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Abstract
Let L = − 1

ω
div(A(x) ·∇)+V be a degenerate Schrödinger operator inR

n , whereω is
a weight of theMuckenhoupt class A2, A(x) is a real and symmetric matrix depending
on x and satisfies

C−1ω(x)|ξ |2 ≤ A(x)ξiξ j ≤ Cω(x)|ξ |2

for some positive constant C and all x , ξ in R
n , and V is a nonnegative potential

belonging to a certain reverse Hölder class with respect to the measureω(x)dx . By the
subordinative formula, various regularity estimates about the fractional heat semigroup
{e−t Lα }t>0 are investigated, where Lα denotes the fractional powers of L for α ∈
(0, 1). As an application, we obtain the boundedness on the weighted Morrey spaces
and BMO type spaces for some operator related to Lα .
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1 Introduction

Let

L f (x) = − 1

ω
div(A(x) · ∇ f (x)) + V f (x)

be a degenerate Schrödinger operator on R
n , where ω is a weight from the

Muckenhoupt class A2, which satisfies

( 1

ω(B)

∫

B
ω(x)dx

)( 1

ω(B)

∫

B
ω−1(x)dx

)
≤ C

for a fixed constant C and any ball B, A(x) = (ai, j (x))1≤i, j≤n is a real symmetric
matrix such that for all n-dimensional vectors ξ ∈ (ξ1, ξ2, . . . , ξn),

C−1ω(x)|ξ |2 ≤
∑

1≤i, j≤n

ai, j (x)ξiξ j ≤ Cω(x)|ξ |2,

and the nonnegative potential V belongs to the reverse Hölder class with respect to
the measure dμ = ω(x)dx .

Throughout this paper, we always assume thatω satisfies both a doubling condition
and a reverse doubling condition, i.e., there exist twonumbers ν andγ , 0 < ν ≤ n ≤ γ ,
such that for any ball B(x, r) and t > 1, the following inequalities hold:

ctν ≤ ω(B(x, tr))

ω(B(x, r))
≤ Ctγ

for some constants c andC independent of the point x . When the inequality on the left
is satisfied we say ω ∈ RDν , while, if the other holds, we write ω ∈ Dγ . For ω ∈ Dγ ,
a nonnegative potential V , which is locally integrable, belongs to the reverse Hölder
class RHq(ω) for some q > γ/2 if there is a positive constant C such that

( 1

ω(B)

∫

B
V q(x)ω(x)dx

)1/q ≤ C

ω(B)

∫

B
V (x)ω(x)dx

for all balls B inR
n . Let δ0 = 2−γ /q. In thewhole paper, wemaintain the assumption

and a definition of δ0.
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Due to the background of the quantum mechanics, in the fields of partial differen-
tial equations and mathematical physics, the Schrödinger type operator L , which is a
class of typical second-order differential operators, plays an important role. In recent
years, due to the rapid development of fields such as nanotechnology and condensed
matter physics, the study of the Schrödinger type operator L has also gained more and
more applications and attention. For example, the degenerate Schrödinger operator L
is often used in the study of new semiconductor devices and nanostructures such as
quantum dots. In addition, with the development of quantum computing and quan-
tum communication, the degenerate Schrödinger operator L has been studied more
and more deeply. Therefore, the study of degenerate Schrödinger operators L has
important theoretical and application values and has attracted the attention of some
mathematicians and physicists.

Specially, when V = 0, in order to study the behavior of nonnegative solutions of
the degenerate elliptic equation, Fabes et al. in [15] investigated the following second
order degenerate elliptic differential operator in divergence form

L0u = − 1

ω
div(A · ∇u).

Furthermore, Fabes et al. in [14] obtained the fundamental solution 	0 of L0 in a ball.
It should be mentioned that if ω ∈ RDν with ν > 2,

	0(x, y) � |x − y|2
ω(B(x, |x − y|)) .

For more information about L0, we refer to [6–9] and the references therein.
For arbitrary degenerate Schrödinger operators L , {T L

t }t>0 := {e−t L}t>0 denotes
the heat semigroup generated by L with the integral kernels denoted by K L

t (·, ·). Since
the potential V is non-negative, the following upper bound estimate holds:

0 < K L
t (x, y) ≤ ht (x, y),

where ht (·, ·) denotes the kernels of the semigroup {St }t>0 := {e−t L0}t>0 generated
by L0 on L2(dμ). In [10], by a perturbation argument, Dziubański further investi-
gated the regularity properties of K L

t (·, ·) and, as an application, the author obtained
the atomic characterization of the Hardy space related to L denoted by H1

L(Rn). As a
continuation of the previous result, Huang et al. [22] used the square functions gener-
ated by {e−t L}t>0 to characterize H1

L(Rn). Harboure et al. [19] studied the behavior of
operators associated with L on weighted Lebesgue spaces, weighted Morrey spaces
and BMO type spaces, respectively. For more results about degenerate Schrödinger
operators, we refer the reader to [4, 23–26] and the references therein.

In this paper, we will investigate the boundedness of several singular integrals
related to the fractional degenerate Schrödinger operator Lα , α ∈ (0, 1), on some
weighted function spaces. Under the assumption α ∈ (0, 1), in Sect. 3, we first analyze
the pointwise estimates and regularity properties of the fractional heat semigroups
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generated by Lα
0 and Lα:

{ {Sα,t }t>0 := {e−t Lα
0 }t>0;

{T L
α,t }t>0 := {e−t Lα }t>0.

Denote by hα,t (·, ·) and K L
α,t (·, ·) the integral kernels of Sα,t and T L

α,t , respectively.
Precisely, for each t > 0,

⎧⎪⎪⎨
⎪⎪⎩

Sα,t f (x) :=
∫

Rn
hα,t (x, y) f (y)ω(y)dy;

T L
α,t f (x) :=

∫

Rn
K L

α,t (x, y) f (y)ω(y)dy.

For the Laplace operator −
, the fractional heat kernel related with −
, denoted by

h−

α,t , is a convolution kernel and can be defined via the Fourier multiplier:̂h−


α,t (ξ) =
e−t |ξ |2α . We can use the classical methods to estimate the regularity of h−


α,t . See
Lemma2.1, Lemma2.2 andRemark2.1 of [29]. For the case of degenerate Schrödinger
operators L , we can not define the fractional heat kernels related with L via the Fourier
transform. Hence, the methods of [29] are invalid.

Let L be a second-order differential operator. Unlike the case of the Laplace
operator, the fractional heat semigroup related withL is introduced via the following
formulation. For α ∈ (0, 1), the fractional power ofL , denoted byL α , is defined as

L α( f )(x) := 1

	(−α)

∫ ∞

0

(
e−t

√
L f (x) − f (x)

) dt

t1+2α , f ∈ L2(Rn).

Then via the subordinative formula, the integral kernel KL
α,t of e

−tL α
(cf. [17]) can

be expressed as

KL
α,t (x, y) :=

∫ ∞

0
ηα
t (s)KL

s (x, y)ds ∀ x, y ∈ R
n, (1.1)

where ηα
t (·) is a non-negative continuous function on (0,∞) satisfying

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ ∞
0 ηα

t (s)ds = 1;
ηα
t (s) = 1

t1/α
ηα
1 ( s

t1/α
);

ηα
t (s) � t

s1+α ∀s, t > 0;∫ ∞
0 s−rηα

1 (s)ds < ∞, r > 0;
ηα
t (s) � t

s1+α ∀s ≥ t1/α > 0.

(1.2)

In this paper, we use the subordinate formula (1.1) to introduce the fractional heat
kernels related with L . Using the identity (1.1) and the estimates about ht (·, ·) and
K L
t (·, ·), we obtain the size and regularity estimates of hα,t (·, ·) and K L

α,t (·, ·). See
Propositions 3.4 and 3.5. By the regularity estimate obtained in Sect. 3, we can study
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the boundedness of some operators related to Lα on the weighted Lebesgue spaces
L p(Rn, ω) and the weighted Morrey spaces Mλ

p(R
n, ω).

The classicalMorrey spacesMλ
p(R

n) have been studied extensively and usedwidely
in analysis, geometry, mathematical physics and other related fields, which were orig-
inally introduced by Morrey in [30] to investigate the local behavior of solutions of
second order elliptic partial differential equations. The advantage of using this func-
tional space lies in the fact that ones can obtain better regularity properties for solutions
of the boundary elliptic and parabolic equations in Morrey spaces. However, the regu-
larity results for many partial differential equations can be provided as applications of
the boundedness properties of several singular integral operators. By these interesting
applications, many mathematicians considered the boundedness properties of singular
integral operators in different kinds of functional spaces so called Morrey type spaces.
For more information about Morrey spaces and their applications, we refer the reader
to [1, 2, 27, 32] and the references therein.

In Sect. 4, motivated by [18, 36], we investigate the boundedness of some operators
related to Lα on the weighted Lebesgue spaces L p(Rn, ω) and the weighted Morrey
spacesMλ

p(R
n, ω). Using the boundedness of themaximal functionMω, we obtain the

L p(Rn, ω)-boundedness and theMλ
p(R

n, ω)-boundedness for the semigroupmaximal
operators S∗ = supt>0 Sα,t and T ∗ = supt>0 T

L
α,t , respectively. See Theorem 4.2 and

Corollary 4.5. Denote by Iα,β and I Lα,β the negative powers of Lα
0 and L

α , respectively.
Precisely,

⎧⎪⎪⎨
⎪⎪⎩

Iα,β f (x) :=
∫ ∞

0
Sα,t f (x)t

β/2 dt

t
;

I Lα,β f (x) :=
∫ ∞

0
T L

α,t f (x)t
β/2 dt

t
.

We show that Iα,β and I Lα,β are both bounded from Mλ
p(R

n, ω) to Mλ
s (Rn, ω) with

1 < p < λ/αβ and 1/s = 1/p−αβ/λ. See Theorem 4.7. Moreover, the operator I Lα,β

deserves special attention. In Theorem 4.8, we investigate some behaviours about the
mixed operators I Lα,βV

σ/2 and V σ/2 I Lα,β for 0 < σ ≤ αβ < ν. We point out that, in

Theorem 4.8, the boundedness of I Lα,βV
σ/2 from Mλ

p(R
n, ω) to Mλ

s (Rn, ω) is based
on a very stringent assumption that V ∈ RH∞(ω). Due to RH∞(ω) ⊂ RHq(ω) for
1 < q < ∞, an interesting question is to investigate the boundedness of I Lα,βV

σ/2 on
weighted Morrey spaces when the potential V belongs to RHq(ω). For this purpose,
we introduce another class of weighted Morrey type spaces Mλ1,λ2

p (Rn, ω) defined in
Definition 4.13. Under the assumption that V ∈ RHq(ω) and the weight ω satisfies
the lower-Ahlfors condition (4.5), we prove that the operators V σ/2 I Lα,β and I Lα,βV

σ/2

are bounded from Mλs/p,s/p
s (Rn, ω) to Mλ

p(R
n, ω) when s and p satisfy suitable

conditions. See Theorems 4.14 and 4.15, respectively.
It is well-known that the T 1 theorem plays a crucial role in the analysis of BMO-

boundedness of Calderón-Zygmund singular integral operators. Recently, for the
Hermite operator H = −
 + |x |2, in [3], Betancor et al. introduced a T 1 criterion
for Calderón-Zygmund operators related to H on the BMO type space BMOH (Rn).
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Later, Ma et al. in [28] generalized the T 1 criterion to the case of Campanato type
spaces BMOd

L(Rn) related with L = −
 + V . Then in [5], Bui et al. extented the
T 1 theorem to make it applicable to a large class of generalized Calderón-Zygmund
type operators.

Therefore, at last, we obtain the boundedness of the maximal operator S∗ and Iα,β

on BMO type spaces. Besides, we also prove that Iα,β can be extended to a bounded

operator from Mαβ−d
1 (Rn, ω) to BMOd(Rn, ω). See Theorem 5.3. For the operators

related to Lα , we use the T 1 theorem corresponding to BMOd
ρ (Rn, ω) to obtain the

BMOd
ρ (Rn, ω)-boundedness for T ∗, I Lα,β and I Lα,βV

σ/2 with αβ ≥ σ . See Theorems
6.4, 6.6 and 6.7.

