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Abstract

In this paper, we are interested in studying the multiplicity, uniqueness, and nonex-
istence of solutions for a class of singular elliptic eigenvalue problems for the
Dirichlet fractional (p, g)-Laplacian. The nonlinearity considered involves super-
critical Sobolev growth. Our approach is variational together with the sub- and
supersolution methods, and in this way we can address a wide range of problems
not yet contained in the literature. Even when WS LP(Q) — L®(Q) failing, we
establish |Ju| L~ (@) < Cluls,,, (for some C > 0 ), when u is a solution.

Keywords Eigenvalue problem - Fractional p-Laplacian - Sobolev spaces -
Supercritical Sobolev growth
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1 Introduction

Let @ C RY be a bounded domain. In this paper, we study the following singular
eigenvalue problem for the Dirichlet fractional (p, ¢)-Laplacian

(AP u + (—Ay)%u = A [u(x)—’? + f(x, u)] in Q,
u=0 nRY\Q,  (P)
u>0 in Q
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withd > 0,0 <sy <s;<1,0<np<landl <gq < p.
The fractional p-laplacian operator (—A ,)* is defined as

lu(x) —u(P2u(x) — u(y)) J
|x _ y|N+sp y

)

(—Ap)*u(x) = C(N.,s. p) lim /
e\0
RV\ B, (x)

forall x € IR?, where C(N, s, p) is a normalization factor. The fractional p-Laplacian
is anonlocal version of the p-Laplacian and is an extension of the fractional Laplacian
(p=2).

In (P,), we have the sum of two such operators. So, in problem ( P, ), the differential
operator is nonhomogeneous, and this is a source of difficulties in the study of (Py).
Boundary value problems, driven by a combination of two or more operators of differ-
ent natures, arise in many mathematical models of physical processes. One of the first
such models was introduced by Cahn-Hilliard [5] describing the process of separation
of binary alloys. Other applications can be found in Bahrouni-Radulescu-Repovs [1]
(on transonic flow problems). Problems with or without singularity involving frac-
tional operators have been considered in different directions, as we can see in [6, 7,
20]. In [8, 19], the authors study singular systems, considering operators of the types
(p, g)-Laplacian and fractional (p, ¢q)-Laplacian, respectively. However, none of the
works addressed operators of distinct fractional powers or nonlinearities involving
supercritical powers.

In the reaction of (P;) , A > Oisaparameter, u — u~ 7 withO < n < 1isasingular
term and f(z, x) is a Carathéodory perturbation (that is, forall x € R, z — f(z, x)
is measurable on €2 and for a.e. z € Q,x +— f(z, x) is continuous). Unlike many
authors, we will not assume that for a.e. z € @, f(z, ) is (p — 1)-superlinear near
~+o00. However, this superlinearity of the perturbation f(z, -) is not formulated using the
very common in the literature Ambrosetti-Rabinowitz condition (the AR-condition,
for short), see Ref. [2]. The main goal of the paper is to explore the existence of a
positive solution to (P,). Using variational tools from the critical point theory together
with truncations and comparison techniques, we show that (P; ) has a positive solution.

Throughout this paper, to simplify notation, we omit the constant C(N, s, p). From
now on, given a subset 2 of RV we set Q¢ = RV\Q and Q? = Q x Q. The fractional
Sobolev spaces W*:?(2) are defined to be the set of functions u € L?(£2) such that

S =

|lu(x) —u(y)I?
[I/l]s’p = / m dxdy < Q.

N RN

and we defined the space W, (Q2) by

Wyt (Q) = {u e W"P(Q); u=0 in Q"}.
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In [3] the authors showed that,
Wy P (Q) — Wy ().

Thus, the ideal space to study the problem (P;) is Wy""" ().
The main spaces that will be used in the analysis of problem (P, ) are the Sobolev
space WOS ""P(£2) and the Banach space

C‘?l Q) = {u € Co(ﬁ); du—Sl has a continuous extension to 5}
Q

where dg, is the distance function, dg = dist(x, 9£2).
On account of the Poincaré inequality, we have that [.]; , is a norm of the Sobolev
space W(‘; 1P (). Moreover, in [3] the authors show that

[uls, p < luls,.,. forall ue Wy""(Q),

52051 — 52)
for0 <s; <s; < land1 < p < g < 00, in other words, we have Wy"”(Q) —

52,9
Wy (). B
The Banach space C?l (R2) is ordered with positive (order) cone

(€5 @)+ = {f €Co(@; f=0in sz}
which is nonempty and has topological interior

int (c?1 (§)+) - {v €C®@); v>0in Q and infdis1 > 0}.
Q

Given u, v € ng’p(Q) with u < v we denote

[, v] = {h € Wy""(Q); u(x) < h(x) < v(x) fora. a. Q)
() = {h € Wy""(Q); u(x) < h(x) fora.a. Q}.

2 The hypotheses

The hypotheses on the perturbation f (x, ¢) are following:

H: f:Q xR — Risa Carathéodory function such that f(x,0) =0fora.a.x € Q
and for each r > 0 fixed f(-, 1), ﬁ € L*° (), moreover

@ lim L0

n—oo tP

t
= oo uniformly for a. a. x € @, where F(x,t) = / f(x,s)ds;
0
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L] t'=" + f(x,t).t — pF(x,1), then there exists 8 €
n

(i) If e(x, 1) = [1 -

(L'(2))4 such that
e(x,t) <e(x,s)+ B(x) forae. x e Q all 0 <t <s.
(iii) There exist§ > O and t € (1, g) and cp > O such that,
cot™ ' < f(x,1) forae. x € Q all 1 € [0, 5]
and for s > 0, we have
0<mg < f(x,t) forae. x € Q all ¢t >s.
(iv) For every p > 0, there exists E » > 0 such that for a.e. x € €, the function
1 f(x, 1)+ EtP7!

is nondecreasing on [0, p].
(v) We assume that there exists a number 6 > 0 such that
fx, 1)

limsup ——

g < To° uniformly in x.
t—oo t'1

(vi) Atlast, we assume that there exists a sequence (My) with M — oo and such that,
foreach r € (p, p5,),

FGn) _ f e M)
=1 = (Mk)r—l

tel0, M}] = uniformly in x.

The classical AR-condition restricts f(x,.) to have at least (x — 1)-polynomial
growth near co. In contrast, the quasimonotonicity condition that we use in this work
(see hypothesis H (ii)), does not impose such a restriction on the growth of f(x,.)
and permits also the consideration of superlinear nonlinearities with slower growth
near oo (see the examples below). Besides, hypothesis (H (i7)) is a slight extension
of a condition used by Li-Yang [14, condition (f1)].

There are convenient ways to verify (H (ii)). So, the hypothesis (H (i7)) holds, if
we can find M > 0 such that for a.e. x € Q

T4 f(x, 1) .
o tp—]_cl is nondecreasing on [M, 00).

e ort > e(x,t) is nondecreasing on [M, 00).

