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Abstract
In this paper, we are interested in studying the multiplicity, uniqueness, and nonex-
istence of solutions for a class of singular elliptic eigenvalue problems for the
Dirichlet fractional (p, q)-Laplacian. The nonlinearity considered involves super-
critical Sobolev growth. Our approach is variational together with the sub- and
supersolution methods, and in this way we can address a wide range of problems
not yet contained in the literature. Even when Ws1,p

0 (�) ↪→ L∞ (�) failing, we
establish ‖u‖L∞(�) ≤ C[u]s1,p (for some C > 0 ), when u is a solution.

Keywords Eigenvalue problem · Fractional p-Laplacian · Sobolev spaces ·
Supercritical Sobolev growth
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1 Introduction

Let � ⊂ R
N be a bounded domain. In this paper, we study the following singular

eigenvalue problem for the Dirichlet fractional (p, q)-Laplacian

⎧
⎨

⎩

(−�p)
s1u + (−�q)

s2u = λ
[
u(x)−η + f (x, u)

]
in �,

u = 0 in IRN \ �,

u > 0 in �

(Pλ)
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with λ > 0, 0 < s2 < s1 < 1, 0 < η < 1 and 1 < q < p.
The fractional p-laplacian operator (−�p)

s is defined as

(−�p)
su(x) = C(N , s, p) lim

ε↘0

∫

IRN \Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+sp
dy ,

for all x ∈ IRn , where C(N , s, p) is a normalization factor. The fractional p-Laplacian
is a nonlocal version of the p-Laplacian and is an extension of the fractional Laplacian
(p = 2).

In (Pλ), we have the sum of two such operators. So, in problem (Pλ), the differential
operator is nonhomogeneous, and this is a source of difficulties in the study of (Pλ).
Boundary value problems, driven by a combination of two or more operators of differ-
ent natures, arise in many mathematical models of physical processes. One of the first
such models was introduced by Cahn-Hilliard [5] describing the process of separation
of binary alloys. Other applications can be found in Bahrouni-Radulescu-Repovs [1]
(on transonic flow problems). Problems with or without singularity involving frac-
tional operators have been considered in different directions, as we can see in [6, 7,
20]. In [8, 19], the authors study singular systems, considering operators of the types
(p, q)-Laplacian and fractional (p, q)-Laplacian, respectively. However, none of the
works addressed operators of distinct fractional powers or nonlinearities involving
supercritical powers.

In the reaction of (Pλ) , λ > 0 is a parameter, u 	→ u−η with 0 < η < 1 is a singular
term and f (z, x) is a Carathéodory perturbation (that is, for all x ∈ R, z 	→ f (z, x)
is measurable on � and for a.e. z ∈ �, x 	→ f (z, x) is continuous). Unlike many
authors, we will not assume that for a.e. z ∈ �, f (z, ·) is (p − 1)-superlinear near
+∞.However, this superlinearity of the perturbation f (z, ·) is not formulatedusing the
very common in the literature Ambrosetti-Rabinowitz condition (the AR-condition,
for short), see Ref. [2]. The main goal of the paper is to explore the existence of a
positive solution to (Pλ). Using variational tools from the critical point theory together
with truncations and comparison techniques, we show that (Pλ) has a positive solution.

Throughout this paper, to simplify notation, we omit the constantC(N , s, p). From
now on, given a subset � of RN we set �c = RN\� and �2 = �×�. The fractional
Sobolev spaces Ws,p(�) are defined to be the set of functions u ∈ L p(�) such that

[u]s,p =
⎛

⎜
⎝

∫

IRN

∫

IRN

|u(x) − u(y)|p
|x − y|N+sp

dxdy

⎞

⎟
⎠

1
p

< ∞.

and we defined the space Ws,p
0 (�) by

Ws,p
0 (�) =

{

u ∈ Ws,p(�); u = 0 in �c
}

.
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In [3] the authors showed that,

Ws1,p
0 (�) ↪→ Ws2,q

0 (�).

Thus, the ideal space to study the problem (Pλ) is W
s1,p
0 (�).

The main spaces that will be used in the analysis of problem (Pλ) are the Sobolev
space Ws1,p

0 (�) and the Banach space

C0
s1(�) = {

u ∈ C0(�); u

ds1�
has a continuous extension to �

}
.

where d� is the distance function, d� = dist(x, ∂�).
On account of the Poincaré inequality, we have that [.]s,p is a norm of the Sobolev

space Ws1,p
0 (�). Moreover, in [3] the authors show that

[u]s2,p ≤ C

s2(s1 − s2)
[u]s1,p , for all u ∈ Ws1,p

0 (�),

for 0 < s2 < s1 < 1 and 1 < p < q < ∞, in other words, we have Ws1,p
0 (�) ↪→

Ws2,q
0 (�).
The Banach space C0

s1(�) is ordered with positive (order) cone

(C0
s1(�))+ =

{

f ∈ C0
s1(�); f ≥ 0 in �

}

which is nonempty and has topological interior

int
(
C0
s1(�)+

)
=

{

v ∈ C0
s1(�); v > 0 in � and inf

v

ds1�
> 0

}

.

Given u, v ∈ Ws1,p
0 (�) with u ≤ v we denote

[u, v] = {h ∈ Ws1,p
0 (�); u(x) ≤ h(x) ≤ v(x) for a. a. �}

[u) = {h ∈ Ws1,p
0 (�); u(x) ≤ h(x) for a. a. �}.

2 The hypotheses

The hypotheses on the perturbation f (x, t) are following:

H: f : � × R → R is a Carathéodory function such that f (x, 0) = 0 for a. a. x ∈ �

and for each t > 0 fixed f (·, t), 1
f (·,t) ∈ L∞(�), moreover

(i) lim
n→∞

F(x, t)

t p
= ∞ uniformly for a. a. x ∈ �, where F(x, t) =

∫ t

0
f (x, s)ds;
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(ii) If e(x, t) =
[

1 − p

1 − η

]

t1−η + f (x, t).t − pF(x, t), then there exists β ∈
(L1(�))+ such that

e(x, t) ≤ e(x, s) + β(x) for a.e. x ∈ � all 0 ≤ t ≤ s.

(iii) There exist δ > 0 and τ ∈ (1, q) and c0 > 0 such that,

c0t
τ−1 ≤ f (x, t) for a.e. x ∈ � all t ∈ [0, δ]

and for s > 0, we have

0 < ms ≤ f (x, t) for a.e. x ∈ � all t ≥ s.

(iv) For every ρ > 0, there exists Êρ > 0 such that for a.e. x ∈ �, the function

t 	→ f (x, t) + Êρ t
p−1

is nondecreasing on [0, ρ].
(v) We assume that there exists a number θ > 0 such that

lim sup
t→∞

f (x, t)

t p
∗
s1

−1+θ
< +∞ uniformly in x .

(vi) At last, we assume that there exists a sequence (Mk)with Mk → ∞ and such that,
for each r ∈ (p, p∗

s1),

t ∈ [0, Mk] �⇒ f (x, t)

tr−1 ≤ f (x, Mk)

(Mk)
r−1 uniformly in x .

The classical AR-condition restricts f (x, .) to have at least (μ − 1)-polynomial
growth near ∞. In contrast, the quasimonotonicity condition that we use in this work
(see hypothesis H (i i)), does not impose such a restriction on the growth of f (x, .)
and permits also the consideration of superlinear nonlinearities with slower growth
near ∞ (see the examples below). Besides, hypothesis (H (i i)) is a slight extension
of a condition used by Li-Yang [14, condition ( f4)].

There are convenient ways to verify (H (i i)). So, the hypothesis (H (i i)) holds, if
we can find M > 0 such that for a.e. x ∈ �

• t 	→ t−η + f (x, t)

t p−1 is nondecreasing on [M,∞).

• or t 	→ e(x, t) is nondecreasing on [M,∞).

Hypothesis (H (i i i)) implies the presence of a concave termnear zero,while hypoth-
esis (H (iv)) is a one-sided local Hölder condition. It is satisfied if, for a.e. x ∈ �,
f (x, .) is differentiable, and for every ρ > 0, we can find ĉρ such that

−ĉρ t
p−1 ≤ f ′

t (x, t)t for a.e. x ∈ �, all 0 ≤ t ≤ ρ.
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Below we list two examples of functions that satisfy the conditions (H)

• The function f1(x, t) =
{
tτ−1 if 0 ≤ t ≤ 1,

t p
∗
s1

−1+θ if t > 1,
with 1 < τ < q < p < θ <

p∗
s1 satisfies the hipotheses (H) and also the AR-condition.

• The function f2(x, t) =
{
tτ−1 if 0 ≤ t ≤ 1,

t p
∗
s1

−1+θ ln t + t s−1 if t > 1,
with 1 < τ < q <

p, 1 < s < p satisfies the hipotheses (H) but does not satisfy the AR-condition.