Remark 1.1 (i) When thematrix A(x) is the identitymatrix andω ≡ 1, the degenerate
Schrödinger operator Lα , α ∈ (0, 1), comes back to the Schrödinger operator
Lα = (−
 + V )α . As far as we know, the result of this paper for boundedness
on Morrey spaces Mλ

p(R
n, ω) (cf. Theorems 4.7, 4.8, 4.11, 4.14 and 4.15) is also

new for Lα . In particular, for the degenerate Schrödinger operator L , the results
of Theorems 4.11, 4.14 and 4.15 are also new when α = 1. For the result on
BMOd

ρ (Rn, ω), when Lα comes back to Lα , we can see that Theorem 6.4 comes
back to [36, Theorem 3]. Moreover, Theorems 6.6 and 6.7 are also new for Lα .

(ii) When Lα
0 comes back to Lα

0 = (−
)α , Theorems 5.3 and 5.5 are also new.
Moreover, in the non-degenerate case of ω ≡ 1, we know that weak-Ls(Rn) ⊂
Mn/s

1 (Rn) for any s > 1 (see [18, Lemma 4.1] with ω ≡ 1). Therefore, Theo-
rem 5.3 recovers the boundedness of the modified classical fractional integral of
order αβ fromweak-Ln/αβ(Rn) into BMO or, more generally, fromweak-L p into
BMOd(Rn) for p ≥ n/(αβ) and d = αβ − p/n < 1 (see [18, Theorem2.5] and
[16, Theorems 1.1 & 1.2]).

Throughout this article, we will use c and C to denote the positive constants, which
are independent of main parameters and may be different at each occurrence. U � V
indicates that there is a constant C > 0 such that C−1V ≤ U ≤ CV, whose right
inequality is also written as U � V. Similarly, one writes V � U for V ≥ CU.

2 Preliminaries

To state our main results, the following auxiliary function plays a fundamental role.
It was introduced by Shen in [33] (see also [26]) and is defined as

ρ(x) := sup
{
r > 0 : r2

ω(B(x, r))

∫

B(x,r)
V (x)ω(x)dx ≤ 1

}
, x ∈ R

n, (2.1)

where B(x, r) denotes a ball inR
n centered at x and with radius r . It follows from [33]

that the auxiliary function ρ(·) determined by V ∈ RHq(ω) satisfies 0 < ρ(x) < ∞
for any given x ∈ R

n . The following results concerning the critical radius function
(2.1) are well known.
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Lemma 2.1 ([26, Lemma 4]) There exist constants C0 ≥ 1 and N0 > 0 such that for
any x and y in R

n,

1

C0

(
1 + |x − y|/ρ(x)

)−N0 ≤ ρ(y)

ρ(x)
≤ C0

(
1 + |x − y|/ρ(x)

)N0/(1+N0)

. (2.2)

It should be mentioned that if V ∈ RHq(ω), it satisfies the doubling condition: for
every x ∈ R

n and r > 0,

1

ω(B(x, 2r))

∫

B(x,2r)
V (y)ω(y)dy � 1

ω(B(x, r))

∫

B(x,r)
V (y)ω(y)dy.

Lemma 2.2 ([26, Lemma 2]) Assume thatw ∈ Dγ , V ∈ RHq(ω)with q > γ/2. Then
for every 0 < r < R < ∞, y ∈ R

n we have

r2

w(B(y, r))

∫

B(y,r)
V (x)ω(x)dx �

( r

R

)2−γ /q R2

ω(B(y, R))

∫

B(y,R)

V (x)ω(x)dx .

Lemma 2.3 ([10, Lemma 4.4]) Assume that V ∈ RHq(ω) with q > γ/2. Then, for
any N > log2 C0 +1, there exists a constant CN such that for any x ∈ R

n and r > 0,

1

(1 + r/ρ(x))N

∫

B(x,r)
V (y)ω(y)dy ≤ CN

ω(B(x, r))

r2
.

Definition 2.4 Let 1 ≤ p ≤ ∞, ω ∈ A2 and 0 ≤ λ.

(i) For 1 ≤ p < ∞, the weighted Morrey space Mλ
p(R

n, ω) is defined as the set of
all L p-locally integrable functions f on R

n such that

‖ f ‖Mλ
p(R

n ,ω) := sup
B=B(x,r)

( rλ

ω(B)

∫

B
| f (x)|pω(x)dx

)1/p
< ∞.

(ii) For p = ∞, define Mλ∞(Rn, ω) := L∞(Rn, ω).

It is easy to see that ‖ f ‖Mλ
p(R

n ,ω) coincides with the standard L p-norm when ω ≡ 1

and λ = n. More generally, if the weightω is Ahlfors of order λ, i.e., rλ � ω(B(x, r)),
then Mλ

p(R
n, ω) = L p(Rn, ω).

The weighted Lipschitz type spaces are defined as follows.

Definition 2.5 For 0 ≤ d < 1, the space BMOd(Rn, ω) is defined as the set of all
functions f ∈ L1

loc(R
n, ω) satisfying the following inequality: there exists a constant

C such that for any ball B = B(x, r),

1

rdω(B)

∫

B
| f (x) − fB |ω(x)dx ≤ C, (2.3)
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where fB stands for the average of f on B with respect to ω(x)dx , that is, fB =
1

ω(x)

∫
B f (y)ω(y)dy. The norm ‖ f ‖BMOd is defined as the infimum of the constants

C such that (2.3) holds.

Recently, the function spaces related to Schrödinger operators are investigated exten-
sively. ForL = −
+V , the Hardy type spaces related toL, denoted by H1

L(Rn), were
introduced by Dziubański and Zienkiewicz [11, 12]. Using the theory of local Hardy
spaces, the authors also established the atomic characterization and the Riesz trans-
form characterization of H1

L(Rn). Dziubański et al. in [13] introduced the BMO type
space associated with L. Similarly to [11], Dziubański [10] investigated the Hardy
space related to degenerate Schrödinger operators. For further information on this
topic, we refer the reader to [4, 22–24, 37, 38] and the references therein. Following
the idea of [13], the weighted Lipschitz type spaces related to degenerate Schrödinger
operators can be defined as follows.

Definition 2.6 For 0 ≤ d < 1, the space BMOd
L(Rn, ω) is defined as the set of all

locally integrable functions f with respect toω(x)dx satisfying there exists a constant
C such that for any ball B = B(x, r),

1

rdω(B)

∫

B
| f (x) − f (B, V )|ω(x)dx ≤ C,

where

f (B, V ) :=
{
fB, r < ρ(x);
0, r ≥ ρ(x),

The infimum of the above constants C actually gives a norm.

Remark 2.7 (i) It is well known that in (2.3) above the mean value fB can be equiva-
lently replaced by arbitrary constant c. For d = 0, BMO0(Rn, ω) coincides with
the classical weighted BMO space for ω ∈ A∞ (see [31]). Furthermore, if d > 0
and ω is a doubling weight, all functions f ∈ BMOd(Rn, ω) satisfy

| f (x) − f (y)| ≤ C |x − y|d ,

which indicates, for this case, the space BMOd(Rn, ω) coincides with integral
Lipschitz spaces with respect to the Lebesgue measure, but now just for a doubling
weight.

(ii) When d > 0 and ω is doubling, the functions in BMOd
L(Rn, ω) can be described

by the following pointwise inequalities

| f (x) − f (z)| ≤ C |x − y|d , |x − y| < ρ(x)

and

| f (x)| ≤ Cρd(x).
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As a consequence, for d > 0 and a doubling weight ω, the integral Lips-
chitz space BMOd

L(Rn, ω) defined above also coincides with the integral version
corresponding to ω ≡ 1.

3 Regularity estimates of the fractional heat kernel

We first state several known estimates about ht and K L
t , which can be seen in [20].

Lemma 3.1 ([20, Theorem 2.4]) Assume that ω ∈ RDν

⋂
Dγ

⋂
A2, 2 < ν ≤ γ .

(i) There exists a positive constant c such that

0 ≤ ht (x, y) � 1

ω(B(x,
√
t))

e−|x−y|2/ct .

(ii) If |x − z| ≤ |x − y|/4, for some 0 < η ≤ 1,

|ht (x, y) − ht (z, y)| � min
{
1,

( |x − z|√
t

)η} e−|x−y|2/ct

ω(B(x,
√
t))

.

The following estimates about K L
t (·, ·) and ht (·, ·) − K L

t (·, ·) can be seen in [10, 23].

Lemma 3.2 Assume thatω ∈ RDν

⋂
Dγ

⋂
A2, 2 < ν ≤ γ and V satisfies a RHq(ω)

condition with q > γ/2. Let δ0 = 2 − γ /q.

(i) ([10, Theorem 2.2]) For each N ≥ 0 there is a positive constant CN such that

0 ≤ K L
t (x, y) ≤ CN

e−|x−y|2/ct

ω(B(x,
√
t))

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N
.

(ii) ([23, Proposition 3.2]) For any given 0 < δ < min{η, δ0}, there exist two positive
constants CN and c such that for every N > 0 and |x − z| < |x − y|/4,

|K L
t (x, y) − K L

t (z, y)| ≤ CN

( |x − z|√
t

)δ e−|x−y|2/ct

ω(B(x,
√
t))

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N
.

Lemma 3.3 ([10, Proposition 5.1]) Assume that ω ∈ RDν

⋂
Dγ

⋂
A2, 2 < ν ≤ γ

and V satisfies a RHq(ω) condition with q > γ/2. Let δ0 = 2 − γ /q.

(i) There exists a positive constant c such that

|ht (x, y) − K L
t (x, y)| � min

{
1,

( √
t

ρ(x)

)δ0
} e−|x−y|2/ct

ω(B(x,
√
t))

.
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(ii) For any given 0 < δ < min{η, δ0}, |x − z| < |x − y|/4 and |x − z| ≤ ρ(x), there
exists a positive constant c such that

|(ht (x, y) − K L
t (x, y)) − (ht (z, y) − K L

t (z, y))| �
( |x − z|

ρ(x)

)δ e−|x−y|2/ct

ω(B(x,
√
t))

.

Below we will give the estimates for hα,t (·, ·) and K L
α,t (·, ·), respectively.

Proposition 3.4 Let α ∈ (0, 1). Assume that ω ∈ RDν

⋂
Dγ

⋂
A2, 2 < ν ≤ γ .

(i) For x, y ∈ R
n and t > 0,

0 ≤ hα,t (x, y) � min
{ 1

ω(B(x, |x − y|))
t

|x − y|2α ,
1

ω(B(x, t1/2α))

}
,

which gives

0 ≤ hα,t (x, y) � 1

ω(B(x,
√
t1/α+|x−y|2))

t

(t1/α+|x−y|2)α .

(ii) There exists some 0 < η1 ≤ min{2α, η} such that for |x − z| ≤ |x − y|/4,

|hα,t (x, y) − hα,t (z, y)|
�

( |x − z|
t1/2α

)η1
min

{ t1+η1/2α

ω(B(x, |x − y|))|x − y|2α+η1
,

1

ω(B(x, t1/2α))

}
,

which gives

|hα,t (x, y)−hα,t (z, y)| � 1

ω(B(x,
√
t1/α+|x−y|2))

( |x−z|
t1/2α

)η1 t

(t1/α+|x−y|2)α .

Proof For (i), it can be deduced from (1.1), (1.2) and Lemma 3.1 that

hα,t (x, y) �
∫ ∞

0

t

s1+α
hs(x, y)ds

�
∫ ∞

0

t

s1+α

1

ω(B(x,
√
s))

e−|x−y|2/csds.

By the change of variable s = t1/αu, we get

hα,t (x, y) �
∫ ∞

0

t

(t1/αu)1+α

e−c|x−y|2/(t1/αu)t1/α

ω(B(x, t1/2αu))
du

=
∫ ∞

0

e−c|x−y|2/(t1/αu)

ω(B(x, t1/2αu))
u−(1+α)du.
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Letting |x − y|2/(t1/αu) = r2, we have

hα,t (x, y) �
∫ ∞

0

e−cr2

ω(B(x, |x − y|/r))
tr2α−1

|x − y|2α dr

= t

|x − y|2α
( ∫ 1

0
+

∫ ∞

1

) r2α−1e−cr2

ω(B(x, |x − y|/r))dr =: I1 + I2.

