∣
∣
∣
∣(α + iβ)Re

z f ′(z)
f (z)

− α Re
zg′(z)
g(z)

− iβ

∣
∣
∣
∣

≤ |α + iβ|
∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣ + α

∣
∣
∣
∣
zg′(z)
g(z)

∣
∣
∣
∣ + |β|. (3.8)

Using the above notation for I1, we can rewrite the integral N12 in the form

N12 = 1

2π

∣
∣
∣
∣

∫ r

r0

∫ 2π

0

1

r

(
∂v(z)

∂θ
− i

∂u(z)

∂θ

)

I1(z)dθdr

∣
∣
∣
∣ .
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If we use an integration by parts in the formula of N12, it follows that

N12 = 1

2π

∣
∣
∣
∣
∣

∫ r

r0

∫ 2π

0

1

r

(
∂v(z)

∂θ
− i

∂u(z)

∂θ

)

I1(z)dθdr

∣
∣
∣
∣
∣

= 1

2π

∣
∣
∣
∣
∣

∫ r

r0

1

r

[(
I1(z)

(
v(z) − iu(z)

))
∣
∣
∣
∣

θ=2π

θ=0
−

∫ 2π

0

(
v(z) − iu(z)

) ∂ I1(z)

∂θ
dθ

]

dr

∣
∣
∣
∣
∣

= 1

2π

∣
∣
∣
∣
∣
0 +

∫ r

r0

1

r

∫ 2π

0
iw(z)

∂ I1(z)

∂θ
dθdr

∣
∣
∣
∣
∣
≤ 1

2π

∫ r

r0

1

r

∫ 2π

0
|w(z)|

∣
∣
∣
∣
∂ I1(z)

∂θ

∣
∣
∣
∣ dθdr ,

and using the inequality (3.8) together with the fact that r ≥ r0 = 1/2, we have

N12 ≤ 1

2π

∫ r

r0

1

r

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

[

|α + iβ|
∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣ + α

∣
∣
∣
∣
zg′(z)
g(z)

∣
∣
∣
∣ + |β|

]

dθdr

≤ 2

2π

[

|α + iβ|
∫ r

r0

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

2

dθdr + α

∫ r

r0

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

∣
∣
∣
∣
zg′(z)
g(z)

∣
∣
∣
∣ dθdr

+|β|
∫ r

r0

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣ dθdr

]

.

Since f , g ∈ S, by using the Schwarz’s inequality for double integrals for the last two
integrals and applying the inequality (ii) of Lemma 1 for the first integral, the above
inequality leads to

N12 < 2|α + iβ|
(

1 + 2 log
1

1 − r2

)

+ 2α

2π

[∫ r

r0

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

2

dθdr ·
∫ r

r0

∫ 2π

0

∣
∣
∣
∣
zg′(z)
g(z)

∣
∣
∣
∣

2

dθdr

]1/2

+2|β|
2π

[∫ r

r0

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

2

dθdr ·
∫ r

r0

∫ 2π

0
dθdr

]1/2

.

Using again the inequality (ii) of Lemma 1, we find that

N12 < 2|α + iβ|
(

1 + 2 log
1

1 − r2

)

+ 2α

[(

1 + 2 log
1

1 − r2

)2
]1/2

+ L

= 2 (|α + iβ| + α)

(

1 + 2 log
1

1 − r2

)

+ L,
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where

L := 2|β|
2π

[∫ r

r0

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

2

dθdr ·
∫ r

r0

∫ 2π

0
dθdr

]1/2

= 2|β|
[

1

2π

∫ r

r0

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

2

dθdr · 1

2π

∫ r

r0

∫ 2π

0
dθdr

]1/2

.

For the above first integral, according to the inequality (ii) of Lemma 1, we have

1

2π

∫ r

r0

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

2

dθdr < 1 + 2 log
1

1 − r2
,

while straight computation shows that the value of the second integral is

1

2π

∫ r

r0

∫ 2π

0
dθdr = r − r0 = r − 1

2
< 1, for

1

2
≤ r < 1.