3 Preliminary

For any r > 1 consider the function Jr : R → R given by Jr (t) = |t |r−2.t . Thus,
using the arguments of [21], there exists cr > 0 and c̃r > 0 such that

〈Jr (z) − Jr (w), z − w〉 ≥
⎧
⎨

⎩

cr |z − w|r , if r ≥ 2,

cr
|z − w|2

(|z| + |w|)2−r , if r ≤ 2.
(1)

|Jr (t1) − Jr (t2)| ≤
{
c̃r |t1 − t2|r−1, if r ≤ 2,
c̃r |t1 − t2|2. (|t1| + |t2|)r−2 , if r ≥ 2.

(2)

Lemma 1 Let u, v ∈ Ws,r
0 (�) and denote w = u − v. Then,

∫

R2N

(
Jr (u(x) − u(y)) − Jr (v(x) − v(y))

)(
w(x) − w(y)

)

|x − y|N+sr
dxdy

≥

⎧
⎪⎨

⎪⎩

cr [u − v]rs,r , if r ≥ 2,

cr
[u − v]2s,r

(
[u]s,r + [v]s,r

)2−r , if r ≤ 2.

Proof The case r ≥ 2, the result is an immediate application of the above inequality.
Case r ≤ 2. Note that, using the Holder inequality we have

∫

R2N

|u(x) − u(y)|r
|x − y|N+sr

dxdy =
∫

R2N

|u(x) − u(y)|r
|x − y|N+sr

.

(|u(x) − u(y)| + |v(x) − v(y)|) r(2−r)
2

(|u(x) − u(y)| + |v(x) − v(y)|) r(2−r)
2

dxdy

=
∫

R2N

[
|u(x) − u(y)|

(|u(x) − u(y)| + |v(x) − v(y)|) (2−r)
2 |x − y| N+sr

2

]r

(|u(x) − u(y)| + |v(x) − v(y)|) r(2−r)
2

|x − y| 2−r
2

dxdy

≤
(∫

R2N

|u(x) − u(y)|2
(|u(x) − u(y)| + |v(x) − v(y)|)2−r |x − y|N+sr

dxdy

) r
2 (

[u]s,r + [v]s,r
) r(2−r)

2
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Thus, using the inequality (1) we have

⎛

⎝
[u − v]rs,r

(
[u]s,r + [v]s,r

) r(2−r)
2

⎞

⎠

2
r

≤
∫

R�N

|u(x) − u(y)|2
(|u(x) − u(y)| + |v(x) − v(y)|)2−r |x − y|N+sr

dxdy

≤ 1

cr

∫

R2N

(
Jr (u(x) − u(y)) − Jr (v(x) − v(y))

)(
(u − v)(x) − (u − v)(y)

)

|x − y|N+sr
dxdy.

��
For every 1 < r < ∞, denote by As,r : Ws,r

0 (�) → (
Ws,r

0 (�)
)∗ the nonlinear

map defined by

〈As,r (u), ϕ〉 =
∫

R2N

Jr (u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+sr
dxdy, for all u, ϕ ∈ Ws,r

0 (�).

An immediate consequence of Lemma 1 is the following proposition

Proposition 1 Themap As,r : Ws,r
0 (�) → (

Ws,r
0 (�)

)∗
mapsbounded sets to bounded

sets, is continuous, strictly monotone and satisfies,

un⇀u in Ws,r
0 (�) and lim sup

n→∞
〈As,r (un), (un − u)〉 ≤ 0 ⇒ un → u in Ws,r

0 (�).

Proof Indeed, using the inequality (2) we have

‖As,r (u) − As,r (w)‖∗ ≤
{
c̃r [u − w]r−1

s,r , if r ≤ 2,

c̃r [u − w]2s,r .
(
[u]s,r + [w]s,r

)r−2
, if r ≥ 2.

and thus As,r maps bounded sets to bounded sets, is continuous.
Moreover, if p ≥ 2 then using also the Lemma 1 results,

lim
n→∞ cr [un − u]2s,r

≤ lim
n→∞

∫

R2N

(
Jr (un(x)−un(y))− Jr (u(x)−u(y))

)(
(un−u)(x)−(un−u)(y)

)

|x−y|N+sr
dxdy

= lim sup
n→∞

〈

As,r (un) − As,r (u), un − u

〉

≤ 0,

and if p ≤ 2 let’s use again the Lemma 1 and obtain

cr
[un − u]2s,r

(
[un]s,r + [u]s,r

)2−r

≤
∫

R2N

(
Jr (un(x) − un(y)) − Jr (u(x) − u(y))

)(
(un − u)(x) − (un − u)(y)

)

|x − y|N+sr
dxdy

=
〈

As,r (un) − As,r (u), un − u

〉
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thus, if un⇀u inWs,r
0 (�) and lim sup

n→∞
As,r (un).(un −u) ≤ 0 then, there exists M > 0

such that ‖un‖s,r ≤ M and thus

lim
n→∞ cr

[un − u]2s,r
(
M + [u]s,r

)2−r ≤ lim
n→∞ cr

[un − u]2s,r
(
[un]s,r + [u]s,r

)2−r

≤ lim sup
n→∞

〈

As,r (un) − As,r (u), un − u

〉

≤ 0.

Consequently, for all 1 < p < ∞, we have un → u in Ws,r
0 (�). ��

The following result is a natural improvement of [15, Lemma 9] to the Dirichlet
fractional (p, q)-Laplacian.

Proposition 2 (Weak comparison principle) Let 0 < s1 < s2 < 1, 1 < q < p, � be
bounded in R

N and u, v ∈ Ws1,p
0 (�) ∩ C0

s1(�). Suppose that,

〈

As1,p(u) + As2,q(u), (u − v)+
〉

≤
〈

As1,p(v) + As2,q(v), (u − v)+
〉

then u ≤ v.

Proof The proof is a straightforward calculation, but for convenience of the reader we
present a sketch of it. By considering the equations for both p and q, and subtracting
them and adjusting the terms, we obtain

〈

As1,p(u) + As2,q(u), (u − v)+
〉

−
〈

As1,p(v) + As2,q(v), (u − v)+
〉

≤ 0. (3)

Using the identity

Jm(b) − Jm(a) = (m − 1)(b − a)

∫ 1

0
|a + t(b − a)|m−2dt

for a = v(x) − v(y) and b = u(x) − u(y), we have

Jm(u(x)−u(y))− Jm(v(x)−v(y)) = (m − 1) [(u − v)(x) − (u − v)(y)] Qm(x, y),

where Qm(x, y) =
∫ 1

0
|(v(x) − v(y)) + t[(u − v)(x) − (u − v)(y)]|m−2 dt .

We have Qm(x, y) ≥ 0 and Qm(x, y) = 0 only if v(x) = v(y) and u(x) = u(y).
Rewriting the integrands in (3) we obtain

∫

R2N

(
(p−1) [(u−v)(x)−(u−v)(y)] Qp(x, y)

|x−y|N+sp

)

((u−v)+(x)−(u−v)+(y))dxdy

+
∫

R2N

(
(q − 1) [(u − v)(x) − (u − v)(y)] Qq(x, y)

|x − y|N+sq

)

((u − v)+(x)
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−(u − v)+(y))dxdy ≤ 0.

We now consider

ψ = u − v = (u − v)+ − (u − v)−, ϕ = (u − v)+ = ψ+.

It follows from the last inequality that

∫

R2N

(
(p − 1)(ψ(x) − ψ(y))(ψ+(x) − ψ+(y))Qp(x, y)

|x − y|N+sp

)

dxdy

+
∫

R2N

(
(q − 1)(ψ(x) − ψ(y))(ψ+(x) − ψ+(y))Qq(x, y)

|x − y|N+sq

)

dxdy ≤ 0.

Applying the inequality (ξ − η)(ξ+ − η+) ≥ |ξ+ − η+|2 we obtain
∫

R2N

(p − 1)|ψ+(x) − ψ+(y)|2Qp(x, y)

|x − y|N+sp
dxdy

+
∫

R2N

(q − 1)|ψ+(x) − ψ+(y)|2Qq(x, y)

|x − y|N+sq
dxdy ≤ 0.

Thus, at almost every point (x, y) we have ψ+(x) = ψ+(y) or

Qp(x, y) = Qq(x, y) = 0.

Since Qp(x, y) = Qq(x, y) = 0 also imply ψ+(x) = ψ+(y), we conclude that

(u − v)+(x) = C ≥ 0, ∀x ∈ R
N

and since, u, v ∈ Ws1,p
0 (�), results that C = 0 and consequently u ≤ v. ��

Proposition 3 (Strong comparison principle) Let 0 < s1 < s2 < 1, 1 < q < p, � be
bounded in R

N , g ∈ C0(R) ∩ BVloc(R), u, v ∈ Ws1,p
0 (�) ∩ C0

s1(�) such that u �= v

and K > 0 satisfy,

{
(−�p)

s1u+(−�p)
s1u+g(u)≤(−�p)

s1v + (−�q)
s2v + g(v) ≤ K weakly in �,

0 < u ≤ v in �.

then u ≤ v in �. In particular, if u, v ∈ int[(C0
s1(�)+)] then v − u ∈ int[(C0

s1(�)+)].
Proof Without loss of generality,wemay assume that g is nondecreasing and g(0) = 0.
In fact, by Jordan’s decomposition we can find g1, g2 ∈ C0(R) nondecreasing such
that g(t) = g1(t) − g2(t) and g1(0) = 0.