For I2, since r ≥ 1, the doubling condition of ω can be utilized to derive

1

ω(B(x, |x − y|/r)) = 1

ω(B(x, |x − y|))
ω(B(x, r |x − y|/r))
ω(B(x, |x − y|/r))

� rγ

ω(B(x, |x − y|)) ,

which further yields

I2 � t |x − y|−2α

ω(B(x, |x − y|))
∫ ∞

1
r2α−1+γ e−cr2dr � t |x − y|−2α

ω(B(x, |x − y|)) .

It remains to prove I1. Since 0 < r < 1 and ω ∈ RDν , we have

ω(B(x, |x − y|/r)) � r−νω(B(x, |x − y|)),

which implies

I1 � t |x − y|−2α

ω(B(x, |x − y|))
∫ 1

0
r2α−1+νe−r2dr � t |x − y|−2α

ω(B(x, |x − y|)) .

Therefore, we obtain

hα,t (x, y) � 1

ω(B(x, |x − y|))
t

|x − y|2α . (3.1)

On the other hand, noting that

hα,t (x, y) �
∫ ∞

0

1

ω(B(x,
√
s))

1

t1/α
ηα
1 (s/t1/α)ds,

we can apply the change of variables τ = s/t1/α to get

hα,t (x, y) =
∫ ∞

0

1

ω(B(x,
√

τ t1/α))

1

t1/α
ηα
1 (τ )t1/αdτ

=
∫ ∞

0

1

ω(B(x,
√

τ t1/α))
ηα
1 (τ )dτ
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=
( ∫ 1

0
+

∫ ∞

1

) 1

ω(B(x,
√

τ t1/α))
ηα
1 (τ )dτ

=: I3 + I4.

Now we are in a position to show I3. By the fact that 0 < τ < 1 and ω ∈ Dγ , we
obtain

I3 � 1

ω(B(x, t1/2α))

∫ 1

0
τ−γ /2ηα

1 (τ )dτ � 1

ω(B(x, t1/2α))
.

For I4, since τ ≥ 1 and ω ∈ RDν , we conclude that

I4 � 1

ω(B(x, t1/2α))

∫ ∞

1
τ−ν/2ηα

1 (τ )dτ � 1

ω(B(x, t1/2α))
.

The above estimates imply that

hα,t (x, y) � 1

ω(B(x, t1/2α))
. (3.2)

Below we divide the range of t1/2α into two cases.
Case 1: t1/2α ≤ |x − y|. It follows from (3.1) that

hα,t (x, y) � 1

ω(B(x, |x − y|))
t

|x − y|2α
� 1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α .

Case 2: t1/2α > |x − y|. By (3.2), we get

hα,t (x, y) � 1

ω(B(x, |x − y|))
t

t

� 1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α .

Hence, in any case, we have

hα,t (x, y) � 1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α .

For (ii), by (1.1) and Lemma 3.1, we can get

|hα,t (x, y) − hα,t (z, y)| =
∣∣∣
∫ ∞

0
ηα
t (s)

(
hs(x, y) − hs(z, y)

)
ds

∣∣∣
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�
∫ ∞

0

t

s1+α

e−c|x−y|2/s

ω(B(x,
√
s))

( |x − z|√
s

)η1
ds.

By changing variables, we have

|hα,t (x, y) − hα,t (z, y)| �
( |x − z|

t1/2α

)η1
∫ ∞

0

e−c|x−y|2/(t1/αu)

ω(B(x, t1/2α
√
u))

u−(1+α+η1/2)du.

Let |x − y|2/(t1/αu) = r2. Then

|hα,t (x, y) − hα,t (z, y)|

=
( |x − z|

t1/2α

)η1 t1+η1/2α

|x − y|2α+η1

( ∫ 1

0
+

∫ ∞

1

) r2α−1+η1e−cr2

ω(B(x, |x − y|/r))dr
=: I1 + I2.

For I2, we know that

1

ω(B(x, |x − y|/r)) � rγ

ω(B(x, |x − y|)) .

Therefore,

I2 �
( |x − z|

t1/2α

)η1 t1+η1/2α

|x − y|2α+η1

1

ω(B(x, |x − y|)) .

It remains to prove I1. Since

ω(B(x, |x − y|/r)) � r−νω(B(x, |x − y|)),

we can deduce that

I1 �
( |x − z|

t1/2α

)η1 t1+η1/2α

|x − y|2α+η1

1

ω(B(x, |x − y|)) .

Therefore, we obtain

|hα,t (x, y) − hα,t (z, y)| �
( |x − z|

t1/2α

)η1 t1+η1/2α

|x − y|2α+η1

1

ω(B(x, |x − y|)) .

On the other hand, similarly to the proof of (i), we can also get

|hα,t (x, y) − hα,t (z, y)| �
( |x − z|

t1/2α

)η1 1

ω(B(x, t1/2α))
.
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Hence, in any case, we have

|hα,t (x, y) − hα,t (z, y)| � (|x − z|/t1/2α)η1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α .

��
Similarly to Proposition 3.4, the following estimates of K L

α,t (·, ·) can be deduced
from Lemma 3.2 and (1.1). So we omit the details.

Proposition 3.5 Assume that ω ∈ RDν

⋂
Dγ

⋂
A2, 2 < ν ≤ γ and V satisfies a

RHq(ω) condition with q > γ/2. Let δ0 = 2 − γ /q.

(i) For each N ≥ 0, there is a positive constant CN such that

0 ≤ K L
α,t (x, y)

≤ CN min
{ t1+N/α

|x − y|2α+2N

1

ω(B(x, |x − y|)) ,
1

ω(B(x, t1/2α))

}(
1 + t1/2α

ρ(x)
+ t1/2α

ρ(y)

)−N
,

which gives

0 ≤ K L
α,t (x, y) ≤ CN

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α
(
1 + t1/2α

ρ(x)

)−N(
1 + t1/2α

ρ(y)

)−N
.

(ii) For any given 0 < δ′ < min{2α, η, δ0}, there exist two positive constants CN and
c such that for every N > 0 and |x − z| < |x − y|/4,

∣∣∣K L
α,t (x, y) − K L

α,t (z, y)
∣∣∣

≤ CN

( |x − z|
t1/2α

)δ′
min

{
t1+N/α+δ′/2α

|x − y|2α+2N+δ′
1

ω(B(x, |x − y|)) ,
1

ω(B(x, t1/2α))

}

×
(
1 + t1/2α

ρ(x)
+ t1/2α

ρ(y)

)−N
,

which gives

|K L
α,t (x, y) − K L

α,t (z, y)| ≤ CN

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α

×
( |x − z|

t1/2α

)δ′(
1 + t1/2α

ρ(x)

)−N(
1 + t1/2α

ρ(y)

)−N
.

Similarly to the proofs of [36, Propositions 5 & 8], we obtain the following
proposition.

Proposition 3.6 Assume that ω ∈ RDν

⋂
Dγ

⋂
A2, 2 < ν ≤ γ and V satisfying a

RHq(ω) condition with q > γ/2. Let δ0 = 2 − γ /q.
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(i) |hα,t (x, y) − K L
α,t (x, y)|

�

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

( |x − y|
ρ(x)

)δ0 1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α , t1/α ≤ |x − y|2;
( t1/2α

ρ(x)

)δ0 1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α , t1/α ≥ |x − y|2.

(ii) For any given 0 < δ < min{η, δ0}, |x − z| < |x − y|/4 and |x − z| ≤ ρ(x),

|(hα,t (x, y) − K L
α,t (x, y)) − (hα,t (z, y) − K L

α,t (z, y))|
�

( |x − z|
ρ(x)

)δ 1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α .

4 Boundedness of themaximal operators and fractional integral
operators

In this section, motivated by [19], we apply Propositions 3.4 and 3.5 to prove the
boundedness of the maximal operator S∗ and T ∗ which are dominated by

G∗ f (x) := sup
t>0

∫

Rn

1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α f (y)ω(y)dy.

The maximal function with respect to the measure ω(x)dx is defined as

Mω f (x) := sup
x∈B

1

ω(B)

∫

B
| f (y)|ω(y)dy.

When ω is a doubling weight, Mω is bounded on L p(Rn, ω) for 1 < p ≤ ∞ and is of
weak type (1,1) with respect to ω(x)dx . Then we also need the following fractional
maximal function Mσ1,γ1

ω which is defined by

Mσ1,γ1
ω f (x) := sup

x∈B

( 1

ω(B)1−σ1γ1/λ

∫

B
| f (y)|γ1ω(y)dy

)1/γ1
.

Lemma 4.1 ([35, Lemma 2.5]) Suppose that 1 < γ1 < p < λ/σ1, 1/s = 1/p − σ1/λ

and ω is doubling. Then

‖Mσ1,γ1
ω f ‖Ls (Rn ,ω) � ‖ f ‖L p(Rn ,ω).

Theorem 4.2 Let ω ∈ A2
⋂

RDν

⋂
Dγ with 2 < ν ≤ γ .

(i) S∗ is bounded on L p(Rn, ω) for 1 < p ≤ ∞ and is of weak type (1,1) with respect
to ω(x)dx.

(ii) If V ∈ RHq(ω) for q > γ/2, T ∗ also has the above properties.
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Proof It is sufficient to prove that G∗ is dominated by Mω. Split

G∗ f (x) = sup
t>0

(
I0 +

∞∑
k=1

Ik
)
,

where

I0 :=
∫

B(x,t1/2α)

t

(t1/α + |x − y|2)α
f (y)ω(y)dy

ω(B(x,
√
t1/α + |x − y|2))

and

Ik :=
∫

B(x,2k t1/2α)\B(x,2k−1t1/2α)

t

(t1/α + |x − y|2)α
f (y)ω(y)dy

ω(B(x,
√
t1/α + |x − y|2)) .

It is obvious that I0 � Mω f (x) and Ik � Mω f (x). The boundedness of Mω indicates
the desire results. ��
Next we investigate the behaviors of the fractional integral operators Iα,β and I Lα,β ,

respectively. The kernels of Iα,β and I Lα,β are given by

⎧⎪⎪⎨
⎪⎪⎩

Hα,β(x, y) :=
∫ ∞

0
hα,t (x, y)t

β/2 dt

t
;

K L
α,β(x, y) :=

∫ ∞

0
K L

α,t (x, y)t
β/2 dt

t
,

respectively.

Lemma 4.3 Let ω ∈ A2
⋂

RDν

⋂
Dγ with 2 < ν ≤ γ .

(i) For 0 < αβ < ν,

0 ≤ Hα,β(x, y) � |x − y|αβ

ω(B(x, |x − y|)) . (4.1)

(ii) If V ∈ RHq(ω) with q > γ/2, then for 0 < αβ < ν and any N > 0,

0 ≤ K L
α,β(x, y) ≤ CN

|x − y|αβ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
.

Proof For (i), taking t1/α = |x − y|2s, we apply Proposition 3.4 (i) to deduce that

Hα,β(x, y) �
∫ ∞

0

1

ω(B(x,
√
t1/α + |x − y|2))

tβ/2

(t1/α + |x − y|2)α dt

=
∫ ∞

0

|x − y|αβ+2α

ω(B(x,
√|x − y|2s + |x − y|2))

sαβ/2+α−1ds

(|x − y|2(s + 1))α
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= I1 + I2,

where

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

I1 := |x − y|αβ

∫ 1

0

1

ω(B(x, |x − y|√1 + s))

sαβ/2+α

(1 + s)α
ds

s
;

I2 := |x − y|αβ

∫ ∞

1

1

ω(B(x, |x − y|√1 + s))

sαβ/2+α

(1 + s)α
ds

s
.

For I1, it holds

I1 � |x − y|αβ

ω(B(x, |x − y|))
∫ 1

0

sαβ/2+α−1

(1 + s)α+ν/2 ds � |x − y|αβ

ω(B(x, |x − y|)) .