Hypothesis (H (iii)) implies the presence of a concave term near zero, while hypoth-
esis (H (iv)) is a one-sided local Holder condition. It is satisfied if, for a.e. x € €,
f(x,.) is differentiable, and for every p > 0, we can find ’c}, such that

—Cot?7h < fl(x, )t forae. x €Q, all 0 <1< p.
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Below we list two examples of functions that satisfy the conditions (H)

b ifo<r<l,
“Hhfr > 1,
py, satisfies the hipotheses (H) and also the AR-condition.
o The function f>(x,t) = {tr*ll f0<t=1,
’ e P R TS

p, 1 < s < p satisfies the hipotheses (H) but does not satisfy the AR-condition.

oThefunctionfl(x,t)z{ withl <t <g<p<b<

.
P51

withl <7 <g <

3 Preliminary

For any r > 1 consider the function J, : R — R given by J,(f) = |£|"=2.t. Thus,
using the arguments of [21], there exists ¢, > 0 and ¢, > 0 such that

crlz — w|", if r>2,

— _ > — 2 1
(Jr(2) = Jr(w), z —w) > . |z w|2_w it <2, (D
(Iz] + [wl)

Gl — |71, if r<2,

[ (t1) — Jr(2)] < { @)

~ ,2 .
Gt — bl (0] + 1) 2, if r>2.

Lemma 1 Letu,v € Wy (Q) and denote w = u — v. Then,

/ (Jr(ux) —u(y) = I () —v()) (wx) — w(y))
RZN

|x _ y|N+sr dxdy
o [u — v]g’r , if r>2,
2
u—v
== cr [ ]s’r . if r <2.
([u]s,r + [U]s,r)

Proof The case r > 2, the result is an immediate application of the above inequality.
Case r < 2. Note that, using the Holder inequality we have

rQ2-r)
Ju(x) = u()l () — ul () — u) + v —v) 2
/nw =y D :A@ =y v oy dxdy

(lux) —u| + [vx) —v() ?

_/ [ Ju () = u(y)| }

- N Q2-r) N+tsr

RE L (Jux) —u) + lvx) —v) 2 [x =yl 2
r(2—r)

(Ju(x) —u()| + @) —v()]) 2

- dxdy
l[x =yl 2
INY 3 roor
§ ( / uw) —u)P w dy) (i, + 101,
BV (Ju(x) — u(y)]| + o) — v(y)[)* " | — y[Nesr
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Thus, using the inequality (1) we have

2
— " _ 2
[u v]s,r — f/ [ (x) —u(y)| — dxdy
(s + 01 ) 3 2 () — w0l + ) — v e — IV

! / (Jru(x) = u(»)) = J-(0x) —v()) (@ — v)(x) — (1 — v)(¥))
RZN

|x _ y|N+sr

dxdy.

=
O
For every 1 < r < oo, denote by A, : Wy' (Q2) — (Wé’r(Q))* the nonlinear
map defined by

(Ay (1), @) :/ Irul) Zu)@W) =00 440 forall u, g WS ().

R2N | xX—y |N +sr
An immediate consequence of Lemma 1 is the following proposition

Proposition 1 Themap Ay, : Wy () — (W (Q))* maps bounded sets to bounded
sets, is continuous, strictly monotone and satisfies,

up—u in Wy (Q) and limsup (Ag  (un), (up — u)) <0 =>uy — u in Wy ().

n—0o0

Proof Indeed, using the inequality (2) we have

& lu —wi;!, if r<2,
~ -2 .
& lu—wiy, - ([l +[wls,) " if r=2.

”As,r(u) - As,r(w)”* =< {

and thus A, maps bounded sets to bounded sets, is continuous.
Moreover, if p > 2 then using also the Lemma 1 results,

lim ¢, [uy — ul},
. (I (i (X) = (¥)) = I (1t () =1 (1)) (= 10) (%) = (1t — 1) ()

— n>o00 R2N |x_y|N+sr

dxdy

= lim sup <As,r(un) — Ag (W), up — u> <0,

n— o0
and if p < 2 let’s use again the Lemma 1 and obtain

[un — ul,

([un]s,r + [”]s,r)z_r
_ / (Jr (un (x) = un () = Jru(x) — u(y)) (wp — w)(x) — (un — u)(y))dxdy
- R2N

Ix _ leJrsr

Cr

= <As,r(un) - As,r(”)s Up — u>
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thus, if u, —u in Wy () and lim sup Ay  (up).(u, —u) < O then, there exists M > 0
n—oo

such that |[u,|ls» < M and thus

2 2
lim ¢, L < lim ¢ I

oo (M + [u]s,r)2_r oo ([un]s,r + [u]s,r)z_r

[u, —u

< lim sup <As)r(un) — Asr(u), uy — u> <0.

n—o00

Consequently, forall 1 < p < oo, we have u, — u in Wy (). |

The following result is a natural improvement of [15, Lemma 9] to the Dirichlet
fractional (p, ¢)-Laplacian.

Proposition 2 (Weak comparison principle) Let 0 < sy < s5 < 1,1 < g < p, Q be
bounded in RN and u, v € ng’p(Q) N C?I (R2). Suppose that,

<As1,p(u) + Asz,q(’/‘)v (u — U)+> =< <A51,p(v) + Asz,q(v)7 (u — U)+>

thenu < v.

Proof The proof is a straightforward calculation, but for convenience of the reader we
present a sketch of it. By considering the equations for both p and ¢, and subtracting
them and adjusting the terms, we obtain

<Asl,p(u) + Asz,q(”)v (u — U)+> - <As1,p(v) + Am,q(”)y (u — U)+> <0. 3)

Using the identity

1
I (D) — Jm(a) = (m — 1) (b — a)/ la +1(b —a)|" *dt
0

fora = v(x) —v(y) and b = u(x) — u(y), we have

T () = () = T (000 =0 (1)) = (m — 1) [ = v)@) — (1 = V) ()] O (x, Y).
1
where 0y, (x, y) = / |(00) = v()) + 11— v)@) — @ — V)" 2 dr.

0
We have Q,,(x, y) > 0 and Q,,(x, y) = 0 only if v(x) = v(y) and u(x) = u(y).
Rewriting the integrands in (3) we obtain

/ ((p—l) (=) —w—v)(N] Qp(x, y)
R2N

|x —y[NFsp

) (u=v)"(x)—@—v)*(y))dxdy
+/ (g — D[ —v)x)—u—-v)(Y] 04, y)
RZN

|x — y|N+sq

) (= v)*(x)
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—(u—v)"(y)dxdy <0.
We now consider
V=u-—v=w-0t—@-v", g=@-v=y*

It follows from the last inequality that

/ ((P— D@ (x) —1/f(y))(¢+(X)—W“(y))Qp(x,y))d
xdy
RN v — y[VH
— _ + _ ot
+/ <(q DWW —yvO)HW™x) —¢ (y))Qq(x,y)>dxdy50'
R2V |x — y|N+sq

Applying the inequality (¢ — n)(E+ — nt) > |t — nT|? we obtain

/ (p—DIYT @) =Y T(MIFQ,y(x, y)dxdy
R2N

lx — y[NFsp

_ ) =yt ()2
+sz (g = DIy (x) =y ()l Qq(x,y)dxdyfo.
R

x — y|N+sq
Thus, at almost every point (x, y) we have ™ (x) = ¥ (y) or
Qp(x,y) = Qqx,y)=0.
Since Q,(x, y) = Qq(x, y) = 0 also imply ¥ " (x) = ¥ (y), we conclude that
w—-v)t(x)=C=0, Vx eRY

and since, u, v € ng’p (2), results that C = 0 and consequently u < v. O

Proposition 3 (Strong comparison principle) Let 0 < s1 <52 <1, 1 <q < p, Q be
bounded in RV, g€ COY(R) N BV}, (R), u, v € ng’p(Q) N C?l () such that u # v
and K > 0 satisfy,

(AP u+(=Ap)u+gw) <(=Ap)tv+ (—Ay)"v +g(v) < K weakly in €,
O<u<vw in Q.

then u < v in Q. In particular, ifu, v € intf[ (C2 (Q)")] then v — u € int[ (CY ()1)].