Since, u �= v by continuity, we can find x0 ∈ �, ρ, ε > 0 such that Bρ(x0) ⊂ �

and

sup
Bρ(x0)

u < inf
Bρ(x0)

v − ε.
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Hence, for all η > 1 close enough to 1 we have

sup
Bρ(x0)

ηu < inf
Bρ(x0)

v − ε

2
.

Define wη ∈ Ws1,p
0 (�\Bρ(x0)) by

wη(x) =
{

ηu(x), if x ∈ Bρ(x0)
c
,

v(x), if x ∈ Bρ(x0),

sowη ≤ v(x) in Bρ(x0) and by the nonlocal superposition principle ([11], Proposition
2.6) we have weakly in �\Bρ(x0)

(−�p)
s1wη ≤ηp−1(−�p)

s1u−Cρε p−1 and (−�q)
s2wη ≤ηq−1(−�q)

s2u−Cρεq−1

for some Cρ > 0 and all η > 1 close enough to 1. Further, we have weakly in
�\Bρ(x0)

(−�p)
s1wη + (−�q)

s2wη + g(wη) ≤ ηp−1(−�p)
s1u

+ ηq−1(−�q)
s2u + g(wη) − Cρεq−1 − Cρε p−1

≤ ηp−1
(

(−�p)
s1u + (−�q)

s2u + g(u)

)

+
(

g(wη) − ηp−1g(u)

)

− Cρεq−1 − Cρε p−1

≤
(

(−�p)
s1u + (−�q)

s2u + g(u)

)

+
(

g(wη) − ηp−1g(u)

)

+ K
(
ηp−1 − 1

) − Cρεq−1 − Cρε p−1

≤
(

(−�p)
s1v + (−�q)

s2v + g(v)

)

+
(

g(wη) − ηp−1g(u)

)

+ K
(
ηp−1 − 1

)

− Cρεq−1 − Cρε p−1.

Since

(

g(wη) − ηp−1g(u)

)

+ K
(
ηp−1 − 1

) → 0

uniformly in �\Bρ(x0) as η → 1+, we have, for all η > 1 close enough to 1,

⎧
⎪⎨

⎪⎩

(−�p)
s1wη + (−�p)

s1wη + g(wη) ≤ (−�p)
s1v + (−�q)

s2v + g(v) ≤ K
weakly in �\Bρ(x0),

0 < wη ≤ v in
(
�\Bρ(x0)

)
.
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Testing with ϕ = (wη − v)+ ∈ Ws1
0 (�)\Bρ(x0), recalling the monotonicity of g,

and applying Proposition 2 we get v > wη in �)\Bρ(x0). So we have

v ≥ ηu ≥ u.

In particular, if u, v ∈ int
[
(C0

s1(�))+
]
then

inf
�

v − u

ds1�
≤ inf

�

(η − 1)u

ds1�
> 0

and so v − u ∈ int
[
(C0

s1(�))+
]
. ��

4 An auxiliary problem

Firstly, we will need to define, with the help of the real sequence defined in H(vii), a
sequence of auxiliary equations that will be important for our purpose. More specif-
ically, for each k ∈ N, we define the auxiliary truncation functions by choosing
r ∈ (

p, p∗
s1

)
such that p∗

s1 − r < θ and we set

fk(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if t ≤ 0
f (x, t), if 0 ≤ t ≤ Mk
f (x, Mk)

(Mk)
r−1 tr−1, if t ≥ Mk .

(4)

Notice that we define fk to be such that r in its definition is independent of k. We
see that we are really truncating our original function, making it subcritical for large
arguments. Furthermore, in view of conditions H(vi), H(vii) and the choice of θ , we
can prove that, for k big enough, fk satisfies, for a constant C > 0,

| fk(x, t)| ≤ C (Mk)
2θ |t |r−1. (5)

Indeed, for all t > 0, condition H(vii) and (4) gives

fk(x, t) ≤ f (x, Mk)

(Mk)
r−1 tr−1

and, by H(vi), if k is sufficiently large,

f (x, Mk)

(Mk)
r−1 ≤ C (Mk)

p∗
s1

−r+θ ≤ C (Mk)
2θ .

For each k ∈ N, let us consider the following auxiliary problem

⎧
⎨

⎩

(−�p)
s1u + (−�q)

s2u = λ
[
u(x)−η + fk(x, u)

]
in �,

u = 0 in IRN \ �,

u > 0 in �

(Pk,λ)
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with λ > 0, 0 < s1 < s2 < 1, 0 < η < 1 and 1 < q < p.
By the hypotheses (H), the hypotheses on the truncation fk(x, t) are following:

Hk : fk : � × R → R is a Carathéodory function such that fk(x, 0) = 0 for a. a.
x ∈ � and

(i) fk(x, t) ≤ αk(x)[1 + tr−1] for a. a. x ∈ � all t ≥ 0 with αk ∈ L∞(�) and

p < r < p∗
s1 = N P

N − s1 p
;

(ii) lim
t→∞

Fk(x, t)

t p
= ∞ uniformly for a. a. x ∈ �, where Fk(x, t) =

∫ t

0
fk(x, s)ds;

(iii) If ek(x, t) =
[

1 − p

1 − η

]

t1−η + fk(x, t).t − pFk(x, t), then there exists βk ∈
(L1(�))+ such that

ek(x, t) ≤ ek(x, s) + βk(x) for a.e. x ∈ � all 0 ≤ t ≤ s.

(iv) There exist δ > 0 and τ ∈ (1, q) and c0 > 0 such that,

c0t
τ−1 ≤ fk(x, t) for a.e. x ∈ � all t ∈ [0, δ]

and for all s > 0, we have

0 < mk,s ≤ fk(x, t) for a.e. x ∈ � all t ≥ s.

(v) For every ρ > 0, there exists Êk,ρ > 0 such that for a.e. x ∈ �, the function

t 	→ fk(x, t) + Êk,ρ t
p−1

is nondecreasing on [0, ρ].
The hypothesis (Hk (i)) holds by (5), (Hk (i i)) holds by (4) and p < r . We will

prove first that (Hk (iv)) holds. Since δ > 0, τ ∈ (1, q) and c0 > 0, if δ < Mk , we
have

c0t
τ−1 ≤ f (x, t) = fk(x, t) for a.e. x ∈ � all t ∈ [0, δ].

For s > 0, we have
• 0 < s ≤ t ≤ Mk ,

fk(x, t) = f (x, t) ≥ ms > 0,

by (H (i i i)).
• 0 < s ≤ Mk < t ,

fk(x, t) = f (x, Mk)

(Mk)
r−1 tr−1 ≥ f (x, Mk)

(Mk)
r−1 Mr−1

k = f (x, Mk) > 0.
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• 0 < Mk < s ≤ t ,

fk(x, t) = f (x, Mk)

(Mk)
r−1 tr−1 ≥ f (x, Mk)

(Mk)
r−1 Mr−1

k = f (x, Mk) > 0.

So, for all s > 0 we have

fk(x, t) ≥ mk,s > 0 for a.e. x ∈ � all t ≥ s,

with mk,s = max

{

ms, inf
x∈�

f (x, Mk)

}

> 0.

To prove that (Hk (i i i)) holds it is sufficiently verify that there is a constant Ck > 0
such that t 	→ ek(x, t) is nondecreasing on [Ck,∞). Since for t ≥ Mk we have

ek(x, t) =
[

1 − p

1 − η

]

t1−η + fk(x, t).t − pFk(x, t)

=
[

1 − p

1 − η

]

t1−η + f (x, Mk)

(Mk)
r−1 tr − p

∫ Mk

0
f (x, s)ds −

∫ t

Mk

f (x, Mk)

(Mk)
r−1 sr−1ds

=
[

1 − p

1 − η

]

t1−η + f (x, Mk)

(Mk)
r−1 tr − p

∫ Mk

0
f (x, s)ds − f (x, Mk)

(Mk)
r−1

1

r
[tr − Mr

k ].

Hence

∂

∂t
ek(x, t) = [1 − η − p] t−η + (r − 1)

f (x, Mk)

(Mk)
r−1 tr−1.

Notice that ∂
∂t ek(x, t) ≥ 0 if

[1 − η − p] t−η + (r − 1)
f (x, Mk)

(Mk)
r−1 tr−1 ≥ 0,

or equivalently, if

t ≥
(

− [1 − η − p]
(Mk)

r−1

(r − 1) f (x, Mk)

) 1
r+η

.

We can consider

Ck =
(

− [1 − η − p]
(Mk)

r−1

(r − 1)mk,s

) 1
r+η

,

where mk,s is as in (Hk (iv)). Hence, t 	→ ek(x, t) is nondecreasing on [Ck,∞).
The proof of (Hk (v)) follows from (4) and (H (iv)).
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Definition 1 A function u ∈ Ws1,p
0 (�) is a weak solution of the problem (Pk,λ) if,

u−ηϕ ∈ Ws1,p
0 (�) for all ϕ ∈ Ws1,p

0 (�) and

〈

As1,p(u) + As2,q(u), ϕ

〉

=
∫

�

λ
[
u−η + fk(x, u)

]
ϕdx, for all ϕ ∈ Ws1,p

0 (�).