For I2, since αβ < ν, we obtain

I2 � |x − y|αβ

ω(B(x, |x − y|))
∫ ∞

1

1

(
√
1 + s)ν

sαβ/2+α

(1 + s)α
ds

s

� |x − y|αβ

ω(B(x, |x − y|))
∫ ∞

1
sαβ/2−1−ν/2ds

� |x − y|αβ

ω(B(x, |x − y|)) .

For (ii), by (i) of Proposition 3.5, we have

K L
α,β(x, y) �

∫ ∞

0

1

ω(B(x,
√|x − y|2(s + 1)))

1

(|x − y|2(s + 1))α

×
(
1 + |x − y|√s

ρ(x)

)−N |x − y|αβ+2αsαβ/2+α ds

s
.

Note that

1 +
√
s|x − y|
ρ(x)

�
(
1 + |x − y|

ρ(x)

)
min{1,√s},

which can be deduced easily by considering s < 1 and s ≥ 1. Applying the previous
inequality, we obtain, for αβ < ν,

K L
α,β(x, y) � |x − y|αβ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N

×
( ∫ 1

0
sαβ/2+α−1ds +

∫ ∞

1
sαβ/2+α−1−α−ν/2ds

)
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� |x − y|αβ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
.

��
It can be seen from Lemma 4.3 that, in order to investigate the behaviors of Iα,β

and I Lα,β , we only need to study the following fractional operator

Jα,β f (x) :=
∫

Rn

|x − y|αβ

ω(B(x, |x − y|)) f (y)ω(y)dy.

Now, we will study the boundedness of Jα,β on Mλ
p(R

n, ω). Firstly, we need the
following lemma about the maximal function Mω.

Lemma 4.4 ([19, Proposition 3]) Let ω be a doubling weight. Then for any λ > 0 and
1 < p ≤ ∞, the operator Mω is bounded on Mλ

p(R
n, ω).

As a consequence of Lemma 4.4 and the pointwise inequalities T ∗ f (x) ≤
S∗ f (x) ≤ Mω f (x), we obtain more boundedness results for the maximal operators
T ∗ and S∗.

Corollary 4.5 Under the same assumptions of Theorem 4.2, the operators S∗ and T ∗
are bounded on Mλ

p(R
n, ω) for any λ > 0 and 1 < p ≤ ∞.

Theorem 4.6 Let ω be a doubling weight. Given β > 0, α ∈ (0, 1) and λ > αβ, the
fractional operator Jα,β is bounded from Mλ

p(R
n, ω) to Mλ

s (Rn, ω) for 1 < p < λ/αβ

and 1/s = 1/p − αβ/λ.

Proof Firstly, we claim that

|Jα,β f (x)| � ‖ f ‖αβ p/λ
Mλ

p(R
n ,ω)

(Mω f (x))1−αβ p/λ. (4.2)

In order to prove (4.2), we adopt the idea which is to get a kind of Hedberg’s inequality
involving the Mλ

p(R
n, ω)-norm as in [21]. Split |Jα,β f (x)| ≤ I1 + I2, where

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I1 :=
∫

B(x,R)

|x − y|αβ

ω(B(x, |x − y|)) | f (y)|ω(y)dy;

I2 :=
∞∑
k=1

∫

B(x,2k R)\B(x,2k−1R)

|x − y|αβ

ω(B(x, |x − y|)) | f (y)|ω(y)dy.

For I1, it holds

I1 =
∞∑
k=0

∫

|x−y|�2−k R

|x − y|αβ

ω(B(x, |x − y|)) | f (y)|ω(y)dy � RαβMω f (x).
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For I2, we also obtain

I2 =
∞∑
k=1

∫

|x−y|�2k R

|x − y|αβ

ω(B(x, |x − y|)) | f (y)|ω(y)dy

�
∞∑
k=1

2kαβ Rαβ 1

ω(B(x, 2k R))

( ∫

|x−y|�2k R
ω(y)dy

)1−1/p

×
( ∫

|x−y|�2k R
| f (y)|pω(y)dy

)1/p

�
∞∑
k=1

2kαβ Rαβω(B(x, 2k R))−1/p
( ∫

|x−y|�2k R
| f (y)|pω(y)dy

)1/p

� Rαβ−λ/p‖ f ‖Mλ
p(R

n ,ω).

By choosing R = (Mω f (x)/‖ f ‖Mλ
p(R

n ,ω))
−p/λ, we get

|Jα,β f (x)| � (Mω f (x))1−αβ p/λ‖ f ‖αβ p/λ
Mλ

p(R
n ,ω)

and

‖Jα,β f ‖Mλ
s (Rn ,ω) � ‖(Mω f )1−αβ p/λ‖Mλ

s
‖ f ‖αβ p/λ

Mλ
p(R

n ,ω)
.

It is easy to see that if ε is such that εs ≥ 1, then ‖gε‖Mλ
s (Rn ,ω) = ‖g‖ε

Mλ
εs (R

n ,ω)
. Since

s(1 − αβ p/λ) = p, by the above facts, we obtain

‖Jα,β f ‖Mλ
s (Rn ,ω) � ‖Mω f ‖Mλ

p(R
n ,ω)‖ f ‖αβ p/λ

Mλ
p(R

n ,ω)
.

Using Lemma 4.4, we can obtain the desired result. ��
As a consequence, the following boundedness results for the negative powers of L0

and L hold.

Theorem 4.7 Let ω ∈ A2
⋂

RDν

⋂
Dγ for some 2 < ν ≤ γ . Given β > 0 and

α ∈ (0, 1). For any λ such that αβ < λ ≤ ν, we have

(i) Iα,β is bounded from Mλ
p(R

n, ω) to Mλ
s (Rn, ω) for 1 < p < λ/αβ and 1/s =

1/p − αβ/λ.

(ii) Further, for V ∈ RHq with q > γ/2, I Lα,β is bounded from Mλ
p(R

n, ω) to

Mλ
s (Rn, ω) for 1 < p < λ/αβ and 1/s = 1/p − αβ/λ.

Then we focus on the mixed operators I Lα,βV
σ/2. In this point, we assume V ∈

RH∞(ω), i.e., there is a positive constant C such that for any ball B,

sup
x∈B

ω(x) ≤ C

ω(B)

∫

B
V (u)ω(u)du.
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For 1 < q < +∞, we know that RH∞(ω) ⊂ RHq(ω) (see [34]). Under this stronger
condition that V ∈ RH∞(ω), we can prove that the boundedness of I Lα,βV

σ/2 and
their adjoint operators are the same.

Theorem 4.8 Assume that ω ∈ A2
⋂

RDν

⋂
Dγ for some ν > 2 and V ∈ RH∞(ω).

Let α ∈ (0, 1), β > 0 and σ > 0 such that 0 < σ ≤ αβ < ν. For any λ with
αβ − σ < λ ≤ ν,

(i) I Lα,βV
σ/2 and V σ/2 I Lα,β are bounded from Mλ

p(R
n, ω) to Mλ

s (Rn, ω) for 1 <

p < λ/(αβ − σ) and 1/s = 1/p − (αβ − σ)/λ.
(ii) I Lα,βV

σ/2 and V σ/2 I Lα,β are bounded from Mλ
λ/(αβ−σ)(R

n, ω) to Mλ∞(Rn, ω) =
L∞.

(iii) I Lα,βV
σ/2 and V σ/2 I Lα,β are bounded on L p(Rn, ω) when αβ = σ and 1 < p ≤

∞.

Proof We first prove (i). For 0 < αβ < ν, using (ii) of Lemma 4.3, the kernel K L,σ
α,β

of I Lα,βV
σ/2 is dominated by

K L,σ
α,β (x, y) � |x − y|αβ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
V σ/2(y).

Since V ∈ RH∞(ω), taking the ball B(y, ρ(y)) in the definition of ρ(·), we easily
get V (y) � ρ−2(y). Moreover, by Lemma 2.1, we also have

ρ−1(y) � ρ−1(x)
(
1 + |x − y|/ρ(x)

)N0
.

Then we can deduce that

K L,σ
α,β (x, y) � |x − y|αβρ−σ (x)

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−(N−N0σ)

. (4.3)

Let αβ > σ . A direct computation derives

K L,σ
α,β (x, y) � |x − y|αβ−σ

ω(B(x, |x − y|))
|x − y|σ
ρσ (x)

(
1 + |x − y|

ρ(x)

)−(N−N0σ)

� |x − y|αβ−σ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−(N−N0σ−σ)

� |x − y|αβ−σ

ω(B(x, |x − y|)) ,

which gives I Lα,βV
σ/2 f (x) � Jαβ−σ f (x) = ∫

Rn
|x−y|αβ−σ

ω(B(x,|x−y|)) f (y)ω(y)dy. There-
fore, (i) can be deduced from Theorem 4.6.

It remains to prove (ii). From (4.3), we can write

I Lα,βV
σ/2 f (x)
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�
∫

Rn

|x − y|αβρ−σ (x)

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−(N−N0σ)| f (y)|ω(y)dy

=
+∞∑

k=−∞

∫

B(x,2kρ(x))

|x − y|αβρ−σ (x)

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−(N−N0σ)| f (y)|ω(y)dy

�
+∞∑

k=−∞
2kσ (1 + 2k)−N+N0σ

(2kρ(x))αβ−σ

ω(B(x, 2kρ(x)))

∫

B(x,2kρ(x))
| f (y)|ω(y)dy,

(4.4)

where N is any positive number, so we can take N > N0σ . Since αβ > σ and
p = λ/(αβ − σ), for each k, we apply Hölder’s inequality to obtain

(2kρ(x))αβ−σ

ω(B(x, 2kρ(x)))

∫

B(x,2kρ(x))
| f (y)|ω(y)dy

� (2kρ(x))αβ−σ

ω(B(x, 2kρ(x)))(αβ−σ)/λ

( ∫

B(x,2kρ(x))
| f (y)|λ/(αβ−σ)ω(y)dy

)(αβ−σ)/λ

� ‖ f ‖Mλ
λ/(αβ−σ)

.

Inserting this estimate into (4.4), we conclude that (ii) holds since the series is
convergent.

(iii) When αβ = σ , we can deduce that I Lα,βV
αβ/2 f (x) � Mω f (x). Therefore, the

desire results can be deduced from the properties of Mω.
Finally, all the statements about the adjoint operators are immediate once we notice

that their kernels are also bounded by the right hand side of (4.3). ��
Remark 4.9 In the above proofs, by (4.3), we can also get

K L,σ
α,β (x, y) � |x − y|αβ−σ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
.

Therefore, based on Lemma 4.3, we would expect the operators I Lα,βV
σ/2 for αβ > σ

to behave as I Lα,−(αβ−σ). However, Theorem 4.8 (ii) reveals that mixed operators are
slightly better.

Definition 4.10 If there exists a positive number λ such that for some constant C
independent of x ,

Crλ ≤ ω(B(x, r)), (4.5)

one says that the measure ω(x)dx is lower-Ahlfors.

Theorem 4.11 Assume that ω ∈ Dγ

⋂
RDν for 2 < ν ≤ γ , ω is doubling and

V ∈ RHq(ω) with q > γ/2. Let α ∈ (0, 1) and β > 0 such that 0 ≤ σ ≤ αβ < ν. If
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ω satisfies (4.5), then

∣∣∣I Lα,β(V σ/2 f )(x)
∣∣∣ � Mαβ−σ,(2q/σ)′

ω f (x),

where (2q/σ)′ is the conjugate of 2q/σ .

Proof Let r = ρ(x). Since ω satisfies (4.5), by Lemma 4.3 and Hölder’s inequality,
we have

∣∣∣I Lα,β(V σ/2(x) f (x))
∣∣∣

�
+∞∑

k=−∞

∫

2k−1r≤|x−y|≤2kr

1

(1 + 2kr/ρ(x))N
(2kr)αβ

ω(B(x, 2kr))
V σ/2(y)| f (y)|ω(y)dy

�
+∞∑

k=−∞

(2kr)αβ

(1 + 2k)N
1

ω(B(x, 2kr))

[( ∫

|x−y|≤2kr
V (y)qω(y)dy

)σ/2q

×
( ∫

|x−y|≤2kr
| f (y)|(2q/σ)′ω(y)dy

)1/(2q/σ)′]

�
+∞∑

k=−∞

(2kr)αβ

(1 + 2k)N
1

ω(B(x, 2kr))(αβ−σ)/λ

×
( 1

ω(B(x, 2kr))

∫

|x−y|≤2kr
V (y)ω(y)dy

)σ/2
Mαβ−σ,(2q/σ)′

ω ( f )(x)

�
+∞∑

k=−∞

(2kr)σ

(1 + 2k)N

( 1

ω(B(x, 2kr))

∫

|x−y|≤2kr
V (y)ω(y)dy

)σ/2
Mαβ−σ,(2q/σ)′

ω ( f )(x).