Proof Without loss of generality, we may assume that g is nondecreasing and g (0) = 0.
In fact, by Jordan’s decomposition we can find g1, g2 € C°(R) nondecreasing such
that g(r) = g1(t) — g2(¢) and g;(0) = 0.

Since, u # v by continuity, we can find xo € 2, p, & > 0 such that B,(xp) C
and

sup u < inf v—e.
B, (x0) B, (x0)
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Hence, for all > 1 close enough to 1 we have

€
sup nu < _inf v— —.
B, (x0) B (x0)

Define w, € Wy"”(Q\B,(xo)) by

nu(x), if x € Bp(xo)c,
v(x), if x € By(xp),

wn(x) = {

sow; < v(x)in B,(xo) and by the nonlocal superposition principle ([11], Proposition
2.6) we have weakly in Q\ B, (xo)

(A wy <P N (=Ap) u—CpeP™! and (—A)Pw, <n?™ ' (=Ay)Pu—Cpe?™!

for some C, > 0 and all » > 1 close enough to 1. Further, we have weakly in
Q\ B, (xo0)

(AP wy 4+ (—A)2wy + g(wy) < " H(=Ap) u
+ 017 (=AU + g(wy) — Cpe?™ — CpeP™!

<y ((—Am“u +(—Ag)"u + g(u))

+ (g(w,n - n"’_lg(u)> — Cpe™! — Cpe?™!

< ((—Ap)“u +(—Ag)7u + g(u)) + (g(wn) - nP‘g(u))

+ K" = 1) = Cpe?™! — Cpel™!

< ((—Ap)‘“v + (= Ag) "0 + g(v)) + <g(w,,) - nf’—lgw)) +K (0"~ 1)
— Cped™l — CpeP™l

Since
<g(w,7) -~ n”_lg(u)) +K@mP'=1)—=0

uniformly in Q\B,(xo) as n — 17, we have, for all n > 1 close enough to 1,

(=Ap) wy + (=Ap) wy + g(wy) < (—Ap) v+ (=Ag)?v +g() < K
weakly in Q\ B, (xo),
0<w,<vin (Q\Bp(xo))~
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Testing with ¢ = (w; — vt e WosI (2)\ B, (xp), recalling the monotonicity of g,
and applying Proposition 2 we get v > wj, in )\ B, (xp). So we have

vV=Nu = U.
In particular, if u, v € int [(Cg1 (5))4_] then

v—u . . (m—1Du
dy ~— @ dy

inf
Q
_ ; 0
and sov — u € int [(CS1 (Q))+]. O

4 An auxiliary problem

Firstly, we will need to define, with the help of the real sequence defined in H(vii), a
sequence of auxiliary equations that will be important for our purpose. More specif-
ically, for each k € N, we define the auxiliary truncation functions by choosing
r € (p. p) such that p¥ —r < 6 and we set

0, ifr <0
_ ) S, if0 <t < M
Jilx, 1) = f My " 4)
WI , if t > My.

Notice that we define f; to be such that r in its definition is independent of k. We
see that we are really truncating our original function, making it subcritical for large
arguments. Furthermore, in view of conditions H(vi), H(vii) and the choice of 6, we
can prove that, for k big enough, fi satisfies, for a constant C > 0,

| fite, D) < € (M* 17" )
Indeed, for all r > 0, condition H(vii) and (4) gives

f M) oy

Je(x, 1) < My

and, by H(vi), if k is sufficiently large,

J(x, My)

< C M < oy
A (My) = C(My)

For each k € N, let us consider the following auxiliary problem

(=AU 4+ (—A)D%2u = A{ux)™" + fi(x,u)] in Q,
u=0 in RV \ Q, (Pr.2)
u>0 in
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withd > 0,0 <s;<ss <1,0<pnp<landl <gq < p.
By the hypotheses (H), the hypotheses on the truncation fi(x, t) are following:

Hi: fi : @ x R — R is a Carathéodory function such that fi(x,0) = O for a. a.
x € Qand

Q) fitx,t) < ap@)[1 +¢"fora a x e Qallr > 0 with o € L®(Q) and
NP
p<r<p;=

Fr(x, 1)
tP

N—s1p’

t
(i1) tlim = oo uniformly for a. a. x € Q, where Fy(x,t) = / Jfr(x, s)ds;
— 00 0

(iii) If ex (x, 1) = [1 - IL

(L'(£2))4 such that

i| t'71 4+ fi(x, t).t — pFi(x, 1), then there exists f €

er(x,1) <ex(x,s)+ Br(x) forae. x e Q all 0 <t <s.
(iv) There exist 6 > O and T € (1, ¢) and c¢o > 0O such that,
cot™ ' < fi(x, 1) forae. x € Q all 1 € [0, 5]
and for all s > 0, we have
0 <mps < fi(x,t) forae. x € Q all t > 5.
(v) Forevery p > 0, there exists Ek, o > 0 such that for a.e. x € 2, the function
t = fi(x,1) + Ey pt""!

is nondecreasing on [0, p].

The hypothesis (Hy (i)) holds by (5), (Hx (ii)) holds by (4) and p < r. We will
prove first that (Hy (iv)) holds. Since § > 0, 7 € (1,¢g) and cp > 0, if 6 < My, we
have

cot™ ' < f(x,1) = fi(x,1) forae. x € Q all ¢ € [0,5].