The difficulty that we encounter in the analysis of problem (Pk,λ) is that the energy
(Euler) function of the problem Iλ : Ws1,p

0 (�) → R defined by

Iλ(u) = 1

p
[u]ps1,p + 1

q
[u]qs2,p − λ

∫

�

[
1

1 − η
(u+)1−η + Fk(x, u

+)

]

dx . (6)

for all u ∈ Ws1,p
0 (�), is not C1 (due to the singular term). So, we can not use the

minimax methods of critical point theory directly on Iλ(.). We have to find ways to
bypass the singularity and deal with C1-functionals.

The hypotheses H (i) and H (iv) assure us that, there are c0 > 0 and c2 > 0 such
that,

fk(x, z) ≥ c0z
τ−1 − c2z

θ−1, for a. a. x ∈ � and z ≥ 0. (7)

We consider the following auxiliary Dirichilet fractional (p, q)-equation

⎧
⎨

⎩

(−�p)
s1u + (−�q)

s2u = λ
[
c0u(x)τ−1 − c2uθ−1

]
in �,

u = 0 in IRN \ �,

u > 0 in �

(8)

with 0 < s2 < s1, λ > 0 and 1 < τ < q < p < θ < p∗
s = Np

N − sp
.

Lemma 2 If uλ ∈ Ws1,p
0 (�) be a weak solution of problem (8). Then uλ ∈ L∞(�).

Proof We denote by hλ(t) = λc0tτ−1 − λc2tθ−1. Thus,

〈As1,p(uλ) + As2,q(uλ), φ〉
=

∫

R2N

(
Jp(uλ(x) − uλ(y))

|x − y|N+s1 p
+ Jq(uλ(x) − uλ(y))

|x − y|N+s2q

)

(φ(x) − φ(y))dxdy

=
∫

�

hλ(uλ)φdx

(9)

for any φ ∈ Ws1,p
0 (�).

For each k ∈ N, set

�k := {x ∈ � : u(x) > k}.
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Since uλ ∈ Ws1,p
0 (�) and uλ ≥ 0 in �, we have that (uλ − k)+ ∈ Ws1,p

0 (�).
Taking φ = (uλ − k)+ in (9), we obtain

〈
As1,p(uλ) + As2,q(uλ), φ

〉 =
∫

�

hλ(uλ)(uλ − k)+dx . (10)

Applying the algebraic inequality |a − b|p−2(a − b)(a+ − b+) ≥ |a+ − b+|p to
estimate the left-hand side of (10), we obtain

(∫

�k

(uλ − k)p
∗
s dx

) p
p∗s ≤ C

∫

R2N

|uλ(x) − uλ(y)|p
|x − y|N+sp

dxdy

≤ C
〈
As1,p(uλ) + As2,q(uλ), φ

〉

= C
∫

�k

hλ(uλ)(uλ − k)dx

= C
∫

�k

[
λc0u

τ−1
λ − λc2u

θ−1
λ

]
(uλ − k)dx

≤ C
∫

�k

λc0u
τ−1
λ (uλ − k)dx . (11)

Since 1 < τ < p, for k > 1 in �k we have

uτ−1
λ (uλ − k) ≤ u p−1

λ (uλ − k) ≤ 2p−1(uλ − k)p + 2p−1k p−1(uλ − k)

and thus,

∫

�

uτ−1
λ (uλ − k)dx ≤ 2p−1

∫

�

(uλ − k)pdx + 2p−1k p−1
∫

�k

(uλ − k)dx . (12)

Applying Hölder’s inequality, we obtain

∫

�k

(uλ − k)pdx ≤ |�k |
p∗s −p
p∗s

(∫

�k

(uλ − k)p
∗
s dx

) p
p∗s

. (13)

So, using the inequalities (12) and (13) in (11), we have

∫

�k

(uλ−k)pdx≤C0 |�k |
p∗s−p
p∗s

[

2p−1
∫

�k

(uλ−k)pdx + 2p−1k p−1
∫

�k

(uλ − k)dx

]

.

Thus, we obtain

[

1 − 2p−1C0|�k |
p∗s −p
p∗s

] ∫

�k

(uλ − k)pdx ≤ 2p−1k p−1 |�k |
(p∗s −p)

p∗s
∫

�k

(uλ − k)dx .
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If k → ∞, then |�k | → 0. Therefore, there exists k0 > 1 such that

1 − 2p−1C0|�k |
p∗s −p
p∗s ≥ 1

2
if k ≥ k0 > 1.

Thus, for such k, we conclude that

1

2

∫

�k

(uλ − k)pdx ≤ 2p−1k p−1C0|�k |
p∗s −p
p∗s

∫

Ak

(uλ − k)dx . (14)

Hölder’s inequality and (14) yield

(∫

�k

(uλ − k)dx

)p

≤

|�k |p−1
∫

�k

(uλ − k)pdx ≤ |�k |p−12p−1k p−1C0|�k |
p∗s −p
p∗s

∫

Ak

(uλ − k)dx .

Thus,

∫

�k

(u − k)dx ≤ 2C̃k|�k |1+ε, ∀ k ≥ k0, (15)

where ε = p∗
s − p

p∗
s (p − 1)

> 0 and C̃ > 0.

The same arguments used in [16] assures us that uλ ∈ L∞(�). Then the nonlinear
regularity theory, see [9] says that uλ ∈ int(C0

s1(�))+. ��
Proposition 4 For every λ > 0, the problem (8) admits a unique positive solution uλ ∈
int(C0

s1(�)+) and uλ → 0 in C0
s1(�) as λ → 0+.

Proof Existence Note that, the solutions of the problem (8) are critical points of the
functional Ĩλ : Ws1,p

0 (�) → Ws2,q
0 (�) given by

Ĩλ(u) = 1

p
[u]ps1,p + 1

q
[u]qs2,p − λc0

τ
‖u+‖τ

τ + λc2
θ

‖u+‖θ
θ , for all u ∈ Ws1,p

0 (�)

(16)

where ‖.‖t denote the norm in space Lt (�).
Since 1 < τ < q < p < θ , then Ĩλ(tu) → ∞ as t → ∞, is that, Jλ is coercive.

Also using theSobolev embedding theorem,we see that Ĩλ is sequentiallyweakly lower
semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find uλ ∈ Ws1,p

0 (�)

such that

Ĩλ(uλ) = min

{

Jλ(u); u ∈ Ws1,p
0 (�)

}

.
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Now notice that 1 < τ < q < p < θ and u ∈ int(C0
s1(�)+) results

Ĩλ(tu) < 0 for t ∈ (0, 1) small enough (17)

thus Ĩλ(uλ) < 0 = Ĩλ(0) and therefore uλ �= 0.
Using the (17) we have,

Ĩ ′
λ(uλ) = 0

and consequently

〈

As1,p(uλ) + As2,q(uλ), ϕ

〉

= λ

∫

�

c0(u
+
λ )τ−1ϕdx

−λ

∫

�

c2(u
+
λ )θ−1ϕdx, for all ϕ ∈ Ws1,p

0 (�). (18)

Choosing ϕ = u−
λ ∈ Ws1,p

0 (�) results

[
u−

λ

]p
s1,p

+ [
u−

λ

]

s2,q
≤

〈

As1,p(uλ) + As2,q(uλ), u
−
λ

〉

= λ

∫

�

c0(u
+
λ )τ−1u−

λ dx − λ

∫

�

c2(u
+
λ )θ−1u−

λ dx = 0

and therefore
[
u−

λ

]p
s1,p

= 0, is that, uλ ≥ 0 and uλ �= 0.
Uniqueness To show the uniqueness of the solution, we will use arguments similar

to those used in [12]. Let’s use the following discrete Picone’s inequality from [4]

Jr (a − b)

(
cr

ar−1 − dr

br−1

)

≤ |c − d|r , for all a, b ∈ R
∗+, c, d ∈ R

+. (19)

Let uλ, vλ ∈ Ws1,p
0 (�) positive solutions of the problem (8). As above, we show

that uλ, vλ ∈ int(C0
s1(�)+). Thus, using the same arguments as Lemma 2.4 of [12] we

have,

u p
λ

v
p−1
λ

∈ Ws1,p
0 (�).

Consider wλ = (u p
λ − v

p
λ )+, thus,

wλ

v
p−1
λ

=
(

u p
λ

v
p−1
λ

− vλ

)+
∈ Ws1,p

0 (�) and
wλ

u p−1
λ

=
(

uλ − v
p
λ

u p−1
λ

)+
∈ Ws1,p

0 (�).