Since the right-hand sides of the above two inequalities are positive numbers, we
finally get

L < 2|β|
(

1 + 2 log
1

1 − r2

)1/2

< 2|β|
(

1 + 2 log
1

1 − r2

)

,

therefore

N12 ≤ 2 (|α + iβ| + α + |β|)
(

1 + 2 log
1

1 − r2

)

. (3.9)

From the relation (3.4) combined with the inequalities (3.5) and (3.9), we get the
desired result (3.2). ��
Lemma 3 Let f ∈ B(α, β) with α > 0, β ∈ R and g ∈ S∗. Then, for z = reiθ ,
1/2 ≤ r < 1, we have

N2 = 1

2π

∣
∣
∣
∣
∣

∫ 2π

0

z f ′(z)
f (z)

exp

(

2i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

einθdθ

∣
∣
∣
∣
∣

< 2

(
1

n2
+ 2

n
log

1

1 − r2

)1/2 ([(
α + |α + iβ|)2 + 2|β|(α + |α + iβ|)

]
·

(

1 + 4

1 − r
log

1

1 − r

)

+ |β|2
)1/2

.
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Proof From the formula (2.1) and using the fact that eimθ = 1

im

∂eimθ

∂θ
, m ∈ C, since

z = reiθ we get

einθ z f ′(z)
f (z)

= einθ

(

1 + z
d

dz
log

f (z)

z

)

= einθ + 2
∞∑

k=1

kγkr
kei(n+k)θ

= 1

i

∂

∂θ

(
einθ

n
+ 2

∞∑

k=1

kγkr
k e

i(n+k)θ

n + k

)

= 1

i

∂

∂θ
G(r , θ), (3.10)

where

G(r , θ) := einθ

n
+ 2

∞∑

k=1

kγkr
k e

i(n+k)θ

n + k
. (3.11)

Setting

I2(z) := exp

(

2i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

,

from (3.10), we obtain

N2 = 1

2π

∣
∣
∣
∣

∫ 2π

0

z f ′(z)
f (z)

einθ I2(z)dθ

∣
∣
∣
∣ = 1

2π

∣
∣
∣
∣

∫ 2π

0

1

i

∂

∂θ
G(r , θ)I2(z)dθ

∣
∣
∣
∣ ,

integrating by parts the integral N2 and we get

N2 = 1

2π

∣
∣
∣
∣
∣

(
G(r , θ)I2(z)

)∣
∣
∣
∣

θ=2π

θ=0
−

∫ 2π

0
G(r , θ)

∂

∂θ

(

2i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

dθ

∣
∣
∣
∣
∣

= 1

2π

∣
∣
∣
∣
∣
0 − 2i

∫ 2π

0
G(r , θ)

∂

∂θ

(

arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})

dθ

∣
∣
∣
∣
∣

≤ 2

2π

∫ 2π

0
|G(r , θ)|

∣
∣
∣
∣
∣

∂

∂θ

(

arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})∣

∣
∣
∣
∣
dθ.

Using the Schwarz’s inequality it follows that

N2 ≤ 2

[
1

2π

∫ 2π

0
|G(r , θ)|2 dθ

]1/2

·
⎡

⎣ 1

2π

∫ 2π

0

∣
∣
∣
∣
∣

∂

∂θ

(

arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})∣

∣
∣
∣
∣

2

dθ

⎤

⎦

1/2

= 2 N1/2
21 N1/2

22 , (3.12)
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where

N21 := 1

2π

∫ 2π

0
|G(r , θ)|2 dθ, (3.13)

and

N22 := 1

2π

∫ 2π

0

∣
∣
∣
∣
∣

∂

∂θ

(

arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})∣

∣
∣
∣
∣

2

dθ. (3.14)

Next, we find the required upper bounds for the both integrals N21 and N22 defined
by (3.13) and (3.14).

First, we evaluate the integral N21 by using the value of G(r , θ) given by (3.11),
that is

N21 = 1

2π

∫ 2π

0
|G(r , θ)|2 dθ = 1

2π

∫ 2π

0

∣
∣
∣
∣
∣

einθ

n
+ 2

∞∑

k=1

kγkr
k e

i(n+k)θ

n + k

∣
∣
∣
∣
∣

2

dθ,

and using the Parseval-Gutzmer formula, since 2kn ≤ (k + n)2, we get

N21 = 1

n2
+ 4

∞∑

k=1

k2|γk |2r2k 1

(n + k)2
≤ 1

n2
+ 2

n

∞∑

k=1

k|γk |2r2k .