For s > 0, we have
o) <s <t <M,

e, ) = f(x, 1) = mg >0,

by (H (ii7)).
o0 <s <M, <t,

fOM) o fE MY,

1
. M) = M, :
(M)~ /S A f . Mo >0

filx,t) =
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o)< My <5 <t,

f(vak) r—1 > f(x’Mk)Mr,

—_— I _ M 0.
e i A e

filx, 1) =
So, for all s > 0 we have
Je(x,t) > mg s >0 forae. x € 2 all £ >y,

with my ¢ = max {ms, inf f(x, Mk)} > 0.
xeQ

To prove that (Hy (iii)) holds it is sufficiently verify that there is a constant Cy > 0
such that t — e (x, t) is nondecreasing on [Ci, 00). Since for t > M} we have

ep(x,1) = [1 7 f’l] 1 4 fo(x, ).t — pFr(x, 1)
p 1y, [ M), M Lfa M)
=1 ny L TR ,s)ds — L TR r=lg
[ l—n]’ Ty 0 fends= | oyt
p 1— [, M) , k fe, Mol r
=1 noy L TR s)ds — L TR e oy,
[ l—n][ + ! t A Sf(x,s)ds Moy r[r ]
Hence
8 — f(.x, Mk) —1
— =[1—n— 1 — Il
8tek(x,t) M=n—-pltT"+@F -1 AR t
Notice that e (x, ) > 0 if
M
[1—n—p]t’"+(r—1)f(x’ k) 1>,

(M

or equivalently, if

1

(M) ! i
—l—p-—pl—X | .
t2<[ ! ”]<r—1>f<x,Mk)>

We can consider

(M)~ )

(r = Dmy s

Ck=(—[1—77_17]

where my ¢ is as in (Hy (iv)). Hence, ¢ +— ex(x, ) is nondecreasing on [Cy, 00).
The proof of (Hy (v)) follows from (4) and (H (iv)).
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Definition 1 A function u € W,;"”(Q) is a weak solution of the problem (P ;) if,
u=p € Wy (Q) for all ¢ € Wy"" () and

<AS1,,,(u) +As2,q(u),¢> = / Mu™"+ fr(x,w)] pdx, forall ¢ € Wy"" ().
Q

The difficulty that we encounter in the analysis of problem ( Py ) is that the energy
(Euler) function of the problem I, : W(‘; 1P(Q) — R defined by

1
1—

1 1
L) =~} ,+—[ull , - k/ [ @' 4+ Fi(x, u+)] dx.  (6)
p q Q n

for all u € Wg"p (), is not C! (due to the singular term). So, we can not use the
minimax methods of critical point theory directly on [ (.). We have to find ways to
bypass the singularity and deal with C'-functionals.

The hypotheses H (i) and H (iv) assure us that, there are cp > 0 and ¢ > 0 such
that,

' ¢7%7!, fora.a. x € Q and z > 0. (7)

Jie(x,2) > coz™
We consider the following auxiliary Dirichilet fractional (p, g)-equation

(=AU + (—Ay)%2u = Afcou(x)"' — cou?"] in Q,

u>0 in Q
Np

With0<sz<s1,k>0and1<r<q<p<9<p;‘=N .
—sp

Lemma2 Ifu, € WS"P(Q) be a weak solution of problem (8). Then u, € L> ().
Proof We denote by /1 (f) = Acot™™' — Act?~!. Thus,

(Asl,p(Z)L) + Asz,q(l)\), )
_ / <Jp(!/\(x) —0,0)) | Jg, ) —u, ()
R2N

|x_y|N+31p |x_y|N+szq

> (@(x) — @ (y))dxdy 9)

- / () belx
Q

for any ¢ € W7 ().
For each k € N, set

Qr={x e : ulx) >k}
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Since u, € Wy""(Q) and u, > 0 in Q, we have that (u, — k)T € W;""(Q).
Taking ¢ = (u, — k)™ in (9), we obtain

(Aurp () + Asyg 1), @) = /Q (1) (. — k) dx. (10)

Applying the algebraic inequality |a — b|P~2(a — b)(a* — b+) > |at — bF|P to
estimate the left-hand side of (10), we obtain

P
Y — P
w, —%de )" <c / I, @) =D gy
o RN |x — y|NFsp

=< C<As1,p(£)\) + Asz,q (), ¢)

e f (1) (1, — Ky
Qi
= C/ [Acog;_l — Aczgi_l]@A — k)dx
Qi
< c/ rcoul ', — kydx. (11)
Qe
Since 1 < t < p, fork > 1 in Q; we have
ul gy — k) < ul 7w, — k) < 277w, — kP + 2Pk g — k)
and thus,

/ u ", —kydx <2771 / (, —k)Pdx +2°7 kP71 [ (w, —k)dx. (12)
Q Q Q

Applying Holder’s inequality, we obtain

*"’3

P

ri—p .
(u, —k)Pdx <[] 7 (/ (), — k)P dX> (13)
Q

Qe

So, using the inequalities (12) and (13) in (11), we have

pip
(u, —k)Pdx <Co |S%]| » |:2p_1 (u, —k)Pdx + 2P=lgp=1 (u, — k)dxi| )

Qp 1973 Qe

Thus, we obtain

»§=p)

|:1—2‘”_1C0|Qk| UQ (w; —)Pdx <277k Q| A | —Rydx.
k k
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If k — o0, then |2;| — 0. Therefore, there exists kg > 1 such that

|
1 —2P71Co|Qu] & > 3 if k> ko> 1.
Thus, for such k, we conclude that
1 11 B
3 | @ —wrax <2 e tcy [ - oo (14)
2 Q Ak

Holder’s inequality and (14) yield

P
<f (m—k)dX) <
Q

|szk|"—1/s2 (u; —k)Pdx < |szk|"—121’—1kf’—1co|szk|T/A (1, — k)dx.
k k

Thus,
(u — k)dx < 2Ck|%|'€, Vi > ko, (15)
Q
* ~
wheree = 25" P  _ 0and € > 0.
ri(p—1
The same arguments used in [16] assures us that u, € L°(2). Then the nonlinear
regularity theory, see [9] says that u, € int(CA?l (2)+. O

Proposition 4 Forevery A > O, the problem (8) admits a unique positive solution u; €
int(C(Q)4) and u;, — 0in C) (Q) as 1 — 0T

Proof Existfnce Note that, the solutions of the problem (8) are critical points of the
functional 7, : Wy"" () — Wy>?(Q) given by

Aco

~ 1 1 Aca
lw) = —lulip + " [l p = == It I+ ==l 1, for all u € Wo" (%)

T

(16)

where |.||; denote the norm in space L’ ().

Sincel <17 <gq < p <6, then f,\(tu) — o0 ast — 00, is that, J, is coercive.
Also using the Sobolev embedding theorem, we see that I is sequentially weakly lower
semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find u, € W(‘; "P(Q)
such that

[, (u;) = min {Jk(u); ue ng*”(sz)}.
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Now noticethat | <t <g <p <6 andu € int(Cg1 (2)4) results

fx(tu) < 0 for ¢ € (0, 1) small enough (17)

thus I}(gk) < 0 = I,(0) and therefore u, #0.
Using the (17) we have,

I w,)=0

and consequently

<As1,p(£)\) + Asz,q(ﬁx)’ §0> =A '/;2 CO(Z:)T_I(de

—x/ e pdx, forall g € Wy (). (18)
Q
Choosing ¢ = u; € W'’ (Q) results

—1p — —
[u; ]sl,p + [, ]sz,q = <As|,p(ﬂ,\) + A W), £A>
= [ cowh urax o [ @ udr =0

Q Q

and therefore [g;]fl , =0, is that, u; > 0and u, #0.