For k ≥ 1, since V (y)ω(y)dy is a doubling measure and ω ∈ RDν , we get

(2kr)2

ω(B(x, 2kr))

∫

B(x,2kr)
V (y)ω(y)dy � Ck

0
(2kr)2

ω(B(x, 2kr))

∫

B(x,r)
V (y)ω(y)dy

� (2k)k0 ,

where k0 = 2 − ν + log2 C0. For k ≤ 0, Lemma 2.2 implies that

(2kr)2

ω(B(x, 2kr))

∫

B(x,2kr)
V (y)ω(y)dy �

( r

2kr

)γ /q−2 r2

ω(B(x, r))

∫

B(x,r)
V (y)ω(y)dy

� (2k)2−γ /q .

Taking N large enough, we deduce that

∣∣∣I Lα,β(V σ/2 f )(x)
∣∣∣ � Mαβ−σ,(2q/σ)′

ω f (x).

��
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By Theorem 4.11 and the duality, we can obtain the following result.

Corollary 4.12 Assume that ω ∈ Dγ

⋂
RDν for 2 < ν ≤ γ , ω is doubling and

V ∈ RHq(ω) with q > γ/2. Let 0 ≤ σ ≤ αβ < ν, λ > 0, 1 < p < +∞ and ω

satisfy (4.5).

(i) For 1 < (2q/σ)′ < p < λ
αβ−σ

and 1/s = 1/p − (αβ − σ)/λ,

‖I Lα,βV
σ/2 f ‖Ls (Rn ,ω) � ‖ f ‖L p(Rn ,ω).

(ii) For 1 < s < 2q/σ and 1/s = 1/p − (αβ − σ)/λ,

‖V σ/2 I Lα,β f ‖Ls (Rn ,ω) � ‖ f ‖L p(Rn ,ω).

Definition 4.13 Let 1 ≤ p ≤ ∞, ω ∈ A2 and λ1, λ2 ≥ 0. The weighted Morrey space
Mλ1,λ2

p (Rn, ω) is defined as the set of all L p-locally integrable functions f on R
n

such that

‖ f ‖
M

λ1,λ2
p (Rn ,ω)

:= sup
B=B(x,r)

( rλ1

ω(B)λ2

∫

B
| f (x)|pω(x)dx

)1/p
< ∞.

Theorem 4.14 Let ω be a A2-weight such that ω ∈ RDν

⋂
Dγ with ν > 2 and

V ∈ RHq(ω) with q > γ/2. Let 0 < σ ≤ αβ < ν. For any λ > 0 such that
αβ < λ ≤ ν, 1 < s < 2q/σ and 1/s = 1/p − (αβ − σ)/λ. Then if ω satisfies (4.5),
we have

‖V σ/2 I Lα,β f ‖
Mλs/p,s/p

s (Rn ,ω)
� ‖ f ‖Mλ

p(R
n ,ω).

Proof Picking any x0 ∈ R
n and r > 0, we write f (x) = f0(x) + ∑∞

i=1 fi (x), where

{
f0(x) := χB(x0,2r) f (x);
fi (x) := χB(x0,2i+1r)\B(x0,2i r) f (x).

Hence, we have

( ∫

B(x0,r)
|V σ/2 I Lα,β f (x)|sω(x)dx

)1/s ≤ I0 +
∞∑
i=1

Ii ,

where

⎧
⎪⎪⎨
⎪⎪⎩

I0 :=
( ∫

B(x0,r)
|V σ/2 I Lα,β f0(x)|sω(x)dx

)1/s;

Ii :=
( ∫

B(x0,r)
|V σ/2 I Lα,β fi (x)|sω(x)dx

)1/s
.
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For I0, by Corollary 4.12 (ii), we get

I s0 � ω(B(x, r))θ

rλθ
‖ f ‖sMλ

p(R
n ,ω)

, θ = s/p.

For Ii , using Hölder’s inequality, the facts that V ∈ RHq(ω) and ω satisfies (4.5), we
deduce from Lemma 4.3 that

I si �
∫

B(x0,r)
V sσ/2(x)ω(x)

×
∣∣∣
∫

B(x0,2 j+1r)\B(x0,2 j r)

(2i r)αβ | f (y)|ω(y)dy

(1 + 2i r/ρ(x0))N/(N0+1)ω(B(x0, |x0 − y|))
∣∣∣
s
dx

� 1

(1 + 2i r/ρ(x0))Ns/(N0+1)

(2i r)sαβ

ω(B(x0, 2i r))s

( ∫

B(x0,2i+1r)
| f (y)|ω(y)dy

)s

×
( ∫

B(x0,r)
|V (x)|σ s/2ω(x)dx

)
.

Then by Lemma 2.3, we obtain

I si � 1

(1 + 2i r/ρ(x0))Ns/(N0+1)

(2i r)sαβ

ω(B(x0, 2i r))s

×
[( ∫

B(x0,2i+1r)
| f (y)|pω(y)dy

)1/p
ω(B(x0, 2

i r))1−1/p
]s

×
( ∫

B(x0,r)
|V (x)|qω(x)dx

)σ s/2q
ω(B(x0, r))

1−σ s/2q

� 1

(1 + 2i r/ρ(x0))Ns/(N0+1)

(2i r)sαβ

ω(B(x0, 2i r))s/p

( ∫

B(x0,2i+1r)
| f (y)|pω(y)dy

)s/p

×ω(B(x0, r))
( 1

ω(B(x0, r))

∫

B(x0,r)
V (x)ω(x)dx

)σ s/2

� ω(B(x0, r))

(1 + 2i r/ρ(x0))N1

1

(2i r)λ
‖ f ‖sMλ

p(R
n ,ω)

,

where 0 < N1 < (Ns/(N0 + 1) − (log2 C0 + 1)sσ/2 and 1/s = 1/p − (αβ − σ)/λ.
Since θ > 1 and ω satisfies (4.5),

‖V σ/2 I Lα,β f ‖s
Mλs/p,s/p

s (Rn ,ω)

� ‖ f ‖sMλ
p(R

n ,ω)
+

∞∑
i=1

rλ(θ−1)

ω(B(x0, r))θ−1

1

(1 + 2i r/ρ(x0))Ns/(N0+1)2iλ
‖ f ‖sMλ

p(R
n ,ω)

� ‖ f ‖sMλ
p(R

n ,ω)
.

��
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Then similarly to the proof of Theorem 4.14, we can also get

Theorem 4.15 Let ω be a A2-weight such that ω ∈ RDν

⋂
Dγ with ν > 2 and

V ∈ RHq(ω), q > γ/2. Let 0 < σ ≤ αβ < ν. For any λ > 0 such that αβ < λ ≤ ν,
2q/(2q − σ) < p < λ/(αβ − σ) and 1/s = 1/p − (αβ − σ)/λ. Then if ω satisfies
(4.5), we have

‖I Lα,βV
σ/2 f ‖

Mλs/p,s/p
s (Rn ,ω)

� ‖ f ‖Mλ
p(R

n ,ω).

Proof For any ball B(x0, r), we can decompose f as follows: f (x) = f0(x) +∑∞
i=1 fi (x), where

{
f0(x) := χB(x0,2r)(x) f (x);
fi (x) := χB(x0,2i+1r)\B(x0,2i r)(x) f (x).

Similarly to the proof of Theorem 4.14, we have

( ∫

B(x0,r)
|I Lα,βV

σ/2 f (x)|sω(x)dx
)1/s ≤ I0 +

∞∑
i=1

Ii ,

where

⎧⎪⎪⎨
⎪⎪⎩

I0 :=
( ∫

B(x0,r)
|I Lα,βV

σ/2 f0(x)|sω(x)dx
)1/s;

Ii :=
( ∫

B(x0,r)
|I Lα,βV

σ/2 fi (x)|sω(x)dx
)1/s

.

For I0, by Corollary 4.12 (i), we get

I s0 � ω(B(x0, r))θ

rλθ
‖ f ‖sMλ

p(R
n ,ω)

, θ = s/p.

For Ii , using Hölder’s inequality, the facts that V ∈ RHq(ω) and ω satisfies (4.5), we
deduce from Lemma 4.3 that

I si �
∫

B(x0,r)

∣∣∣
∫

B(x0,2 j+1r)\B(x0,2 j r)

(2i r)αβ | f (y)|V σ/2(y)ω(y)dy

(1 + 2i r/ρ(x0))N/(N0+1)ω(B(x0, |x0 − y|))
∣∣∣
s
ω(x)dx

� 1

(1 + 2i r/ρ(x0))Ns/(N0+1)

(2i r)sαβω(B(x0, r))

ω(B(x0, 2i r))s

( ∫

B(x0,2i r)
| f (y)||V (y)|σ/2ω(y)dy

)s

� 1

(1 + 2i r/ρ(x0))Ns/(N0+1)

(2i r)sαβω(B(x0, r))

ω(B(x0, 2i r))s

[( ∫

B(x0,2i r)
| f (y)|pω(y)dy

)1/p

×
( ∫

B(x0,2i r)
|V (y)|σ p/(2(p−1))ω(y)dy

)(p−1)/p]s
.
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Then by Lemma 2.3, we obtain

I si � 1

(1 + 2i r/ρ(x0))Ns/(N0+1)

(2i r)sαβω(B(x0, r))

ω(B(x0, 2i r))s/p

( ∫

B(x0,2i r)
| f (y)|pω(y)dy

)s/p

×
( 1

ω(B(x0, 2i r))

∫

B(x0,2i r)
|V (y)|σ p/(2(p−1))ω(y)dy

)s(p−1)/p

� 1

(1 + 2i r/ρ(x0))Ns/(N0+1)

(2i r)sαβω(B(x0, r))

ω(B(x0, 2i r))s/p

( ∫

B(x0,2i r)
| f (y)|pω(y)dy

)s/p

×
( 1

ω(B(x0, 2i r))

∫

B(x0,2i r)
|V (y)|ω(y)dy

)sσ/2

� ω(B(x0, r))

(1 + 2i r/ρ(x0))N2

1

(2i r)λ
‖ f ‖sMλ

p(R
n ,ω)

,

where 0 < N2 < (Ns/(N0 + 1) − (log2 C0 + 1)sσ/2 and 1/s = 1/p − (αβ − σ)/λ.
Noting that θ > 1 and ω satisfies (4.5), we obtain

‖I Lα,βV
σ/2 f ‖s

Mλs/p,s/p
s (Rn ,ω)

� ‖ f ‖sMλ
p(R

n ,ω)
+

∞∑
i=1

rλ(θ−1)

ω(B(x0, r))θ−1

1

(1 + 2i r/ρ(x0))N22iλ
‖ f ‖sMλ

p(R
n ,ω)

� ‖ f ‖sMλ
p(R

n ,ω)
.

��

5 Boundedness of S∗ and H˛,ˇ

In this section, we will investigate the boundedness of operators related to L0 on
Lipschitz type spaces. For this purpose, we first recall themaximal semigroup operator
S∗ defined as

S∗ f (x) := sup
t>0

∣∣∣
∫

Rn
hα,t (x, y) f (y)ω(y)dy

∣∣∣.

Theorem 5.1 Let ω be a weight in A2
⋂

RDν with ν > 2. Assume that 0 < η1 ≤
min{2α, η} and η ∈ (0, 1). The maximal operator S∗ is bounded on BMOd

0 (Rn, ω) =
BMOd(Rn, ω)

⋂
L∞ for any 0 ≤ d < η1.

Proof We consider only the case d > 0; the case d = 0 is just the boundedness on
L∞ contained in Theorem 4.2.