Consequently, the inequality (2.4) leads to

N21 ≤ 1

n2
+ 2

n
log

1

1 − r2
. (3.15)

Secondly, from the relation (3.14), that is

N22 = 1

2π

∫ 2π

0

∣
∣
∣
∣
∣

∂

∂θ

(

arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
})∣

∣
∣
∣
∣

2

dθ,

using (3.7) and (3.8), we have

N22 = 1

2π

∫ 2π

0

[

|α + iβ|
∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣ + α

∣
∣
∣
∣
zg′(z)
g(z)

∣
∣
∣
∣ + |β|

]2
dθ

≤ |α + iβ|2
2π

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

2

dθ + α2

2π

∫ 2π

0

∣
∣
∣
∣
zg′(z)
g(z)

∣
∣
∣
∣

2

dθ + |β|2
2π

∫ 2π

0
dθ

+ 2α|α + iβ|
2π

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣

∣
∣
∣
∣
zg′(z)
g(z)

∣
∣
∣
∣ dθ + 2α|β|

2π

∫ 2π

0

∣
∣
∣
∣
zg′(z)
g(z)

∣
∣
∣
∣ dθ

+ 2|α + iβ||β|
2π

∫ 2π

0

∣
∣
∣
∣
z f ′(z)
f (z)

∣
∣
∣
∣ dθ.
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Applying Schwarz’s inequality in the 4th, 5th and 6th terms of the above inequality and
using the inequality (i) of Lemma 1, we get

N22 <
(
|α + iβ|2 + α2 + 2α|α + iβ|

) (

1 + 4

1 − r
log

1

1 − r

)

+ |β|2

+ 2
(
α|β| + |β||α + iβ|

) (

1 + 4

1 − r
log

1

1 − r

)1/2

.

Using the fact that

1 + 4

1 − r
log

1

1 − r
> 1,

it follows

N22 <
[(

α + |α + iβ|
)2 + 2|β|

(
α + |α + iβ|

)] (

1 + 4

1 − r
log

1

1 − r

)

+ |β|2.
(3.16)

Finally, from (3.12), using the inequalities (3.15) and (3.16), we conclude that

N2 ≤ 2 N1/2
21 N1/2

22 < 2

(
1

n2
+ 2

n
log

1

1 − r2

)1/2 ([(
α + |α + iβ|)2 + 2|β|(α + |α + iβ|)

]
·

(

1 + 4

1 − r
log

1

1 − r

)

+ |β|2
)1/2

,

and the proof of the lemma is complete. ��

4 Proof of main result

Proof of Theorem 1 If we suppose that f ∈ B(α, β), then by the definition of the class
B(α, β) we have

Re

[
z f ′(z)
f (z)

(
f (z)

g(z)

)α (
f (z)

z

)iβ
]

> 0, z ∈ D,

for α > 0, β ∈ R, and g ∈ S∗. Setting

h(z) := z f ′(z)
f (z)

(
f (z)

g(z)

)α (
f (z)

z

)iβ

, z ∈ D, (4.1)

it follows that Reh(z) > 0 for all z ∈ D, and we also have

h(z) = 2Re h(z) − h(z), z ∈ D. (4.2)
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From (2.1), we get

z f ′(z)
f (z)

= 1 + z

(

log
f (z)

z

)′
= 1 + 2

∞∑

n=1

nγnz
n,

then

2nγn = 1

2π i

∫

|z|=r

z f ′(z)
f (z)

z−(n+1)dz, n = 1, 2, . . . ,

where the sense of the curve |z| = r is the direct (trigonometric) one, and for z = reiθ

the above relation becomes

2n|γn|rn = 1

2π

∣
∣
∣
∣

∫ 2π

0

z f ′(z)
f (z)

e−inθdθ

∣
∣
∣
∣ .

Using the relations (4.1) and (4.2), it follows that

2n|γn|rn = 1

2π

∣
∣
∣
∣
∣

∫ 2π

0
h(z)

(
g(z)

f (z)

)α (
z

f (z)

)iβ

e−inθdθ

∣
∣
∣
∣
∣

≤ 1

2π

∣
∣
∣
∣
∣

∫ 2π

0
2 Re h(z)

(
g(z)

f (z)

)α (
z

f (z)

)iβ

e−inθdθ

∣
∣
∣
∣
∣

+ 1

2π

∣
∣
∣
∣
∣

∫ 2π

0
h(z)

(
g(z)

f (z)

)α (
z

f (z)

)iβ

e−inθdθ

∣
∣
∣
∣
∣

≤ 1

2π

∫ 2π

0
2 Re h(z)