We denote by gλ(t) = λc0tτ−p − λc2tθ−p. Thus, g is strictly decreasing in R
+
0 .
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Testing (18) with wλ

u p−1
λ

we have

〈

As1,p(uλ) + As2,q(uλ),
wλ

u p−1
λ

〉

= λ

∫

�

c0u
τ−1
λ

wλ

u p−1
λ

dx − λ

∫

�

c2u
θ−1
λ

wλ

u p−1
λ

dx

= λ

∫

�

c0u
τ−p
λ wλdx − λ

∫

�

c2u
θ−p
λ wλdx

=
∫

{uλ>vλ}
gλ(uλ)(u

p
λ − v

p
λ )dx

and testing (18) with wλ

v
p−1
λ

we have

〈

As1,p(vλ) + As2,q(vλ),
wλ

v
p−1
λ

〉

= λ

∫

�

c0v
τ−1
λ

wλ

v
p−1
λ

dx − λ

∫

�

c2v
θ−1
λ

wλ

v
p−1
λ

dx

= λ

∫

�

c0v
τ−pwλdx − λ

∫

�

c2v
θ−τ
λ wλdx

=
∫

{uλ>vλ}
gλ(vλ)(u

p
λ − v

p
λ )dx

Thus,

〈

As1,p(uλ) + As2,q(uλ),
wλ

u p−1
λ

〉

−
〈

As1,p(vλ) + As2,q(vλ),
wλ

v
p−1
λ

〉

=
∫

{uλ>vλ}
[
gλ(uλ) − gλ(vλ)

]
(u p

λ − v
p
λ )dx .

Note that, using the discrete Picone’s inequality (19), see (Proposition 3.1, [12])
we have

jp(u(x) − u(y))

(
wλ(x)

uλ(x)p−1 − wλ(y)

uλ(y)p−1

)

≥ jp(v(x) − v(y))

(
wλ(x)

vλ(x)p−1 − wλ(y)

vλ(y)p−1

)

and thus,

〈

As1,p(uλ) + As2,q(uλ),
wλ

u p−1
λ

〉

≥
〈

As1,p(vλ) + As2,q(vλ),
wλ

v
p−1
λ

〉

.

Therefore, since gλ is strictly decreasing in R
+
0 results

0 ≤
∫

{uλ>vλ}
[
gλ(uλ) − gλ(vλ)

]
(u p

λ − v
p
λ )dx ≤ 0
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so we deduce that {uλ > vλ} has null measure, is that, uλ ≤ vλ in �. Similarly, using
the function test wλ = (v

p
λ − u p

λ )+ we see that uλ ≥ vλ in �, and thus uλ = vλ.
Moreover, we have

[
uλ

]p
s1,p

≤ [
uλ

]p
s1,p

+ [
uλ

]q
s2,q

= λc0‖uλ‖τ
τ − λc2‖uλ‖θ

θ

≤ λc0‖uλ‖τ
τ

≤ λĉ0
[
uλ

]τ
s1,p

,

for some ĉ0 > 0. Thus,

[
uλ

]p−τ

s1,p
≤ λĉ0

and therefore, uλ → 0 in Ws1,p
0 (�) as λ → 0+. Using the nonlinear regularity

theorem, see [9], results that

uλ → 0 in C0
s1(�) as λ → 0+.

��
We consider another auxiliary problem,

⎧
⎨

⎩

(−�p)
s1u + (−�q)

s2u = λu−η
λ + 1 in �,

u = 0 in IRN \ �,

u > 0 in �

(20)

with λ > 0, 0 < η < 1 and 1 < q < p.

Proposition 5 For every λ > 0, there exists a unique solution uλ ∈ int
[
(C0

s1(�))+
]

of the problem (20) and a λ0 > 0 such that, for all 0 < λ ≤ λ0 it holds

uλ ≤ uλ.

Proof Note that, the Lemma 14.16 of Gilbarg-Trundiger [10] says that ds1� ∈ C2(�δ0),
where �δ0 = {x ∈ �; ds1� (x) < δ0}. Thus, ds1� ∈ int

[
(C0

s1(�))+
]
and so by Proposi-

tion 4.1.22 of [17], there exists c3 = c3(uλ) > 0 and c4 = c4(uλ) > 0 such that,

c3d
s1
� ≤ uλ ≤ c4d

s1
� . (21)

Since due to (21), λu−η
λ + 1 ∈ L1(�). The existence of a weak solution of (20)

follows from direct minimization in Ws1,p
0 (�) of the functional

1

p
[u]ps1,p + 1

q
[u]qs2,p −

∫

�

(λu−η
λ + 1)udx,
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whereas the uniqueness comes from, for instance, the comparison principle for the
Dirichlet fractional (p, q)-Laplacian, Propossition 2. Using the maximum principle,
[9], the solution uλ ∈ int

[
(C0

s1(�)+)
]
.

For show the existence of λ0 > 0 such that uλ ≤ uλ for all 0 < λ ≤ λ0, acting on
(20) with uλ and obtain

[uλ]
p
s1,p ≤ [uλ]

p
s1,p + [uλ]

q
s2,q

= λ

∫

�

u−η
λ .uλdx +

∫

�

uλdx

= λ

∫

�

u1−η
λ .

uλ

uλ

dx +
∫

�

uλdx

≤ λc5

∫

�

uλ

ds1�
dx + |�| p−1

p

(∫

�

u p
λdx

) 1
p

(Holder inequality)

≤
(

λc5 + 1

λ1(p)

)

|�| p−1
p [uλ]s1,p (Hardy’s inequality and first eigenvalue).

So,we have {uλ}λ∈(0,1] is uniformly bounded inWs1,p
0 (�). Using arguments similar

to the Lemma 1, (see also Ladyzhenskaya-Ural’tseva [13] Theorem 7.1) results

{uλ}λ∈(0,1] ⊂ L∞(�) is uniformly bounded in λ.

The condition H (i) implies that there exists λ0 > 0 such that,

λ fk(x, uλ) ≤ λ‖a‖(1 + ‖uλ‖θ−1) ≤ 1 for all λ ∈ (0, λ0] and x a. a. in �.

For each λ ∈ (0, λ0] consider the Carathéodory function

κλ(x, t) =
{

λ[c0(t+)τ−1 − c2(t+)θ−1] if t ≤ uλ(x),
λ[c0uλ(x)τ−1 − c2uλ(x)θ−1] if uλ(x) < t .

Let �λ : Ws1,p
0 → R the C1-functional defined by

�λ(u) = 1

p
[u]ps1,p + 1

q
[u]qs2,p −

∫

�

Kλ(x, u)dx, for all u ∈ Ws1,p
0 (�)

where Kλ(x, t) =
∫ t

0
κλ(x, s)ds.

Note that, �λ is coercive and sequentially wekly lower semicontinuous. So, there
exists ũλ ∈ Ws1,p

0 (�) such that

�λ(ũλ) = min
[
�λ(u); u ∈ Ws1,p

0 (�)
]
.

Since 1 < τ < q < p < θ results

�λ(tu) < 0 for t ∈ (0, 1) small enough (22)
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thus �λ(uλ) < 0 = �λ(0) and therefore uλ �= 0.
Using the (22) we have,

� ′
λ(ũλ) = 0

and consequently

〈

As1,p(ũλ) + As2,q(ũλ), ϕ

〉

=
∫

�

κλ(x, ũλ)ϕdx, for all ϕ ∈ Ws1,p
0 (�).

Choosing ϕ = −ũλ ∈ Ws1,p
0 (�), we see that ũλ ≥ 0 and ũλ �= 0. Taking ϕ =

(ũλ − uλ)
+ ∈ Ws1,p

0 (�) we find,
From (7), we have that there exits c0 > 0 and c2 > 0 such that fk(x, t) ≥ c0tτ−1 −

c2tθ−1 and so

〈

As1,p(ũλ) + As2,q(ũλ), (ũλ − uλ)
+
〉

=
∫

�

κλ(x, ũλ)(ũλ − uλ)
+dx

=
∫

�

λ[c0uτ−1
λ − c2u

θ−1
λ ](ũλ − uλ)

+dx

≤
∫

�

λ fk(x, uλ)(ũλ − uλ)
+dx

≤
∫

�

[λu−η
λ + 1](ũλ − uλ)

+dx (for all 0 < λ ≤ λ0)

=
〈

As1,p(uλ) + As2,q(uλ), (ũλ − uλ)
+
〉

and so, by Proposition 2 ũλ ≤ uλ. Moreover, note that,

�λ(u) = Ĩλ(u), for all u ∈ [0, uλ],

thus

Ĩλ(ũλ) = �λ(ũλ) = min
[
�λ(u); u ∈ Ws1,p

0 (�)
]

= min

{

�λ(u); u ∈ [0, uλ]
}

= min

{

Ĩλ(u); u ∈ [0, uλ]
}

= Ĩλ(uλ).

By Proposition 4 we have ũλ = uλ and therefore uλ ≤ uλ for all 0 < λ ≤ λ0. ��
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5 Existence of positive solution for Pk,�

We consider the set

L =
{

λ > 0; problem Pk,λadmits a positive solution

}

and the set Sλ of the positive solutions to the problem Pk,λ.

Proposition 6 Assume the hypotheses (Hk) hold, then

i) L �= ∅;
ii) If λ ∈ L, then uλ ≤ u for all u ∈ Sλ and Sλ ⊆ int[(C0

s1(�))+].
Proof Let λ0 > 0 given in the Proposition 4, so for λ ∈ (0, λ0] we have

uλ ≤ uλ and λ f (x, uλ) ≤ 1 for a. a. x ∈ �. (23)

We consider the function

gλ(x, t) =
⎧
⎨

⎩

λ[u−η
λ + fk(x, uλ)] if t < uλ(x),

λ[t−η + fk(x, t)] if uλ(x) ≤ t ≤ uλ(x),
λ[u−η

λ + fk(x, uλ)] if uλ(x) < t,

and the functional �λ : Ws1,p
0 (�) → R defined by

�λ(u) = 1

p
[u]ps1,p + 1

q
[u]qs2,p −

∫

�

Gλ(x, u)dx, for all u ∈ Ws1,p
0 (�)

where G(x, t) =
∫ t

0
gλ(x, s)ds.