Uniqueness To show the uniqueness of the solution, we will use arguments similar
to those used in [12]. Let’s use the following discrete Picone’s inequality from [4]

Cr r

d
Jy(a — b) (a—1 - br_1> <lc—dl', foralla,b eR%, c,d e R*. (19)

Letu,,v, € WP () positive solutions of the problem (8). As above, we show
thatu,, v, €int(Cy (€2)4). Thus, using the same arguments as Lemma 2.4 of [12] we
have,

Mp
L3 X
A c “rol,P(Q)'
p—1
Uy

Consider w;, = (u} — v})*, thus,

P + P \T
w; u 1, Wy Y 1,
==t —v, ] ew,""(Q) and =u, — =2 e WP (Q).
p—1 p—1 = 0 p—1 = p—1 0
v, v, u, u,

We denote by g; (1) = Acot™ P — Acat? P, Thus, g is strictly decreasing in ]R(J)r.
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Testing (18) with -1 we have
3%

A Wy,

wj 1 w _
<As.,p(ﬂx)+As2,q(£A),T>=ALCQQK ! P*‘dx_/\/gcmi 1?dx

u, u, Uy

— 0—
=A/ cogi P, dx —)L/ couy P, dx
Q Q

&) (uf — v})dx

{u,>v,}

and testing (18) with =2 we have
U

Wy, _1 Wi —1 Wi
<Asl,,,(yx)+Asz,q(yk>,ﬁ>=x [ coni = [ et Tax

Uy 2 Ch vy

A/ cov’ Pw,dx —Af czyi_fwkdx
Q Q

& () () — v))dx
{E)L >QA}

Thus,

wj, w,
Asl,p(ﬂk) + Asz,q (Z)L)’ ? - Asl,p(yx) + Asz,q(yk)z ?
uy Y

= /{ }[gx(u_x)—gx(yk)] (uf — v)dx.

Note that, using the discrete Picone’s inequality (19), see (Proposition 3.1, [12])

we have

. w;, (x) w;, () . w;, (x) w;, ()
Jpux) —u(y)) (gk(x)l’—l - EA()’)”_1> = jpwx) —v(y) (E}L(X)p_l RO
and thus,

Wy W)
<Ax1,p(ﬂx) + Asz,q(Z)L)y ?> > <AS|,p(EA) + Asz,q(E)L)v T>
u, v,

Therefore, since g, is strictly decreasing in RS‘ results

0< f [2(u2) — £2()] @) — vP)dx <0
{u, >0, }

)
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so we deduce that {u, > v, } has null measure, is that, u, < v, in Q. Similarly, using
the function test w;, = (v} — u})* we see that u; > v, in Q, and thus u; = v,.
Moreover, we have

[Ex]g,p = [Zx]ﬁ,p + [ZA]ZM
= heollu, IIT — reallu 11§

< heolluy Ilz

< aéo [u];

sLp’

for some ¢y > 0. Thus,
p—T ~
[Hl]sl,p = Ao

and therefore, u, — 0 in Wél’p (Q) as A — 0%, Using the nonlinear regularity
theorem, see [9], results that

u, — 0 in CO(Q) as A — 0.

(]
We consider another auxiliary problem,
(=Ap) U+ (—A)2u =)u, "+ 1in Q,
u=0 inRV \ Q, (20)

u=>0 in Q

withA > 0,0 <np<landl <gq < p.

Proposition 5 For every A > 0, there exists a unique solution u € int [(C‘?1 (§))+]
of the problem (20) and a Ao > 0 such that, for all 0 < A < Ag it holds

U, < u,.

Proof Note that, the Lemma 14.16 of Gilbarg-Trundiger [10] says that dé‘ e C? (2s,),
where Qs = {x € Q;dg (x) < 8o}. Thus, d; € int[(C? (R))4 ] and so by Proposi-
tion 4.1.22 of [17], there exists ¢3 = ¢3(u;) > 0 and ¢4 = c4(u, ) > 0 such that,

C3d§21 <u, < C4d§21. 21

Since due to (21), Ag;" + 1 € LY(). The existence of a weak solution of (20)
follows from direct minimization in Wy'"'” () of the functional

1 p 1 q =N
- [u]sl,p + - [u]sz,p - ()‘E)L + Dudx,
p q Q
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whereas the uniqueness comes from, for instance, the comparison principle for the
Dirichlet fractional (p, g)-Laplacian, Propossition 2. Using the maximum principle,
[9], the solution i, € int [(CY (R)4)].

For show the existence of Ao > 0 such that u, < u; forall0 < A < A¢, acting on
(20) with u, and obtain

— 1P — 1P — 1q
[u}»]sl,p =< [u)»]xl,p + [ul]sz,q

=)\,/ g;".ﬁkdx—i-f u,dx

Q Q

_A/ )1\ 77.ukdx+/ﬁ;\dx
u, Q

1
< Acs / —rdx + Q] 5 ( f ﬁfdx)] (Holder inequality)
Q

< <)»cs + m) |Q| [u 2ls,,p (Hardy’s inequality and first eigenvalue).

So, we have {u; },¢(0,1] is uniformly bounded in WS P (Q). Using arguments similar
to the Lemma 1, (see also Ladyzhenskaya-Ural’tseva [13] Theorem 7.1) results

{#x}re.1] C L>(K2) is uniformly bounded in A.
The condition H (7) implies that there exists Ag > O such that,
Afe(x,up) < Alall (1 + IIEAIIQ*]) <1 forall A € (0,A9] and x a.a.in Q2.
For each A € (0, Ag] consider the Carathéodory function

Mo ™™ — ™71 if 1 < (x),
Mot ()™~ — crmn ()P if T (x) < t.

K (x, 1) = {
Let ¥; : Wy"” — R the C!-functional defined by

1
Wi (u) = » [ul5p + — [u]vz P / K).(x,u)dx, forall u e Wy""(Q)
Q

t
where K,\(x,t):f K (x, s)ds.

0
Note that, W, is coercive and sequentially wekly lower semicontinuous. So, there
exists i1, € Wy"" () such that

W5 (it;) = min [Wy(u); u € w," P].
Since ] <7 < g < p < 6 results

W, (tu) < 0 for ¢ € (0, 1) small enough (22)
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thus W, (1,) < 0 = ¥, (0) and therefore u, # 0.
Using the (22) we have,

W (@) = 0

and consequently
<Asl,p(ﬁk) + Asz,q(ﬁk)s 90> = / Ky (x, ﬁk)‘pdxs for all (S ng’p(Q).
Q

Choosing ¢ = —ii; € Wy""(Q), we see that it > 0 and i1, # 0. Taking ¢ =
(it — )" € Wy"""(Q) we find,

From (7), we have that there exits co > 0 and ¢ > 0 such that fi(x,t) > cot™ 1 —
c2t?~ 1 and so

<As1,p(ﬁx) + Ay, g @y, (i) — Ex)"L>
= /QK;\(X,L?A)(L?A — ) tdx
= /Qx[cou;—l — cout (@, — ) Tdx
< /Q i, ) Gy, — )
< /Qw;” + 11(i, — ) Tdx (forall 0 < A < Ag)
= <Asl,p(m) + Ay g (@), (i, — ﬁx)+>
and so, by Proposition 2 1, < u,. Moreover, note that,
W (u) = I (u), forall u e [0,],
thus
L(iz) = Wy() = min [W(w); u € W' ()]
= min{\lﬁ(u); u e [O,EA]}
= min{l}(u); u € [0, m]}
=I(u;).