Assume that f ∈ BMOd
0 (Rn, ω). As we said, S∗ f (x) is finite a.e. x ∈ R

n . Then
for x, z ∈ R

n ,

∣∣∣S∗ f (x) − S∗ f (z)
∣∣∣ ≤ sup

t>0

∣∣∣
∫

Rn
(hα,t (x, y) − hα,t (z, y)) f (y)ω(y)dy

∣∣∣. (5.1)
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It should be noted that Sα,t1(x) = Sα,t1(z). In fact, it follows from [20, Theorem 2.1]
and [10, Section 3] that

∫

Rn
ht (x, y)w(y)dy = 1.

By (1.1), we obtain

∫

Rn
hα,t (x, y)w(y)dy =

∫ ∞

0
ηα
t (s)

( ∫

Rn
hs(x, y)w(y)dy

)
ds =

∫ ∞

0
ηα
t (s)ds = 1.

Then we deduce that Sα,t1 ≡ 1 for any t > 0, which implies that Sα,t1(x) = Sα,t1(z).
We conclude that the above integral in the right side of (5.1) is zero when f is constant.
Therefore, we may replace f (y) by the difference f (y) − f (x) inside the integral.

Then
∣∣∣S∗ f (x) − S∗ f (z)

∣∣∣ ≤ I1 + I2, where

⎧⎪⎪⎨
⎪⎪⎩

I1 := sup
t>0

∣∣∣
∫

B(x,4|x−z|)
(hα,t (x, y) − hα,t (z, y))( f (y) − f (x))ω(y)dy

∣∣∣;

I2 := sup
t>0

∣∣∣
∫

(B(x,4|x−z|))c
(hα,t (x, y) − hα,t (z, y))( f (y) − f (x))ω(y)dy

∣∣∣.

For I1, it is easy to see that I1 ≤ I1,1 + I1,2, where

⎧⎪⎪⎨
⎪⎪⎩

I1,1 := sup
t>0

∣∣∣
∫

B(x,4|x−z|)
hα,t (x, y)( f (y) − f (x))ω(y)dy

∣∣∣;

I1,2 := sup
t>0

∣∣∣
∫

B(x,4|x−z|)
hα,t (z, y)( f (y) − f (x))ω(y)dy

∣∣∣.

The methods proving I1,1 and I1,2 are similar. We now observe that B(x, 4|x − z|) ⊂
B(z, 5|x − z|). By f ∈ BMOd(Rn, ω), we obtain

I1,1 � ‖ f ‖BMOd |x − z|d sup
t>0

∫

B(x,4|x−z|)
hα,t (x, y)ω(y)dy � ‖ f ‖BMOd |x − z|d .

For I2, it is obvious that if y ∈ (B(x, 4|x − z|))c then |x − z| ≤ |x − y|/4. By the
proof of (ii) of Proposition 3.4, we obtain

|hα,t (x, y) − hα,t (z, y)| �
( |x − z|

t1/2α

)η1
min

{ t1+η1/2α

ω(B(x, |x − y|))|x − y|2α+η1
,

1

ω(B(x, t1/2α))

}
.

If |x − y| ≤ t1/2α , then

|hα,t (x, y) − hα,t (z, y)| � 1

ω(B(x, |x − y|))
( |x − z|
|x − y|

)η1
.
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If |x − y| > t1/2α , then

|hα,t (x, y) − hα,t (z, y)| � |x − z|η1 |x − y|2α
ω(B(x, |x − y|))|x − y|2α+η1

= 1

ω(B(x, |x − y|))
( |x − z|
|x − y|

)η1
.

From the above arguments, we have

|hα,t (x, y) − hα,t (z, y)| � 1

ω(B(x, |x − y|))
( |x − z|
|x − y|

)η1
.

Using f ∈ BMOd(Rn, ω) again, then

I2 � ‖ f ‖BMOd |x − z|η1
∞∑
k=2

∫

2k+1B(x,|x−z|)\2k B(x,|x−z|)
|x − y|d−η1

ω(B(x, |x − y|))ω(y)dy

� ‖ f ‖BMOd |x − z|η1
∞∑
k=2

(2k |x − z|)d−η1 .

Since d < η1, the convergence of the above sum derives the desired estimate. Finally,
using ‖S∗ f ‖∞ � ‖ f ‖∞ again, we complete the proof of the theorem. ��
Now we turn our attention to the fractional operators Iα,β . It should be mentioned that
in order to deal with these operators acting on functions in Mλ

p(R
n, ω)with p ≥ λ/αβ

or in BMOd(Rn, ω), we need not only the kernel size for 0 < αβ < ν in Lemma 4.3
but also the smoothness of Hα,β .

Lemma 5.2 Let ω be a weight in A2
⋂

RDν with ν > 2. Assume that 0 < η1 ≤
min{2α, η} and η ∈ (0, 1). Then for |x − z| ≤ |x − y|/4, we have

|Hα,β(x, y) − Hα,β(z, y)| �
( |x − z|
|x − y|

)η1 |x − y|αβ

ω(B(x, |x − y|)) . (5.2)

Proof To estimate the left hand side above, it only needs to consider

∫ ∞

0
|hα,t (x, y) − hα,t (z, y)|tβ/2 dt

t
.

Using (ii) of Proposition 3.4, we deduce

∫ ∞

0
|hα,t (x, y) − hα,t (z, y)|tβ/2 dt

t
= J1 + J2,

where

J1 :=
∫

t≤|x−y|2α

( |x − z|
t1/2α

)η1
min

{ t1+η1/2α

ω(B(x, |x − y|))|x − y|2α+η1
,

1

ω(B(x, t1/2α))

}
tβ/2 dt

t
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and

J2 :=
∫

t>|x−y|2α

( |x − z|
t1/2α

)η1
min

{ t1+η1/2α

ω(B(x, |x − y|))|x − y|2α+η1
,

1

ω(B(x, t1/2α))

}
tβ/2 dt

t
.

For J2, we have

J2 �
∫

t1/α>|x−y|2
1

ω(B(x, |x − y|))
( |x − z|

t1/2α

)η1
tβ/2 dt

t

� |x − y|αβ

ω(B(x, |x − y|))
( |x − z|
|x − y|

)η1
.

For J1, we obtain

J1 �
∫

t1/α≤|x−y|2
1

ω(B(x, |x − y|))|x − y|2α
( |x − z|
|x − y|

)η1
tβ/2dt

� |x − y|αβ

ω(B(x, |x − y|))
( |x − z|
|x − y|

)η1
.

��
Belowwe will state and prove several novel results for the operator Iα,β . Firstly, we

are going tomodify our operator such that itmakes sense for all functions inMλ
p(R

n, ω)

with λ/αβ ≤ p < λ/(αβ − η1)
+, which means λ/αβ ≤ p < ∞ when αβ < η1 and

λ/αβ ≤ p < λ/(αβ − η1), otherwise. In fact, our definition works on functions in
the large spaces Mαβ−d

1 (Rn, ω) for any 0 ≤ d < αβ and d < η1. It is obvious that
these spaces contain any of the aforementioned ones since, by Hölder’s inequality,
Mλ

p(R
n, ω) ⊂ Md/p

1 (Rn, ω) and d = αβ − λ/p satisfies the above conditions for
λ/αβ ≤ p < λ/(αβ − η1)

+. Then, we introduce the following operator

H̃α,β f (x) :=
∫

Rn
(Hα,β(x, y) − Hα,β(0, y)χBc

1
) f (y)ω(y)dy

for f ∈ Mαβ−d
1 (Rn, ω) and B1 = B(0, 1). Secondly, we notice that the right hand

side gives a locally integrable function. Clearly, it will be enough to show integrability
in balls B(0, R) with R ≥ 2. In fact, we split H̃α,β,t f (x) = I1(x) + I2(x), where

⎧⎪⎪⎨
⎪⎪⎩

I1(x) :=
∫

B1
Hα,β(x, y) f (y)ω(y)dy;

I2(x) :=
∫

Bc
1

(Hα,β(x, y) − Hα,β(0, y)) f (y)ω(y)dy.

Using the Fubini theorem and Lemma 4.3, we obtain

∫

B(0,R)

|I1(x)|ω(x)dx �
∫

B1
| f (y)|

( ∫

B(y,2R)

|x − y|αβ

ω(B(x, |x − y|))ω(x)dx
)
ω(y)dy
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due to the fact B(0, R) ⊂ B(y, 2R). It is easy to see that B(y, |x−y|) ⊆ B(x, 2|x−y|)
and ω ∈ A2 imply that

ω(B(y, |x − y|)) ≤ ω(B(x, 2|x − y|)) � ω(B(x, |x − y|)).

The right side of the above inequality is bounded by

∫

B1
| f (y)|

⎛
⎝

0∑
j=−∞

∫

2 j R≤|x−y|<2 j+1R

|x − y|αβ

ω(B(x, |x − y|))ω(x)dx

⎞
⎠ ω(y)dy

�
∫

B1
| f (y)|

⎛
⎝

0∑
j=−∞

(2 j R)αβω(B(y, 2 j+1R))

ω(B(y, 2 j R))

⎞
⎠ ω(y)dy

� Rαβ,

where the above quantity is finite due to the fact that f is locally integrable with respect
to the weight ω.

Regarding to I2(x), we observe that |I2(x)| ≤ I2,1(x) + I2,2(x) + I2,3(x), where

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I2,1(x) :=
∫

B(0,2R)

Hα,β(x, y)| f (y)|ω(y)dy;

I2,2(x) :=
∫

B(0,2R)\B1
Hα,β(0, y)| f (y)|ω(y)dy;

I2,3(x) :=
∫

B(0,2R)c
|Hα,β(x, y) − Hα,β(0, y)|| f (y)|ω(y)dy.

The local integrability of I2,1(x) follows as for I1(x). Regarding to I2,2(x), we notice

that Hα,β(0, y) � Rαβ

ω(B(0,1)) for y ∈ B(0, 2R)\B1 and then I2,2(x) is a finite constant.
For I2,3(x), since x ∈ B(0, R) and y ∈ B(0, 2R)c, |y|/2 > |x |. We apply Lemma 5.2
and f ∈ Mαβ−d

1 (Rn, ω) to get

I2,3(x) � |x |η1
∫

B(0,2R)c

|y|αβ−η1

ω(B(0, |y|)) | f (y)|ω(y)dy

� |x |η1
∞∑
k=1

(2k R)αβ−η1

ω(B(0, 2k R))

∫

B(0,2k+1R)

| f (y)|ω(y)dy

� |x |η1
∞∑
k=1

2k(d−η1)Rd−η1‖ f ‖
Mαβ−d

1

since d < η1 the series converges and I2,3(x) is also a locally integrable function with
respect to the weight ω.

Then we will establish continuity properties of our modified operator H̃α,β in the
following theorem.
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Theorem 5.3 Let ω be weight in A2
⋂

RDν with ν > 2. Assume that 0 < η1 ≤
min{2α, η} and η ∈ (0, 1). Then, for 0 < αβ < ν, the operator H̃α,β maps continu-

ously Mαβ−d
1 (Rn, ω) into BMOd(Rn, ω) for any given d with 0 ≤ d < min{η1, αβ}.

Furthermore, H̃α,β f coincides with Iα,β f as functions in BMOd(Rn, ω) when f is
also compactly supported.

Proof Using the above arguments, we know that H̃α,β f is a locally integrable function
and hence it is finite a.e.. Moreover, from a similar argument, it follows that for any
given ball B = B(x0, r), setting B̃ = 2B, we conclude that

aB :=
∫

Rn
(Hα,β(x0, y)χB̃c − Hα,β(0, y)χBc

1
) f (y)ω(y)dy

is a finite constant. More precisely, take a ball B∗ = B(x0, R) with R large enough
such that 2B1

⋃
B̃ ⊂ B∗, for example we may choose R = 2(|x0| + r + 1). Then

aB ≤ J1 + J2 + J3,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

J1 :=
∫

B∗\B̃
Hα,β(x0, y)| f (y)|ω(y)dy;

J2 :=
∫

B∗\B1
Hα,β(0, y)| f (y)|ω(y)dy;

J3 :=
∫

B∗c
|Hα,β(x0, y) − Hα,β(0, y)|| f (y)|ω(y)dy.