By Proposition 3 of [18] we have �λ ∈ C1(Ws1,p
0 (�), R). Moreover, using the

hypotheses (H) we have, �λ is coercive and sequently weakly lower semicontinuous.
Thus, there exists uλ := uk,λ ∈ Ws1,p

0 (�) such that,

�λ(uλ) = min

[

�λ(u); u ∈ Ws1,p
0 (�)

]

.

Thus, �′
λ(uλ) = 0, that is,

〈

As1,p(uλ) + As2,q(uλ), ϕ

〉

=
∫

�

gλ(x, uλ)ϕdx, for all ϕ ∈ Ws1,p
0 (�). (24)

Testing the Eq. (24) with ϕ = (uλ − uλ)
+ ∈ Ws1,p

0 (�) and using the inequality
(23), we find

〈

As1,p(uλ) + As2,q(uλ), (uλ − uλ)
+
〉
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=
∫

�

gλ(x, uλ)(uλ − uλ)
+dx

=
∫

�

λ[u−η
λ + fk(x, uλ)](uλ − uλ)

+dx

≤
∫

�

[λu−η
λ + 1](uλ − uλ)

+dx (for all 0 < λ ≤ λ0)

=
〈

As1,p(uλ) + As2,q(uλ), (uλ − uλ)
+
〉

and so, by Proposition 2 uλ ≤ uλ.
Analogously, testing (24) with the function ϕ = (uλ −uλ)

+ ∈ Ws1,p
0 (�) and using

(7), we have,

〈

As1,p(uλ) + As2,q(uλ), (uλ − uλ)
+
〉

=
∫

�

gλ(x, uλ)(uλ − uλ)
+dx

=
∫

�

λ[u−η
λ + fk(x, uλ)](uλ − uλ)

+dx

≥
∫

�

λ[c0uτ−1
λ − c2u

θ−1](uλ − uλ)
+dx (for all 0 < λ ≤ λ0)

=
〈

As1,p(uλ) + As2,q(uλ), (uλ − uλ)
+
〉

and so, by Proposition 2 we have uλ ≤ uλ.
Therefore,

uλ ∈ [uλ, uλ] ⇒ uλ ∈ Sλ ⇒ (0, λ0] ⊆ L.

For item (ii), it is sufficient to argue as in the Proposition 4, replacing uλ with
u ∈ Sλ, we show that uλ ≤ u for all u ∈ Sλ. For show that Sλ ⊆ int[(C0

s1(�))+] we
use the maximum principle, see [9]. ��
Proposition 7 If hypotheses (Hk) hold, λ ∈ L and μ ∈ (0, λ), then μ ∈ L.

Proof Let λ ∈ L, so we can find uλ ∈ Sλ ⊆ int[(C0
s1(�))+]. Consider the Dirichlet

problem,

⎧
⎨

⎩

(−�p)
s1u + (−�q)

s2u = ϑc0u(x)τ−1 − λc2uθ−1 in �,

u = 0 in IRN \ �,

u > 0 in �

(25)

with 0 < ϑ < λ and 1 < τ < q < p < θ . As we did in the proposition, we can find a
unique solution ũϑ ∈ int[(C0

s1(�))+] to the problem (25) and, in addition, we can show

that ũ−η
ϑ ∈ L1(�). Since, for all 0 < ϑ1 < ϑ2 ≤ λ, we haveϑ1c0u(x)τ−1−λc2uθ−1 ≤

ϑ2c0u(x)τ−1 − λc2uθ−1, by comparison principle results that ũϑ1 ≤ ũϑ2 . Note that,
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by Proposition 5 ũλ = uλ, so

ũμ ≤ uλ ≤ uλ.

Define the Caracthéodory function,

γλ(x, t) =
⎧
⎨

⎩

μ[ũ−η
μ + fk(x, ũμ)] if t < ũμ(x),

μ[t−η + fk(x, t)] if ũμ(x) ≤ t ≤ ũμ(x),
μ[ũ−η

μ + fk(x, ũμ)] if ũμ(x) < t,

Let ϒλ : Ws1,p
0 (�) → R the C1-functional defined by

ϒλ(u) = 1

p
[u]ps1,p + 1

q
[u]qs2,p −

∫

�

�μ(x, u)dx, for all u ∈ Ws1,p
0 (�)

where �λ(x, t) =
∫ t

0
γ (x, s)ds.

Note that, ϒλ is coercive and sequentially wekly lower semicontinuous. So,

ϒμ(uμ) = min
[
ϒμ(u); u ∈ Ws1,p

0 (�)
]
.

is attained by a function uμ := uk,μ ∈ Ws1,p
0 (�).

Thus, ϒ ′
μ(uμ) = 0, that is,

〈

As1,p(uμ) + As2,q(uμ), ϕ

〉

=
∫

�

γμ(x, uμ)ϕdx, for all ϕ ∈ Ws1,p
0 (�). (26)

Testing the Eq. (26) with ϕ = (uμ − uλ)
+ ∈ Ws1,p

0 (�), using the Proposition 2
and 0 < μ < λ we show that uμ ≤ uλ. In addition, testing the Eq. (26) with the
function ϕ = (ũμ − uμ)+ ∈ Ws1,p

0 (�), using the Proposition 2 and the fact ũμ is
unique solution of the problem (25), we show ũμ ≤ uμ.

So we have proved that,

uμ ∈ [ũμ, uλ] ⇒ uμ ∈ Sμ ⊆ int[(C0
s1(�))+] and so μ ∈ L.

��

Proposition 8 If hypotheses (Hk) hold, λ ∈ L, uλ ∈ Sλ ⊆ int
[
(C0

s1(�))+
]
andμ < λ,

then μ ∈ L and there exists uμ ∈ Sμ such that

uλ − uμ ∈ int
[
(C0

s1(�))+
]
.
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Proof By Proposition 6 we know that μ ∈ L and we can find uμ := uk,μ ∈ Sμ ⊆
int

[
(C0

s1(�)+)
]
such that uμ ≤ uλ. Let ρ = ‖uλ‖∞ and Êk,ρ > 0 be as postulated

by hypothesis (Hk) (v). We have

(−�p)
s1uμ(x) + (−�q)

s2uμ(x) + λÊk,ρuμ(x)p−1 − λuμ(x)−η

≤ μ fk(x, uμ(x)) + λÊk,ρuμ(x)p−1

= λ
[
fk(x, uμ(x)) + Êk,ρuμ(x)p−1

]
− (λ − μ) fk(x, uμ(x))

≤ λ
[
fk(x, uμ(x)) + Êk,ρuμ(x)p−1

]

= (−�p)
s1uλ(x) + (−�q)

s2uλ(x) + λÊk,ρuλ(x)
p−1 − λuλ(x)

−η.

Note that, the function g(t) = λÊk,ρ t p−1 − λt−η is nondecreasing in R
+
0 , thus, by

Proposition 3 we have uλ − uμ ∈ int
[
(C0

s1(�))+
]
. ��

Proposition 9 Assume that the hypotheses (Hk) hold. Then λ∗ = supL < +∞, for
each k ∈ N.

Proof By hypotheses H(i), (i i) and (i i i) we can find λ̂ > 0 such that

t p−1 ≤ λ̂ fk(x, t) for all x ∈ �, all t ≥ 0. (27)

Let λ > λ∗ and suppose that λ ∈ L. Then, there exists uλ := uk,λ ∈ Sλ ⊆
int[(C0

s1(�))+], that is, uλ is a solution of the problem (Pk,λ). Consider�0 ⊂⊂ � and
m0 = min

�

uλ > 0. For δ ∈ (0, 1) small we set mδ
0 = m0 + δ. Let ρ = ‖uλ‖∞ and

Êk,ρ > 0 be as postulated by H(v). We have,

(−�p)
s1mδ

0 + (−�q)
s2mδ

0 + λÊk,ρ(mδ
0)

p−1 − λ(mδ
0)

−η

≤ λÊk,ρ(mδ
0)

p−1 + χ(δ) (with χ(δ) → 0+ as δ → 0+)

= [
λÊk,ρ + 1

]
mp−1

0 + χ(δ)

≤ λ̂ fk(x,m0) + λÊk,ρ(mδ
0)

p−1 + χ(δ) (see (27))

= λ
[
fk(x,m0) + Êk,ρ(mδ

0)
p−1

]
− (λ − λ̂) fk(x,m0) + χ(δ)

≤ λ
[
fk(x, uλ(x)) + Êk,ρu

p−1
λ

]
for δ(0, 1) small enough.