∣
∣
∣
∣
∣

(
g(z)

f (z)

)α (
z

f (z)

)iβ
∣
∣
∣
∣
∣
dθ

+ 1

2π

∣
∣
∣
∣
∣

∫ 2π

0
h(z)

(
g(z)

f (z)

)α(
z

f (z)

)iβ

einθdθ

∣
∣
∣
∣
∣

= J1 + J2, (4.3)

where

J1 := 1

π

∫ 2π

0
Re h(z)

∣
∣
∣
∣
∣

(
g(z)

f (z)

)α (
z

f (z)

)iβ
∣
∣
∣
∣
∣
dθ (4.4)

and

J2 := 1

2π

∣
∣
∣
∣
∣

∫ 2π

0
h(z)

(
g(z)

f (z)

)α (
z

f (z)

)iβ

einθdθ

∣
∣
∣
∣
∣
. (4.5)
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Now, we determine the upper bounds for the both integrals J1 and J2 defined in
(4.4) and (4.5).

Since Re h(z) > 0, z ∈ D, we have J1 > 0. Therefore, from (4.4) and (4.1), it
follows that

J1 = 1

π

∣
∣
∣
∣

∫ 2π

0
Re h(z)

∣
∣
∣
∣
∣

(
g(z)

f (z)

)α (
z

f (z)

)iβ
∣
∣
∣
∣
∣
dθ

∣
∣
∣
∣

= 1

π

∣
∣
∣
∣Re

( ∫ 2π

0
h(z)

∣
∣
∣
∣
∣

(
g(z)

f (z)

)α (
z

f (z)

)iβ
∣
∣
∣
∣
∣
dθ

)∣
∣
∣
∣

≤ 1

π

∣
∣
∣
∣

∫ 2π

0
h(z)

∣
∣
∣
∣
∣

(
g(z)

f (z)

)α (
z

f (z)

)iβ
∣
∣
∣
∣
∣
dθ

∣
∣
∣
∣

= 1

π

∣
∣
∣
∣
∣

∫ 2π

0

z f ′(z)
f (z)

(
f (z)

g(z)

)α (
f (z)

z

)iβ
∣
∣
∣
∣
∣

(
g(z)

f (z)

)α (
z

f (z)

)iβ
∣
∣
∣
∣
∣
dθ

∣
∣
∣
∣
∣

= 1

π

∣
∣
∣
∣
∣

∫ 2π

0

z f ′(z)
f (z)

exp

[

i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
}]

dθ

∣
∣
∣
∣
∣
,

and using the inequality (3.2) of Lemma 2, we find

J1 ≤ 6 + 4
(
α + |β| + |α + iβ|)

(

1 + 2 log
1

1 − r2

)

,
1

2
≤ r = |z| < 1. (4.6)

Also, from (4.5) and using (4.1), we get

J2 = 1

2π

∣
∣
∣
∣
∣

∫ 2π

0

z f ′(z)
f (z)

(
f (z)

g(z)

)α (
f (z)

z

)iβ
{(

g(z)

f (z)

)α (
z

f (z)

)iβ
}

einθdθ

∣
∣
∣
∣
∣

= 1

2π

∣
∣
∣
∣
∣

∫ 2π

0

z f ′(z)
f (z)

exp

[

2i arg

{(
f (z)

g(z)

)α (
f (z)

z

)iβ
}]

einθdθ

∣
∣
∣
∣
∣
,

and from Lemma 3, we obtain

J2 < 2

(
1

n2
+ 2

n
log

1

1 − r2

)1/2 ([(
α + |α + iβ|)2 + 2|β|(α + |α + iβ|)

]
·

(

1 + 4

1 − r
log

1

1 − r

)

+ |β|2
)1/2

,
1

2
≤ r = |z| < 1. (4.7)

The relation (4.3) combined with the inequalities (4.6) and (4.7) leads to

2n|γn|rn ≤ J1 + J2

< 6 + 4
(
α + |β| + |α + iβ|)

(

1 + 2 log
1

1 − r2

)

+ 2

(
1

n2
+ 2

n
log

1

1 − r2

)1/2

·
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([(
α + |α + iβ|)2 + 2|β|(α + |α + iβ|)

](

1 + 4

1 − r
log

1

1 − r

)

+ |β|2
)1/2

,

1

2
≤ r = |z| < 1.