For J1 and J2, it follows that the kernel is bounded since 2r ≤ |x0 − y| < R in J1 and
2 ≤ |y| ≤ |x0| + R in J2. Therefore, the finiteness of J1 and J2 can be deduced from
the local integrability of f . Regarding J3, it is easy to see that |x0 − y| ≥ R > 2|x0|.
By Lemma 5.2 and similarly to the proof of I2,3, we have, for f ∈ Mαβ−d

1 (Rn, ω),

J3 � ‖ f ‖
Mαβ−d

1 (Rn ,ω)
|x0|η1Rαβ−η1 < ∞.

Therefore, we show that for any ball B, H̃α,β f (x) := G1(x) + G2(x) + aB, where

⎧
⎪⎪⎨
⎪⎪⎩

G1(x) =
∫

B̃
Hα,β(x, y) f (y)ω(y)dy;

G2(x) =
∫

B̃c
(Hα,β(x, y) − Hα,β(x0, y)) f (y)ω(y)dy.

We are now in a position to show that H̃α,β f (x) belongs to BMOd(Rn, ω). We fix
a ball B = B(x0, r) and use the above expression for that specific ball. For G1, we
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integrate G1(x) over B. Similarly to the above arguments of I1, we obtain

∫

B
|G1(x)|ω(x)dx � rαβ

∫

B̃
| f (y)|ω(y)dy � ‖ f ‖

Mαβ−d
1 (Rn ,ω)

rdω(B).

Next, in order to calculate the oscillation over B of the remaining terms, we may
subtract a constant, for example aB . Therefore, we only need to control the integral of
|G2(x)|. In this manner, applying Lemma 5.2 again, we obtain

|G2(x)| � |x0 − x |η1
∫

B̃c

|x0 − y|αβ−η1

ω(B(x0, |x0 − y|)) | f (y)|ω(y)dy

� |x − x0|η1
∑
k>1

∫

2k+1B\2k B
|x0 − y|αβ−η1

ω(B(x0, |x0 − y|)) | f (y)|ω(y)dy

� ‖ f ‖
Mαβ−d

1 (Rn ,ω)
rd

due to |x − y| � |x0 − y| and ω(B(x0, |x0 − y|)) � ω(B(x, |x − y|)). Averaging
with respect toωdx deduces the desired estimate. Finally, notice that if f is compactly
supported, we may take a ball B large enough so that G2 is zero, which implies that

H̃α,β f (x) :=
∫

Rn
Hα,β(x, y) f (y)ω(y)dy + aB,

and hence H̃α,β f (x) equals to Iα,β f as functions in BMOd(Rn, ω). This completes
the proof of Theorem 5.3. ��

Remark 5.4 When α = 1 and ω ≡ 1, Theorem 5.3 comes back to [19], which implies
the boundedness of the modified classical fractional integral of order β from weak-
Ln/β into BMO or, more generally, from weak-L p into BMOd for p ≥ n/β and
d = β − p/n < 1.

In what follows, we study the behavior of Iα,β on the spaces BMOd(Rn, ω). Via
the proof of Theorem 5.1, we have

∫ ∞

0

( ∫

Rn
(hα,t (x, y) − hα,t (x0, y))ω(y)dy

)
tβ/2 dt

t
= 0.

Now, if we take the absolute value inside and reverse the order of integration, it is easy
to check that the iterated integral is finite. More precisely,

∫

Rn

( ∫ ∞

0

∣∣∣hα,t (x, y) − hα,t (x0, y)
∣∣∣tβ/2 dt

t

)
ω(y)dy ≤ I1 + I2,
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where
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I1 :=
∫

B(x,2|x−x0|)

( ∫ ∞

0

∣∣∣hα,t (x, y) − hα,t (x0, y)
∣∣∣tβ/2 dt

t

)
ω(y)dy;

I2 :=
∫

B(x,2|x−x0|)c

( ∫ ∞

0

∣∣∣hα,t (x, y) − hα,t (x0, y)
∣∣∣tβ/2 dt

t

)
ω(y)dy.

For I1, in view of Lemma 4.3, we obtain

I1 ≤
∫

B(x,2|x−x0|)
Hα,β(x, y)ω(y)dy +

∫

B(x0,3|x−x0|)
Hα,β(x0, y)ω(y)dy ≤ C .

For I2, using Lemma 5.2, we can deduce that if we assume αβ < η1,

I2 � |x − x0|η1
∫

B(x,2|x−x0|)c
|x − y|αβ−η1

ω(B(x, |x − y|))ω(y)dy < ∞.

Therefore, the order of integration can be reversed to obtain

∫

Rn
[Hα,β(x, y) − Hα,β(x0, y)]ω(y)dy = 0, (5.3)

and the integral is finite if we assume αβ < η1. Then, given a function f ∈
BMOd(Rn, ω), 0 ≤ d < η1, for some fixed x0, we define the following operator

Ḧα,β f (x) :=
∫

Rn
[Hα,β(x, y) − Hα,β(x0, y)] f (y)ω(y)dy.

Theorem 5.5 Let ω be a weight in A2
⋂

RDν with ν > 2. Assume that 0 < η1 ≤
min{2α, η} and η ∈ (0, 1). Then, for 0 < αβ < η1, the operator Ḧα,β maps con-
tinuously BMOd(Rn, ω) into BMOαβ+d(Rn, ω) for any given d > 0 such that
0 ≤ αβ + d < η1. Furthermore, when f is compactly supported, Ḧα,β f coincides
with Iα,β f as functions in BMOαβ+d(Rn, ω).

Proof At first, it should be noted that (5.3) allows us to substitute f (y) by f (y)−c into
the integral. Therefore, the definition is independent of the member of the equivalence
class.

Secondly, we check that for f ∈ BMOd(Rn, ω) with 0 < αβ + d < η1, it defines
a locally integrable function, in fact, it is locally bounded. Then given a ball B and
j ∈ Z, adding and subtracting intermediate averages, we obtain

1

ω(2 j B)

∫

2 j B
| f (x)|ω(x)dx ≤ ‖ f ‖BMOd c( j, d)rd + | f |B, (5.4)

where for d > 0 is either c( j, d) = 2 jd when j > 0 and c( j, d) = c for j < 0 or
c( j, d) = j when d = 0. Then we show that the integral in the definition converges
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absolutely for any pair x and x0. Take B = B(x, r) with r = 2|x − x0|. We split the
integral as

∫

Rn
|Hα,β(x, y) − Hα,β(x0, y)|| f (y)|ω(y)dy = I1 + I2,

where

⎧⎪⎪⎨
⎪⎪⎩

I1 :=
∫

B
|Hα,β(x, y) − Hα,β(x0, y)|| f (y)|ω(y)dy;

I2 :=
∫

Bc
|Hα,β(x, y) − Hα,β(x0, y)|| f (y)|ω(y)dy.

Furthermore, we write I1 as I1 ≤ I1,1 + I1,2, where

⎧⎪⎪⎨
⎪⎪⎩

I1,1 :=
∫

B
Hα,β(x, y)| f (y)|ω(y)dy;

I1,2 :=
∫

B
Hα,β(x0, y)| f (y)|ω(y)dy.

By Lemma 4.3 and (5.4), we have

I1,1 � rαβ
∑
j≤0

2 jαβ 1

ω(2 j B)

∫

2 j B
| f (y)|ω(y)dy.

� |x − x0|αβ
(
‖ f ‖BMOd |x − x0|d + | f |B

)
.

The proof of I1,2 is similar to that of I1,1, and so is omitted. Noting that | f |B(x,2|x−x0|)
is a continuous function of x that is also true for the above function and so our original
integral is a locally bounded function.

For I2, in view of Lemma 5.2 and (5.4), we obtain

I2 � |x − x0|η1
∑
j>0

∫

2 j+1B\2 j B

|x − y|αβ−η1

ω(B(x, |x − y|)) | f (y)|ω(y)dy

� |x − x0|η1
∑
j>0

(2 j |x − x0|)αβ−η1
1

ω(2 j B)

∫

2 j B
| f (y)|ω(y)dy

� |x − x0|αβ
(
| f |B(x,2|x−x0|) + |x − x0|d‖ f ‖BMOd

∑
j>0

c( j, d)2 j(αβ−η1)
)
,

and the sum is convergent because of αβ + d < η1.
Therefore, we have proved that Ḧα,β f is well defined and it is finite for any x .

Moreover, it is independent of the choice of x0. If we take any another point x1 in the
definition of Ḧα,β , the absolute convergence of the integral implies that the difference
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between the two possible definitions is

∫

Rn
(Hα,β(x1, y) − Hα,β(x0, y)) f (y)ω(y)dy,

which gives a finite constant.
Finally, we consider the continuity result. Let x and z be two points and set B =

B(x, 2|x − z|). Using (5.3), we can replace f by f − fB in the definition of the
operator. So we obtain

∫

Rn
|Hα,β(x, y) − Hα,β(z, y)|| f (y) − fB |ω(y)dy = J1 + J2,

where

⎧⎪⎪⎨
⎪⎪⎩

J1 :=
∫

B
|Hα,β(x, y) − Hα,β(z, y)|| f (y) − fB |ω(y)dy;

J2 :=
∫

Bc
|Hα,β(x, y) − Hα,β(z, y)|| f (y) − fB |ω(y)dy.

Since | f − fB | ≤ | f − f2 j B | + ∑ j
i=2 | f2i B − f2i−1B |, we get the estimate

1

ω(2 j B)

∫

2 j B
| f (x) − fB |ω(x)dx ≤ c( j, d)‖ f ‖BMOd |x − z|d , (5.5)

where for d > 0 is either c( j, d) = 2 jd when j > 0 and c( j, d) = c for j < 0 or
c( j, d) = j when d = 0. Then for J1, since B ⊂ B(z, 3|x − z|), we can also get
J1 ≤ J1,1 + J1,2, where

⎧⎪⎪⎨
⎪⎪⎩

J1,1 :=
∫

B(x,2|x−z|)
|Hα,β(x, y)|| f (y) − fB |ω(y)dy;

J1,2 :=
∫

B(z,3|x−z|)
|Hα,β(z, y)|| f (y) − fB |ω(y)dy.

Since the proof of J1,2 is similar to that of J1,1, we only need to prove J1,1. By Lemma
4.3 and (5.5), we obtain

J1,1 � |x − z|αβ
∑
j≤0

2 jαβ 1

ω(2 j B)

∫

2 j B
| f (y) − fB |ω(y)dy

� |x − z|αβ+d‖ f ‖BMOd

∑
j≤0

c( j, d)2 jαβ < ∞.
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For J2, we may apply the smoothness and use (5.5) again as above. In this way, we
obtain

J2 � |x − z|αβ+d‖ f ‖BMOd

∑
j>0

2 j(αβ+d−η1),

and the series is convergent since αβ + d < η1. ��

6 Regularity results for operators related to L

In this section,wewill consider the case of the degenerate Schrödinger operator and the
aim of this section is to analyze the behavior of themaximal operator of the semigroup,
the fractional integration as well as the mixed operators I Lα,βV

σ/2 associated with L .

Lemma 6.1 ([19, Lemma 4]) Let ω be a doubling weight and f ∈ BMOd
ρ (Rn, ω).

(i) For any critical ball B = B(x0, ρ(x0)) and k ≥ 0,

1

ω(2−k B)

∫

2−k B
| f (y)|ω(y)dy ≤ ‖ f ‖BMOd

ρ
c(k, d)ρ(x0)

d

with c(k, d) = k when d = 0 and c(k, d) = c when 0 < d < 1.
(ii) For any subcritical ball B = B(x0, r) with r ≤ ρ(x0) and k ≥ 0,

1

ω(2k B)

∫

2k B
| f (y) − fB |ω(y)dy ≤ ‖ f ‖BMOd

ρ
a(k, d)rd

with a(k, d) = k when d = 0 and a(k, d) = 2kd when 0 < d < 1.

Given a doubling weight ω, a critical radius function ρ and an index αβ ≥ 0, we
consider a class of operators called αβ-Schrödinger-Calderón-Zygmund operators
with respect to the measure ω(x)dx (see [28] and [19]). We distinguish the following
two cases.