= (−�p)
s1uλ(x) + (−�q)

s2uλ(x) + λÊk,ρuλ(x)
p−1 − λuλ(x)

−η.

where we have used the hypotheses H(iv), (v) and the fact χ(δ) → 0+ as δ → 0+.
By strong comparison principle we have

uλ − mδ
0 ∈ int[(C0

s1(�))+] for δ ∈ (0, 1) small enough

which contradicts with the definition of m0. Consequently, it holds 0 < λ∗ ≤ λ̂

< ∞. ��
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Proposition 10 If hypotheses (Hk) hold and λ ∈ (0, λ∗), then problem (Pk,λ) has least
two positive solutions

u0, û ∈ int[(C0
s1(�))+] with u0 ≤ û and u0 �= û.

Proof Let 0 < λ < ϑ < λ∗. By Proposition 9 λ, ϑ ∈ L. Thus, by Proposition 8 we
can find u0 ∈ Sλ ⊆ int[(C0

s1(�))+] and uϑ ∈ Sϑ ⊆ int[(C0
s1(�))+] such that

uϑ − u0 ∈ Sλ ⊆ int[(C0
s1(�))+].

From Proposition 8, we know that uλ ≤ u0, hence u−η
0 ∈ L1(�). Consider the

Carathéodory function

ω̂λ(x, t) =
⎧
⎨

⎩

λ[u−η
0 + fk(x, u0)] if t < u0(x),

λ[t−η + fk(x, t)] if u0(x) ≤ t ≤ uϑ(x),
λ[u−η

ϑ + fk(x, uϑ)] if uϑ(x) < t

and define the C1-functional μ̂λ : Ws1,p
0 (�) → R by

μ̂λ(u) = 1

p
[u]ps1,p + [u]qs2,p −

∫

�

Ŵλ(x, u)dx for all u ∈ Ws1,p
0 (�).

where Ŵλ(t, x) =
∫ t

0
ω̂λ(x, s)ds.

Consider also another Carathéodory function

ωλ(x, t) =
{

λ[u−η
0 (x) + fk(x, u0)] if t ≤ u0(x),

λ[t−η + fk(x, t)] if u0(x) < t

and define the C1-functional μλ : Ws1,p
0 (�) → R by

μλ(u) = 1

p
[u]ps1,p + [u]qs2,p −

∫

�

Wλ(x, u)dx for all u ∈ Ws1,p
0 (�)

where Wλ(t, x) =
∫ t

0
ωλ(x, s)ds.

It is clear that,

μ̂λ(u)

∣
∣
∣
∣[0,uθ ]

= μλ(u)

∣
∣
∣
∣[0,uθ ]

andμ̂′
λ(u)

∣
∣
∣
∣[0,uθ ]

= μ′
λ(u)

∣
∣
∣
∣[0,uθ ]

(28)

Let Kμ = {
u ∈ Ws1,p

0 (�);μ′(u) = 0
}
. Using the same arguments used in ([18],

Proposition 8) we can show that

Kμ̂λ ⊆ [u0, uθ ] ∩ int[(C0
s1(�))+] (29)
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Kμλ ⊆ [u0) ∩ int[(C0
s1(�))+] (30)

From (30), we can assume that Kμλ is finite. Otherwise, we already have an infinity
of positive smooth solutions of (Pk,λ) bigger than u0 and so we are done. In addition,
we can assume that

Kμλ ∩ [u0, uθ ] = {u0}. (31)

Moreover, it is clear that μ̂λ is coercive and sequentially weakly lower semicontin-
uous. So there exists ũ0 ∈ Ws1,p

0 (�) such that,

μ̂ũ0 = min

[

μ̂λ(u); u ∈ Ws1,p
0 (�)

]

from (29) we have

ũ0 ∈ Kμ̂λ ⊆ [u0, uθ ] ∩ int[(C0
s1(�))+]

and so, from (28) and (31) results ũ0 = u0. Therefore,

u0 ∈ int[(C0
s1(�))+] is a local Ws1,p

0 (�) − minimizer of μλ.

Consequently, there exists ρ ∈ (0, 1) such that,

μλ(u0) < inf

[

μλ(u); [u − u0]s1,p = ρ

]

= mλ.

Note that, if u ∈ int[(C0
s1(�))+], then on account of hypothesis (Hk (i i)) we have,

μλ(tu) → −∞ as t → ∞

and moreover, classical arguments, which can be found in ([18], [2]), along with
conditions (Hk) show that the functionμλ satisfies the Cerami condition. Bymountain
pass theorem, there exists û ∈ Ws1,p

0 (�) such that,

û ∈ Kμλ ⊆ [u0) ∩ int[(C0
s1(�))+]

and mλ ≤ μλ(̂u). So, we have û ∈ Sλ, u0 ≤ û and û �= u0. ��
Proposition 11 If hypotheses (Hk) hold, then λ∗ ∈ L.
Proof Let {λn} ⊂ (0, λ∗) be such that λn → λ∗. We have {λn}n≥1 ⊆ L and of the
proof of Proposition 10 we find un ∈ Sλn ⊆ int[(C0

s1(�))+] such that,

μλn (un) = 1

p
[un]

p
s1,p + [un]

q
s2,q − λn

∫

�

[u1−η
n + fk(x, un).un]dx
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= 1

p
[un]

p
s1,p + 1

q
[un]

q
s2,q − [un]

p
s1,p − [un]

p
s2,p (Since un ∈ Sλn )

=
(
1

p
− 1

)

[un]
p
s1,p +

(
1

q
− 1

)

[un]
q
s2,q < 0 for all n ∈ N.

Moreover, we have

〈

As1,p(un) + As2,q(un), ϕ

〉

=
∫

�

[λnu−η
n + fk(x, un)]ϕdx, for all ϕ ∈ Ws1,p

0 (�).

(32)

Arguing as in the proof of Proposition 13 in [2], we obtain that at least for a
subsequence,

un → u∗ in Ws1,p
0 (�) as n → ∞.

By Proposition 8, ũλ1 ≤ un for all n ∈ N. Therefore, we see u∗ �= 0 and u−η∗ ϕ ≤
ũ−η

λ1
ϕ ∈ L1(�) for all ϕ ∈ Ws1,p

0 (�). In (32), we pass to the limit as n → ∞ and we
obtain

〈

As1,p(u∗) + As2,q(u∗), ϕ
〉

=
∫

�

[λ∗u−η∗ + fk(x, u∗)]ϕdx, for all ϕ ∈ Ws1,p
0 (�).

that is,

u∗ ∈ Sλ∗ ⊆ int[(C0
s1(�))+] and so λ∗ ∈ L.

��

So, summarizing the situation for problem (Pk,λ), we can state the following
bifurcation-type theorem.

Theorem 1 If hypotheses (Hk) hold, then we can find λ∗ > 0 such that

1. For every λ ∈ (0, λ∗) problem (Pk,λ) has at least two nontrivial positive solutions

u0, û ∈ int[(C0
s1(�))+] with u0 ≤ û and u0 �= û.

2. For λ = λ∗ problem (Pk,λ) has one nontrivial positive solution

u∗ ∈ int[(C0
s1(�))+] and so λ∗ ∈ L.

3. For λ > λ∗ problem (Pk,λ) has no nontrivial positive solution.
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6 Existence of positive solution for P�

We denote by u := uk,λ the solution of the problem (Pk,λ) given by Theorem 1. Thus,
we obtain

Proposition 12 Let u := uk,λ ∈ Ws1,p
0 (�) be a positive weak solution to the problem

in (Pk,λ), then u ∈ L∞(�̄). Moreover, there exists k > 1 sufficiently large such that,

‖u‖∞ ≤ Mk .

Proof The arguments of the proof is taken from the celebrated article of [22] with
appropriate modifications. We will proceed with the smooth, convex and Lipschitz

function gε(t) = (
ε2 + t2

) 1
2 for every ε > 0. Moreover, gε(t) → |t | as t → 0 and

∣
∣g′

ε(t)
∣
∣ ≤ 1. Let 0 < ψ ∈ C∞

c (�) and choose ϕ = ψ
∣
∣g′

ε(u)
∣
∣p−2

g′
ε(u) as the test

function.
By Lemma 5.3 of [22] for all ψ ∈ C∞

c (�) ∩ R
+, we obtain

〈As1,p(gε(u)), ψ〉 + 〈As2,q(gε(u)), ψ〉 ≤ λ

∫

�

(
1

|u|η + | fk(x, u)|
)
∣
∣g′

ε(u)
∣
∣p−1

ψdx

By Fatou’s Lemma as ε → 0 we have

〈As1,p(u), ψ〉 + 〈As2,q(u), ψ〉 ≤ λ

∫

�

(
1

|u|η + | fk(x, u)|
)

ψdx (33)

Define un = min{(u − Mγ

k )+, n} for each n ∈ N and γ > 0. Let β > 1, δ > 0 and
consider ψδ = (un + δ)β − δβ . Thus, ψδ = 0 in {u ≤ Mγ

k } and using ψδ in (33) we
obtain

〈As1,p(u), ψδ〉 + 〈As2,q(u), ψδ〉 ≤ λ

∫

�

(
1

|u|η + | fk(x, u)|
)