By Proposition 4 we have i) = u, and therefore u;, <u) forall0 <A <Xio. O
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5 Existence of positive solution for Py ,

We consider the set
L= {A > 0; problem Py jadmits a positive solution}

and the set S, of the positive solutions to the problem P .
Proposition 6 Assume the hypotheses (Hy) hold, then

i) L # 9
ii) If » € L, thenu, < u forallu € S) and S) C int[(Cg (2)+].

Proof Let 1y > 0 given in the Proposition 4, so for » € (0, 9] we have
u, <uy; and Af(x,u,) <1 fora.a. x € Q. (23)
We consider the function

Muy "+ filx,up)]if 1< uy (x),
o, )= A7+ fi(x, D] if u, (x) <t <up(x),
M, "+ fiCx, w)] i w.(x) < ¢,

and the functional @, : W(‘; 1P(Q) — R defined by

Lo p | S1,P
D, (u) = ; [uls,,p + 6—1 [ulsy,p — Gi(x,u)dx, forall u € Wy " ()
Q

t
where G (x, t) =/ gn(x, s)ds.
0

By Proposition 3 of [18] we have ®; € C!'(W;"”(), R). Moreover, using the
hypotheses (H) we have, @, is coercive and sequently weakly lower semicontinuous.
Thus, there exists u, := u; € Wy""(Q) such that,

@ (up) = min[m(u); u € Wg"”(sz)]
Thus, @ (u;) = 0, that is,
<Asl,,,<ux>+ASQ,q(uA),¢>= f gr(x, up)edx, forall g € Wy""(Q). (24)
Q

Testing the Eq. (24) with ¢ = (uy — ux)" € W,"”(Q) and using the inequality
(23), we find

<As1,p(uk) + Asz,q(uk)v (up — ﬁ)u)+>
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=/ng(x,ux)(u;\—ﬁx)+dx
_ /Q A + i )1, — i) dx

< / Dy "+ 1y, — ) Tdx (forall 0 < A < Ag)
Q

= <Asl,p<m) + Agyq (2, (up — w>

and so, by Proposition 2 u; < uj.
Analogously, testing (24) with the function ¢ = (u, —u Dt e Wg 1P (Q) and using
(7), we have,

<Ax1,p(uk) + Ay, g (y), (1) — “k)+> = /ng(x, ) (u; — up)tdx
= /Q)»[ﬂ;n + fieCe, u;) 1wy — u) T dx

> / Meoul ™' — cou® M (u, —u;)Tdx (forall 0 < A < i)
Q
= <AS1,[J(Z)L) + Asz,q(ﬁ)\)a (EA - MA)+>

and so, by Proposition 2 we have u; < u,.
Therefore,

uy € [uy,u;] = up € S = (0,A0] € L.

For item (ii), it is sufficient to argue as in the Proposition 4, replacing u; with
u € Sy, we show that u, < u for all u € ;. For show that §; C int[(C?1 (2))4] we
use the maximum principle, see [9]. O

Proposition 7 If hypotheses (Hy) hold, ). € L and v € (0, 1), then € L.

Proof Let A € L, so we can find u; € S, C int[(C?l (R2))4]. Consider the Dirichlet
problem,

(=Ap)u + (=Ay)%u = Peoux)™ 1 = rcou?lin Q,
u=0 in RV \ Q, (25)
u>0 in

with0 < <2and1 <7 < ¢ < p < 6. As we did in the proposition, we can find a
unique solution ity € int[(Cg (£2))] to the problem (25) and, in addition, we can show
thatii,” € L'(Q). Since, forall0 < 9 < 9 < A, wehave jcou(x)" ' —rcou? ! <
Drcou(x)™~! — Acou? ™!, by comparison principle results that iy, < ily,. Note that,
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by Proposition 5 i = u,, so

Define the Caracthéodory function,

wlit,” 4+ fiCx, @) if ¢ < iy (x),
v, ) = ult™"+ fi(xe, ] if au(x) <t <ay(x),
wlity" + fix, @) if i, (x) < t,

Let Y; : Wy"'”(Q) — R the C'-functional defined by

1 p 1 q S, P
Ty(u) = ; [uls,,p + g [uls, p — | Tplx,u)dx, forall u € Wy " ()
Q

t
where Iy (x, 1) = / y(x, s)ds.

0
Note that, Y, is coercive and sequentially wekly lower semicontinuous. So,

Y (uy) =min [ Y, u); ue Wy "(Q)].

is attained by a function u,, = uy , € ng’p(Q).
Thus, T;L (uy) = 0, that is,

<Asl,p(up,) + Ay ), <,0> =/ Yu(x, uy)edx, forall ¢ € W' (Q). (26)
Q

Testing the Eq. (26) with ¢ = (u, — u)* € Wy"""(Q), using the Proposition 2
and 0 < u < A we show that u, < u;. In addition, testing the Eq. (26) with the
function ¢ = (i, — u,)™ € Wy""" (), using the Proposition 2 and the fact ii,, is

unique solution of the problem (25), we show i, < u,,.
So we have proved that,

Uy € iy, u3] = uy € S, S intl(C) (Q)+] andso p € L.

]

Proposition 8 If hypotheses (Hy) hold, . € L, u; € S) C int [(Cg1 (5))+] and pu < A,

then p € L and there exists u, € S, such that

= e € int [ (€5 @)+ ]
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Proof By Proposition 6 we know that u € £ and we can find u, = uy, € S, C

int[(CY (Q)4)] such that u,, < u;. Let p = [uz]lo and I/E\k,p > 0 be as postulated

by hypothesis (Hy) (v). We have
(=AM up (x) + (—Ag)uu(x) + kfk,puu(x)pfl — Ay (x)7"
< Wi, up () + AEg pityy (x)P 7
=3[ et 0000 + Brpteu (0™ = G = ) fe, ()
< [ e w0 + B g (677"
= (—Ap)" 3 (x) + (—Ag)2up (x) + AEj pur ()7~ — Ay (x) 7.
Note that, the function g(r) = )J/Z\k,ptl’_l — At~ is nondecreasing in R(J)r, thus, by
Proposition 3 we have u;, — u, € int [(CO (2))4]. o

Proposition 9 Assume that the hypotheses (Hy) hold. Then \.* = sup L < +0o0, for
eachk € N.