Taking
1

2
≤ r := rn = 1− 1

n + 1
< 1, n = 1, 2, . . . , and using the fact that r2 < r

for 1/2 < r < 1, we deduce that

2n|γn |
(

1 − 1

n + 1

)n
< 6 + 4

(
α + |β| + |α + iβ|)

(
1 + 2 log(1 + n)

)
+ 2

(
1

n2
+ 2

n
log(1 + n)

)1/2
·

([(
α + |α + iβ|)2 + 2|β|(α + |α + iβ|)

](
1 + 4(1 + n) log(1 + n)

)
+ |β|2

)1/2

, n ∈ N,

which is equivalent to

2n|γn |
(

1 − 1

n + 1

)n
< log(1 + n)

[
6

log(1 + n)
+ 4

(
α + |β| + |α + iβ|)

(
1

log(1 + n)
+ 2

)

+ 2

n1/2

(
1

n log(1 + n)
+ 2

)1/2
(1 + n)1/2

([(
α + |α + iβ|)2 + 2|β|(α + |α + iβ|)

]
·

(
1

(1 + n) log(1 + n)
+ 4

)

+ |β|2
(1 + n) log(1 + n)

)1/2]

, n ∈ N.

The above inequality could be written as

|γn| < n−1 log(1 + n)G(n), n ∈ N, (4.8)

where

G(n) := 1

2

(

1 + 1

n

)n [
6

log(1 + n)
+ 4

(
α + |β| + |α + iβ|)

(
1

log(1 + n)
+ 2

)

+2

(

1 + 1

n

)1/2 (
1

n log(1 + n)
+ 2

)1/2 ([(
α + |α + iβ|)2 + 2|β|(α + |α + iβ|)

]
·

(
1

(1 + n) log(1 + n)
+ 4

)

+ |β|2
(1 + n) log(1 + n)

)1/2]

.

It is easy to see that

G(n) <
e

2
H(n), n ∈ N, (4.9)
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where

H(n) := 6

log(1 + n)
+ 4

(
α + |β| + |α + iβ|)

(
1

log(1 + n)
+ 2

)

+2

(

1 + 1

n

)1/2 (
1

n log(1 + n)
+ 2

)1/2 ([(
α + |α + iβ|)2 + 2|β|(α + |α + iβ|)

]
·

(
1

(1 + n) log(1 + n)
+ 4

)

+ |β|2
(1 + n) log(1 + n)

)1/2

is a strictly decreasing function on N. Therefore, since

H(1) = 6

log 2
+ 4

(
α + |β| + |α + iβ| )

(
1

log 2
+ 2

)

+ 2
√
2

√
1

1 + log 2
+ 2 ·

√
[(

α + |α + iβ| )2 + 2 |β| (α + |α + iβ| )
](

1

2 log 2
+ 4

)

+ |β|2
2 log 2

,

from (4.9), we obtain

G(n) <
e

2
H(n) ≤ e

2
H(1), n ∈ N,

hence the inequality (4.8) leads to

|γn| < C(α, β) n−1 log(1 + n), for n ≥ 1,

where C(α, β) = e/2 · H(1) is given by (3.1).
Since the Koebe function k ∈ B(α, β) and the logarithmic coefficients satisfies the

relation |γn| = 1/n, n ∈ N, it follows the exponent −1 is the best possible. ��
Remark 1 In particular, if we take β = 0 in Theorem 3.1 then we get the result of [16,
Theorem 1].

Concluding remarks

In this paper, we extend we extend Theorem 1 of [16] for the classes of Bazilevič
functions B(α, β) by using a new technique based on a consequence of Millin’s and
of the other two previous results.

Thus, we obtained an estimate of an integral given by Lemma 3.3 which we used to
prove our main theorem. The proof of this lemma uses the Parseval-Gutzmer formula
which allows us to obtain an estimate for the upper bounds of the modules of the
logarithmic coefficients γn( f ) if f ∈ B(α, β), α > 0 and β ∈ R. For the case β = 0,
this theorem reduces to the result of [16].

Our result could be used for some further studies connected with logarithmic coeffi-
cient estimations for some subclasses or for the classes of Bazilevič functionsB(α, β).



Logarithmic coefficient bounds for the class of… Page 17 of 18 52

An interesting open problem is to find the smallest constant C(α, β) such that the
inequality of Theorem 1 holds for all f ∈ B(α, β) and n ∈ N.
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