((un + δ)β − δβ)dx

By Lemma 5.4 in [22] to follow the estimates,

〈As1,p(u), ψδ〉 + 〈As2,q(u), ψδ〉
≥ β

(
p

β + p − 1

)p [

(un + δ)
β+p−1

p

]p

s1,p
+ β

(
q

β + q − 1

)q [

(un + δ)
β+q−1

q

]q

s2,q

≥ β

(
p

β + p − 1

)p [

(un + δ)
β+p−1

p

]p

s1,p

consequently,

β

(
p

β + p − 1

)p [

(un + δ)
β+p−1

p

]p

s1,p
≤λ

∫

�

(
1

|u|η +| fk(x, u)|
)

((un+δ)β −δβ)dx
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and thus,

[

(un + δ)
β+p−1

p

]p

s1,p
≤ λ

1

β

(
β + p − 1

p

)p ∫

�

(
1

|u|η + | fk(x, u)|
)

((un + δ)β − δβ)dx

(34)

Using the estimates (5), for Mk > 1 we have,

∫

�

(
1

|u|η + | fk(x, u)|
)

((un + δ)β − δβ)dx

≤
∫

�

(
1

|u|η + C .M2θ
k |u|r−1

)

((un + δ)β − δβ)dx

=
∫

{u≥Mγ
k }

(
1

|u|η + C .M2θ
k |u|r−1

)

((un + δ)β − δβ)dx

=
∫

{u≥Mγ
k }

((un + δ)β − δβ)dx +
∫

{u≥Mn}
C .M2θ

k |u|r−1((un + δ)β − δβ)dx

≤
∫

{u≥Mγ
k }

M2θ
k ((un + δ)β − δβ)dx +

∫

{u≥Mγ
k }

C .M2θ
k |u|r−1((un + δ)β − δβ)dx

≤
∫

�

M2θ
k ((un + δ)β − δβ)dx +

∫

�

C .M2θ
k |u|r−1((uk + δ)β − δβ)dx

≤ C .M2θ
k

(

|�| σ−1
σ + ‖u‖r−1

L
p∗s1 (�)

)

‖(un + δ)β‖Lσ (�)

where C is a constant independent of k and σ = p∗
s1

p∗
s1 − r + 1

. Moreover, observe that

the function u := uk satisfies u ≤ u where u is a supersolution of the problem (20)
does not depend on k, we have ‖u‖r−1

L
p∗s1 (�)

≤ C0‖u‖r−1∞ independent of k. Thus,

∫

�

(
1

|u|η + | fk(x, u)|
)

((un + δ)β − δβ)dx

≤ KM2θ
k

(
|�| σ−1

σ + ‖u‖r∞
)

‖(un + δ)β‖Lσ (�)

= K0M
2θ
k ‖(un + δ)β‖Lσ (�)

(35)

with K0 independent of k.
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By Sobolev inequality, triangle inequality and (un + δ)β+p−1 ≥ δ p−1(un + δ)β

[

(un + δ)
β+p−1

p

]p

s1,p
≥ S‖(un + δ)β − δβ‖p

L
p∗s1 (�)

≥
(

δ

2

)p−1
[∫

�

|(un + δ)
p∗s1β

p dx

] p
p∗s1 − δβ+p−1|�|

p
p∗s1

≥
(

δ

2

)p−1

‖(un + δ)
β
p ‖p

L
p∗s1 (�)

− M2θ
k δβ+p−1|�|

p
p∗s1 ,

(36)

in the estimate above we using that Mk > 1.
Using the estimates (36) and (35) in (34), we obtain

∥
∥
∥
∥(un + δ)

β
p

∥
∥
∥
∥

p

L
p∗s1 (�)

≤
(
2

δ

)p−1 [(
(β + p − 1)p

β pp

)

K0M
2θ
k ‖(un + δ)β‖Lσ (�) + δβ+p−1|�|

p
p∗s
]

=
(
2

δ

)p−1 (
(β + p − 1)p

β pp

)

K0M
2θ
k ‖(un + δ)β‖Lσ (�) + δβ |�|

p
p∗s

≤
(
2

δ

)p−1 (
(β + p − 1)p

β pp

)

K0M
2θ
k ‖(un + δ)β‖Lσ (�) + |�|

p
p∗s −1

∫

�

(un + δ)βdx

By Holder’s inequality, we have

δβ = |�|−1
∫

�

δβdx ≤ |�|−1
∫

�

(un + δ)βdx ≤ |�|− 1
σ ‖(un + δ)β‖Lσ (�).

Consequently,

∥
∥
∥
∥(un + δ)

β
p

∥
∥
∥
∥

p

L
p∗s1 (�)

≤
(
2

δ

)p−1 (
(β + p − 1)p

β pp

)

K0M
2θ
k ‖(un + δ)β‖Lσ (�)

+ |�|
p
p∗s − 1

σ ‖(un + δ)β‖Lσ (�).

Since,
1

β

(
β + p − 1

p

)p

≥ 1 we can deduce that

∥
∥
∥
∥(un + δ)

β
p

∥
∥
∥
∥

p

L
p∗s1 (�)

≤ 1

β

(
β + p − 1

p

)p

M2θ
k

∥
∥(un + δ)β

∥
∥
q

(
K0

δ p−1 + |�|
p
p∗s − 1

σ

)
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Now choose, δ > 0 such that δ p−1 = K0|�|
1
σ

− p
p∗s1 and β > 1 such that,(

β + p − 1

p

)p

≥ β p. Thus,

∥
∥
∥
∥(un + δ)

β
p

∥
∥
∥
∥

p

L
p∗s1 (�)

≤ CM2θ
k β p−1

∥
∥(un + δ)β

∥
∥
Lσ (�)

For τ = σβ and α = p∗
s1

σ p
we obtain,

‖un + δ‖β

Lατ (�) ≤ CM2θ
k β p−1 ‖un + δ‖β

Lτ (�)

and therefore,

‖un + δ‖Lατ (�) ≤
(
CM2θ

k

) σ
τ
( τ

σ

)(p−1) σ
τ ‖un + δ‖Lτ (�) .

Taking, τ0 = σ , τm+1 = ατm = αm+1σ , then after performing m iterations we
obtain the inequality

‖un + δ‖Lτm+1 (�) ≤
(
CM2θ

k

)

m∑

i=0

σ

τi
(

m∏

i=1

(τi

σ

) σ
τi

)(p−1)

‖un + δ‖Lτ (�)

=
(
CM2θ

k

)

m∑

i=1

1

αi
(

m∏

i=1

α
i

αi

)(p−1)

‖un + δ‖Lτ (�)

Therefore, on passing the limit as m → ∞, we get

‖un‖L∞(�) ≤ ‖un + δ‖L∞(�) ≤ C
α

α−1 M
2θα
α−1
k α

(p−1)α
(α−1)2 ‖un + δ‖Lσ (�) ≤ C1M

2θα
α−1
k .

(37)

In the last inequality we use the fact, u ≤ u, where u ∈ L∞(�) is a supersolution
of the problem (20) and thus, un = min{(u − Mγ

k )+, n} ≤ (u − Mγ

k )+ ≤ u+ ≤ u,
for each n ∈ N and k large enough (such that ‖u‖ ≤ Mγ

k ).
Therefore, as n → ∞ we obtain

‖(u − Mγ

k )+‖∞ ≤ Mk

for Mk sufficiently large and
2θα

α − 1
< 1. Consequently, since Mk → ∞ as k → ∞

we have, for γ < 1, there exists k > 1 large enough such that,

‖u‖∞ ≤ Mk .
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Also, by (37), the embedding Ws1,p
0 (�) ↪→ Lσ (�) and since un = min{(u −

Mγ

k )+, n} ≤ (u − Mγ

k )+ ≤ u+ ≤ |u| we can establish

‖un‖L∞(�) ≤ CM
2θα
α−1
k [u]s1,p.

Therefore, as n → ∞ we obtain

‖u‖L∞(�) ≤ CM
2θα
α−1
k [u]s1,p,

for k > 1 large enough fixed. ��
Theorem 2 If hypotheses (H) hold, then we can find λ∗ = λ∗(k) > 0 (k as in Propo-
sition 12) such that

1. For every λ ∈ (0, λ∗) problem (Pλ) has at least two nontrivial positive solutions

u0, û ∈ int[(C0
s1(�))+] with u0 ≤ û and u0 �= û.

2. For λ = λ∗ problem (Pλ) has one nontrivial positive solution

u∗ ∈ int[(C0
s1(�))+] and so λ∗ ∈ L.

3. For λ > λ∗ problem (Pλ) has no nontrivial positive solution.

Proof By Theorem 1, for each λ ∈ (0, λ∗] and k ∈ N there exists uk,λ such that,

⎧
⎨

⎩

(−�p)
s1u + (−�q)

s2u = λ
[
u(x)−η + fk(x, u)

]
in �,

u = 0 in IRN \ �,

u > 0 in �.

(Pk,λ)

Moreover, 1, 2 and 3 holds to the problem (Pk,λ), by Theorem 1.
Using the Proposition 12, we have ‖uk,λ‖∞ < Mk for some k > 1 large enough.

Thus, uλ := uk,λ(x) ≤ Mk and therefore fk(x, uλ) = f (x, uλ), in other words uλ

satisfies the problem (Pλ). ��
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