Proof By hypotheses H (i), (ii) and (iii) we can find 2 > 0 such that
P71 <% fi(x, 1) forall x € Q, all 1> 0. (27)

Let A > A* and suppose that A € L. Then, there exists u; = ug,); € Sip C
int[(C?1 (£2))+1, that is, uy is a solution of the problem (P ;). Consider 29 CC €2 and

mo = minu,; > 0. For § € (0, 1) small we set mg = mgy + 8. Let p = |luy|lco and
Ek,p > gbe as postulated by H (v). We have,
(= Ap)"md + (= Ag)*2md + AE, o (m)?~" — A(m)~"
< AEr,(md)?™" 4+ x(8) (with x(8) — 0T as § — 0F)
= [MEx, + 1]mE ™ + x5)
< MG mo) + AEk ,(md)P ™ + x(8) (see (27))
=3[ et mo) + Erpm)P ™| = =B filx.mo) + £ (®)
<X [fk(x, uy (x)) + Ek’puf_l] for (0, 1) small enough.
= (—Ap)" w3 (X) + (= Ag) 213 (x) + AEg ptt ()P~ — A () 7.

where we have used the hypotheses H (iv), (v) and the fact x(§) — 0T as § — 0.
By strong comparison principle we have

Uy — mg € int[(C‘?1 (2))4] for 6 € (0, 1) small enough

which contradicts with the definition of mg. Consequently, it holds 0 < A* < P
< 00. O
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Proposition 10 [f hypotheses (Hy) hold and . € (0, 1*), then problem ( Py ;) has least
two positive solutions

uo, i € int{(CY ()41 with uo < it and ug # .

Proof Let0 < A < ¥ < A*. By Proposition 9 1, 9 € L. Thus, by Proposition 8 we
can find ug € S5, € int[(C2 ())+]and uy € Sy C int[(CY, (R2))+] such that

uy —ug € Sp S intl(Cy) ()+1.

From Proposition 8, we know that u; < uq, hence u(; T e LY(Q). Consider the
Carathéodory function

Mug "+ filx, uo)] if 1 < up(x),
W (x, 1) = L AT+ fi(x, O] if uo(x) <t < wuy(x),
Muy" 4 fiCe, up)]if ugp(x) <t

and define the C'-functional ;, : Wy"'”(Q) — R by

~ | q v S1,p
() = ; [uls,,p + [uls,,p — . W.(x, u)dx forall u € Wy"" ().

t
where W, (¢, x) =/ Wy (x, s)ds.

0
Consider also another Carathéodory function

Mug"(x) + fr(x, uo)l if t < uo(x),

oot = {mn + fibe. 0] i ue(x) <t

and define the C'-functional p : Wg LP(Q) — Rby

1
() = —[ulfy p + [ul, _/ Wi (x, u)dx forall u e Wy’ (Q)
p Q

t
where W, (¢, x) =/ wy (x, s)ds.

It is clear that,

= ) (u) (28)

[0,up]

and/t, (u)
[0,ug]

= i (u)
[0,ug]

)

[0,up]

Let K, = {u € Wy""(Q); /(u) = 0}. Using the same arguments used in ([18],
Proposition 8) we can show that

Kp, < [uo, ug] Nint[(Cy, ()] (29)
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Ky, < [uo) Nint[(CY (2))4] (30)

From (30), we can assume that K, is finite. Otherwise, we already have an infinity

of positive smooth solutions of (P4 ;) bigger than u( and so we are done. In addition,
we can assume that

Ky, Nluo, ugl = {uo}. €19

Moreover, it is clear that 1 is coercive and sequentially weakly lower semicontin-
uous. So there exists iig € W,,""” () such that,

i, = min [ﬁx(u); ue Wg"”(m}
from (29) we have
iio € Kg, < [uo, ug) Nint[(CY (2))+]
and so, from (28) and (31) results i1y = ug. Therefore,
up € int[(C?1 (8))4]is alocal Wy""(Q2) — minimizer of w;.

Consequently, there exists p € (0, 1) such that,
ma(uo) < inf [m(u); [u —uoly,, p = p} =mj.

Note that, if u € int[(C?I (5))+], then on account of hypothesis (Hy (ii)) we have,
un(tu) - —oo as t — o0

and moreover, classical arguments, which can be found in ([18], [2]), along with
conditions (Hy) show that the function u;, satisfies the Cerami condition. By mountain
pass theorem, there exists # € W;"'”(2) such that,

i€ Ky, S lup) Nint[(C (2))+]

and m; < u; (). So, we have u € S, ug <u and it # uy. O
Proposition 11 If hypotheses (Hy) hold, then A* € L.
Proof Let {A,} C (0, A*) be such that A, — A*. We have {A,},>1 € £ and of the

proof of Proposition 10 we find u,, € Sy, € int[(C?] (€)1 such that,

1 _
M, (un) = ; [un]f]p + [un]?z,q — Ay /Q[u,ll T4+ Je(x, uy).upldx
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1 .
; [”n]fl,p + ; [un]gz,q - [un]g,p - [un]fz,p (Since u, € Skn)

1 p 1 q
— =1 {upls,p + | = = 1) [unlsy,q <O forall neN.
p q

Moreover, we have

<As1,p(un) + Asz,q(un)» §0> = /;z[knu;n + fk(x: Mn)]fﬂdX, for all (28BS ng’p(sz)'
(32)

Arguing as in the proof of Proposition 13 in [2], we obtain that at least for a
subsequence,

up — uy in Wy"P(Q) asn — oc.

By Proposition 8, i), < u, for all n € N. Therefore, we see u, 7 0 and u;"cp <
ﬁ;lngo € L1(Q) forall ¢ € Wy""(Q). In (32), we pass to the limit as n — oo and we
obtain

<Asl,,,(u*) +A‘g2,q(u*),(p> = / WV ur "+ fi(x, u)ledx, forall ¢ € W7 (Q).
Q

that is,
Uy € Sp» Cint[(CY (R))4] andso A* € L.
O

So, summarizing the situation for problem (P ;), we can state the following
bifurcation-type theorem.

Theorem 1 If hypotheses (Hy) hold, then we can find .* > 0 such that

1. Forevery A € (0, A*) problem ( Py ;) has at least two nontrivial positive solutions
uo, i € int{(C2 ()41 with uo < it and ug # .
2. For A = A* problem (Py_,) has one nontrivial positive solution
Uy € int[(C?1 (Q))4] and so 1* € L.

3. For A > A\* problem (P ) has no nontrivial positive solution.
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6 Existence of positive solution for P,

We denote by u := uy ; the solution of the problem (P ;) given by Theorem 1. Thus,
we obtain

Proposition 12 Let u := uy ) € W(‘;"p(Q) be a positive weak solution to the problem
in (Px.3), then u € L>(2). Moreover, there exists k > 1 sufficiently large such that,

lulloo <= M.

Proof The arguments of the proof is taken from the celebrated article of [22] with

appropriate modifications. We will proceed with the smooth, convex and Lipschitz
1

function g.(¢) = (62 + t2)2 for every € > 0. Moreover, g.(t) — [t| ast — 0 and

gL ()] < 1.Let0 < ¢ € C°(R) and choose ¢ = ¥ ,g;(u)|*”*2 gL (u) as the test
function.
By Lemma 5.3 of [22] for all ¥ € C2°(Q2) N R, we obtain

1 _
(Agy p(8e)), V) + (Agy q(ge ), ¥) < A/Q (— + |fk(x,u>|) g )|~ ydx

|ua|"

By Fatou’s Lemma as ¢ — 0 we have

1
(Asip@), ) + (Asy g (), ¥) < ?»/Q <— + [ fi(x, u)l) Ydx (33)

o]
Define u, = min{(u — MZ)*‘, n}foreachn e Nandy > 0.Let8 > 1,6 > 0 and

consider Y5 = (u, + 8)# — 8f. Thus, Y5 = 0in {u < M,l/} and using Vs in (33) we
obtain

1
(Agy p(u), Us) + (Agy g (), Ys) < A/Q (— + | fi(x, u>|) ((un +8)P — 8P)dx

|u "
By Lemma 5.4 in [22] to follow the estimates,

(Asl,p(”)’ vs) + (Asz,q(u)» vs)

28 () (o] o (i) o™
I n P _*r Uy q
- B+p—1 ! S1.p B+q—1 52,9

>ﬁ< P )p[< m”’”]p
AVETESV N R o

consequently,

ﬂ(#)” |:(u +5)ﬂ+,',’—1T <x/ (L+|f(x u)|> ((1n+8)P —8P)dx
B+p—1 n p o \ul r(x, "
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and thus,

+p—171P — p
[(un+5)ﬂp } sxl(—‘g“’ 1) /(—1 +|fk(X,u)|)
sp B p o \lul" (34)

((uy + 8)P — 6P)dx

Using the estimates (5), for Mj > 1 we have,

1
/ (— + [ fie(x, u)l) ((un + 8)F — 8%)dx
Q

|ua|"

1
< / <— + C.M,§9|u|’1> ((y + 8)P — sP)dx
o \lul"

1
= /{ ) (W + C.M§9|u|’—1> ((uy + 8)P — 8P)dx
usz

- / ((y + 8)P — 6P)dx +/ C. M 1" ((u + 8)F — 8P)dx
{MZM{} {MZMM}

< / ME ((uy + 8)P — 6P)dx +f C. M \ul ((u + 8)F — 8P)dx
{u=M]} {u=M]}

< / M (u, + 8)F — 8P)dx +f C. M 1u"~ ((uy + 8)P — 8P)dx
Q Q

o=l _
S <|sz| R L (m) I en +8)P 1222

2
p;kl —r—+1
the function u := uy satisfies u < u where u is a supersolution of the problem (20)
does not depend on k, we have ||u ||r;,} < Cy ||ﬁ||gg1 independent of k. Thus,
L71(Q)

where C is a constant independent of k and o = . Moreover, observe that

/ (L + [ fi(x, u)l) ((un +8)F — 5)dux
Q

ul?
o=l 35
< KM (191°7 + 75 ) 1atn + )P 1o ) G

= KoM | (un + 8P| 100

with K independent of k.
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By Sobolev inequality, triangle inequality and (u,, + 8)#TP~! > §7=1(u, + 8§)#

ptp=11P
[(”n+5) g ] > Slun +8)P =817 .

p
S1,P 1)

prP— 1 f’v| % %
( ) [/ (utn +8) 7 dx} — sPP=liqh (36)

i &
z (_) ”(un + 8)p ”[J Q) — M§98ﬂ+P—1|Q|pS1 ,

—\2

in the estimate above we using that My > 1.
Using the estimates (36) and (35) in (34), we obtain

(un +8)»

g < (%)p_l[<(ﬁ%-p—-np>
P (Q) AN Bp?

P
KoM ||ty + 8P 1o (0 + 88777110 }

2\"N B+ p— 1P 2

= (5) (%) 201 (un + 8)Pl Lo ) + 8°12] 7
2N (B+p-1)P 2

< (—) (M> KoM ||y + 8)P|| 1o ) + 192177 / (un + 8)Pdx
) BpP Q

By Holder’s inequality, we have

_ _ _1
5 = |2 1/ sPdx < 19 1/(un+8>ﬂdx < 1R 1 n + 8P 1o -
Q Q

Consequently,
P 2\N"L((B+p—1P
wn+8)r| < (—) (—) KoM || (un + 8)P |l o @)
L751(Q) ) Bp?

1
+1Q17 7 [y + 8P 1o @)-

-1
Since, E <ﬂL> > 1 we can deduce that
p

Q=

B
(un +8)r

P 1 —1\? Ko Lo
) 5—(Ei&—)1%WwwaH< i
Lpsl (Q) ,8 p q 6]7

)
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1 p

Now choose, 8 > 0 such that 877! = K|Q|° %1 and B > 1 such that,

—1\?
<ﬂL) 2 ﬂp_ ThUS,
p

B p
(un +8)»
L]’Sl ()

<cmpr! |l + ‘S)ﬂ”LU(sz)

*

12 .
Fort =cBanda = =L we obtain,
op

it + 81 ey < CMEBP" uw + 8117 g

and therefore,

a
T

20 (r—-D%
it +8llzer ey = (CMP) (Z) 7w +8le(en

Taking, 1o = 0, Tyt = ATy = o™t o | then after performing m iterations we
obtain the inequality

lun + 8l L1 (@) < (CM,% )’:0 l

m
o
Z_ m (p—D
Ti
(ﬂ() ) i + 81l @
i=1
21

Z (p—1
<CM29)’ 1 <1_[aat> lun + 8l ()

Therefore, on passing the limit as m — 0o, we get

20a (p—Da 26a
lunllze@) < llun + 8l L) < Ca- TME o@D luy 4 8l po ) < C1M™

37

In the last inequality we use the fact, u < u, where u € L°(2) is a supersolution
of the problem (20) and thus, u, = min{(u — M})",n} < (u — M)* <u™ <1,
for each n € N and k large enough (such that ||u|| < MZ).

Therefore, as n — oo we obtain

lw— M) F oo < My

26
for My, sufficiently large and ¢ - 1. Consequently, since My — oo as k — 00

o
we have, for y < 1, there exists k > 1 large enough such that,

lulloo <= M.
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Also, by (37), the embedding Wy"”(Q) < L7(Q) and since u, = min{(u —
M)F, n} < (u—M])" <uT < |u| we can establish

20

lunllzoo@y < CME " [uly,,p-

Therefore, as n — oo we obtain

200
lullo@) < CME [uly, p.

for k > 1 large enough fixed. O

Theorem 2 If hypotheses (H) hold, then we can find A* = L\*(k) > 0 (k as in Propo-
sition 12) such that

1. Forevery A € (0, A™) problem (P;) has at least two nontrivial positive solutions
ug, U € int[(C?] ()11 with ug < it and ugy # u.
2. For . = \* problem (P)) has one nontrivial positive solution
Uy € int[(C2 (R)4+] and so 1* € L.

3. For A > A\* problem (P,) has no nontrivial positive solution.

Proof By Theorem 1, for each A € (0, A*] and k € N there exists uy ; such that,

(=AU + (=A)2u = A{ux)™" + fi(x,u)] in «,
u=0 inRYV \ Q, (Pr.3)
u>0 in Q.

Moreover, 1, 2 and 3 holds to the problem (P ), by Theorem 1.

Using the Proposition 12, we have ||ug 3 |lcc < My for some k > 1 large enough.
Thus, uy := uk (x) < My and therefore fi(x,u,) = f(x,u,), in other words u;,
satisfies the problem (Py). O
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