Case 1: αβ > 0. T is an integral operator with respect to the measure ω(x)dx ,
given by a kernel K (·, ·) that satisfies the following conditions.

(i) For any N > 0 there is a constant CN such that

|K (x, y)| ≤ CN
|x − y|αβ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
.

(ii) There exists some 0 < δ < 1 such that for |x − z| < |x − y|/2,

|K (x, y) − K (z, y)| �
( |x − z|
|x − y|

)δ |x − y|αβ

ω(B(x, |x − y|)) .
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Case 2: αβ = 0. T is a linear bounded operator on L p(Rn, ω) for 1 < p < ∞, which
has an associated kernel K (·, ·) in the sense that, for any L p(Rn, ω)-function with
compact support

T f (x) =
∫

Rn
K (x, y) f (y)ω(y)dy, x ∈ supp( f )c.

Furthermore, K satisfies conditions (i) and (ii) above with αβ = 0.
After giving this definition, similarly to the arguments in [19], we conclude that T is

well defined for functions in BMOd
ρ (Rn, ω). Notice that in both cases, either αβ > 0

or αβ = 0, we may apply the operator T to f ≡ 1 since it belongs to BMOd
ρ (Rn, ω),

no matter what ρ is. Then we also have

Proposition 6.2 Letω be a doublingweight andρ be a critical radius function. Assume
that δ0 = 2 − γ /q, η ∈ (0, 1) and 0 < δ′ < min{2α, η, δ0}. Suppose T is an αβ-
Schrödinger-Calderón-Zygmund operator with respect toω(x)dx that further satisfies
the following T 1-condition:

There exist ε > 0 and a constant C such that for any ball B = B(x0, r) with
r < ρ(x0),

1

rαβω(B)

∫

B
|T 1(x) − (T 1)B |ω(x)dx ≤ C

( r

ρ(x0)

)ε

.

Then T is bounded from BMOd
ρ (Rn, ω) into BMOd+αβ

ρ (Rn, ω) for any 0 ≤ d ≤ ε

and such that 0 ≤ αβ + d < δ′.

Remark 6.3 The above result can be also stated in the vector valued setting. Assume
that we have a linear operator acting on functions defined on R

n and taking values in a
Banach space X and it satisfies all the conditions with absolute value replaced by the
X-norm, then the conclusion also holds. In [36], for the non-degenerate Schrödinger
case, the authors have proved the BMOd

ρ -boundedness of the maximal operator and
square functions in the vector valued setting.

In what follows, we may look at T ∗ as the L∞-norm of the vector valued operator
T f = {T L

α,t f }t>0. So by Theorem 4.2, we can get the boundedness of T from L p

into L p
X
with X = L∞. Moreover, we have

Theorem 6.4 Let ω be an A2-weight such that ω ∈ RDν

⋂
Dγ with ν > 2 and

V ∈ RHq(ω) with q > γ/2. Assume that δ0 = 2 − γ /q and η ∈ (0, 1).

(i) For any N > 0, there exists a constant CN such that

∥∥∥K L
α,t (x, y)

∥∥∥
X

≤ CN

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
.

(ii) For |x − y|/4 > |x − z| and any 0 < δ′ < δ1 = min{2α, η, δ0},
∥∥∥K L

α,t (x, y) − K L
α,t (z, y)

∥∥∥
X

�
( |x − z|
|x − y|

)δ′ 1

ω(B(x, |x − y|)) .
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(iii) The operator T ∗ is bounded on BMOd
X,ρ

(Rn, ω) for any 0 ≤ d < δ1.

Proof For (i), using Proposition 3.5 (i), we know that

|K L
α,t (x, y)|

≤ CN min
{ t1+N/α

|x − y|2α+2N

1

ω(B(x, |x − y|)) ,
1

ω(B(x, t1/2α))

}(
1 + t1/2α

ρ(x)

)−N
.

If t1/2α > |x − y|,

|K L
α,t (x, y)| ≤ CN

ω(B(x, t1/2α))

(
1 + t1/2α

ρ(x)

)−N

≤ CN

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
.

If t1/2α ≤ |x − y|,

|K L
α,t (x, y)| ≤ CN

t1+N/α

|x − y|2α+2N

1

ω(B(x, |x − y|))
(
1 + t1/2α

ρ(x)

)−N

≤ CN

ω(B(x, |x − y|))
( t1/2α

|x − y|
)2α+N( |x − y|

t1/2α
+ |x − y|

ρ(x)

)−N

≤ CN

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
.

For (ii), by Proposition 3.5 (ii), we can get

∣∣∣K L
α,t (x, y) − K L

α,t (z, y)
∣∣∣

� min
{ t1+N/α|x − z|δ′

|x − y|2α+2N+δ′
1

ω(B(x, |x − y|)) ,
1

ω(B(x, t1/2α))

( |x − z|
t1/2α

)δ′}
.

If t1/2α > |x − y|,
∣∣∣K L

α,t (x, y) − K L
α,t (z, y)

∣∣∣ � 1

ω(B(x, |x − y|))
( |x − z|
|x − y|

)δ′
.

If t1/2α ≤ |x − y|,
∣∣∣K L

α,t (x, y) − K L
α,t (z, y)

∣∣∣ � 1

ω(B(x, |x − y|))
|x − y|2α+2N |x − z|δ′

|x − y|2α+2N+δ′

� 1

ω(B(x, |x − y|))
( |x − z|
|x − y|

)δ′
.

For (iii), we only need to check the T 1-condition. Let B = B(x0, r) with r < ρ(x0)
and x, z ∈ B. Denote by Bρ the ball B(x0, 2ρ(x0)). Let �Bρ be a smooth function
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with support in 2Bρ and such that �Bρ ≡ 1 on Bρ , 0 ≤ �Bρ ≤ 1. The triangle

inequality gives supt>0

∣∣∣T L
α,t1(x) − T L

α,t1(z)
∣∣∣ ≤ I + I I + I I I , where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I := sup
t>0

∣∣∣(T L
α,t − Sα,t )�Bρ (x) − (T L

α,t − Sα,t )�Bρ (z)
∣∣∣;

I I := sup
t>0

∣∣∣Sα,t�Bρ (x) − Sα,t�Bρ (z)
∣∣∣;

I I I := sup
t>0

∣∣∣T L
α,t (1 − �Bρ )(x) − T L

α,t (1 − �Bρ )(z)
∣∣∣.

For I , write I ≤ I1 + I2, where

⎧⎪⎪⎨
⎪⎪⎩

I1 := sup
t>0

∫

2B

∣∣∣(hα,t (x, y) − K L
α,t (x, y)) − (hα,t (z, y) − K L

α,t (z, y))
∣∣∣ω(y)dy;

I2 := sup
t>0

∫

2Bρ\2B

∣∣∣(hα,t (x, y) − K L
α,t (x, y)) − (hα,t (z, y) − K L

α,t (z, y))
∣∣∣ω(y)dy.

We further divide the term I1 as I1 ≤ I11 + I12, where

⎧⎪⎪⎨
⎪⎪⎩

I11 := sup
t>0

∫

2B

∣∣∣hα,t (x, y) − K L
α,t (x, y)

∣∣∣ω(y)dy;

I12 := sup
t>0

∫

2B

∣∣∣hα,t (z, y) − K L
α,t (z, y)

∣∣∣ω(y)dy.

Since the proof of I12 is similar to the case of I11, we only give the proof of I11. Using
Proposition 3.6 (i), we consider the following two cases.

If t1/2α ≤ |x − y|, then t1/2α ≤ |x − y| ≤ 3r and ρ(x) � ρ(x0) for x, z ∈ B.
Therefore, we obtain

I11 �
∫

2B

( |x − y|
ρ(x)

)δ0 1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α ω(y)dy

�
( r

ρ(x0)

)δ0
∫

Rn

1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α ω(y)dy

�
( r

ρ(x0)

)δ0
.

If t1/2α > |x − y|, we need to discuss the following two cases:
Case 1: r ≥ t1/2α . We have

I11 �
∫

2B

( t1/2α
ρ(x)

)δ0 1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α ω(y)dy

�
( r

ρ(x0)

)δ0
∫

Rn

1

ω(B(x,
√
t1/α + |x − y|2))

t

(t1/α + |x − y|2)α ω(y)dy
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�
( r

ρ(x0)

)δ0
.

Case 2: r < t1/2α . Using the reverse doubling condition, we obtain

I11 �
∫

2B

( t1/2α
ρ(x)

)δ0 1

ω(B(x,
√
t1/α + |x − y|2))ω(y)dy

�
( t1/2α

ρ(x0)

)δ0
∫

2B

1

ω(B(x, r))

( r

t1/2α

)ν

ω(y)dy

�
( r

ρ(x0)

)δ0

since δ0 < ν.
For I2, applying Proposition 3.6 (ii) with 0 < δ < min{η, δ0}, we obtain

I2 �
( r

ρ(x0)

)δ
∫

2Bρ\2B
1

ω(B(x,
√
t1/α + |x − y|2))

tω(y)dy

(t1/α + |x − y|2)α �
( r

ρ(x0)

)δ

.

Since 0 < δ < δ0, combining the above estimates derives I � (r/ρ(x0))δ.
Next, we estimate the term I I . FromTheorem 5.1, we obtain the following stronger

inequality:

sup
t>0

∣∣∣Sα,t f (x) − Sα,t f (z)
∣∣∣ � ‖ f ‖BMOd |x − z|d .

Since �Bρ belongs to BMOd(Rn, ω) and it is also a bounded function, then

I I � |x − z|δ‖�Bρ ‖BMOδ .

It is easy to see that ‖�Bρ ‖BMOδ approximates c/ρδ(x0). Then I I � (r/ρ(x0))δ.
For I I I , we apply the smoothness inequality of this theorem to get

I I I � |x − z|δ′
∫

Bc
ρ

|x − y|−δ′ 1

ω(B(x, |x − y|))ω(y)dy

� |x − z|δ′
∞∑
k=1

∫

2kρ(x0)≤|x0−y|<2k+1ρ(x0)

|x − y|−δ′

ω(B(x, |x − y|))ω(y)dy

�
( |x − z|

ρ(x0)

)δ′
≤ C

( r

ρ(x0)

)δ′
.

Then we conclude that when β = 0 and ε = δ′,

1

ω2(B)

∫

B

∫

B

∣∣∣T L
α,t1(x) − T L

α,t1(z)
∣∣∣ω(z)dzω(x)dx �

( r

ρ(x0)

)δ′
,
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where 0 < δ′ < δ1 = min{2α, η, δ0}. ��
Remark 6.5 It should be mentioned that, generally, we obtain an estimate on
BMOd

X,ρ(Rn, ω) for T f . Nevertheless, as it is easy to see that ‖T ∗ f ‖BMOd
ρ

≤
‖T f ‖BMOd

X,ρ
.

Now we deal with the operator I Lα,β .

Theorem 6.6 Let ω be an A2-weight such that ω ∈ RDν

⋂
Dγ with ν > 2 and

V ∈ RHq(ω) with q > γ/2. Assume that δ0 = 2 − γ /q and η ∈ (0, 1).

(i) For any N > 0, there exists a constant CN such that

|K L
α,β(x, y)| ≤ CN

|x − y|αβ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
.

(ii) For |x − y|/4 > |x − z| and any 0 < δ′ < δ1 = min{2α, η, δ0},

|K L
α,β(x, y) − K L

α,β(z, y)| �
( |x − z|
|x − y|

)δ′ |x − y|αβ

ω(B(x, |x − y|)) .

(iii) The operator I Lα,β is bounded from BMOd
ρ (Rn, ω) into BMOαβ+d

ρ (Rn, ω) for
any d ≥ 0 such that 0 < αβ + d < δ1.

Proof For (i), the desired result can be seen from Lemma 4.3. For (ii), according to
Proposition 3.5, we can get

|K L
α,β(x, y) − K L

α,β(z, y)|
≤

∫ ∞

0
|K L

α,t (x, y) − K L
α,t (z, y)|tβ/2 dt

t

�
∫ ∞

0
min

{ t1+N/α |x − z|δ′

|x − y|2α+2N+δ′
1

ω(B(x, |x − y|)) ,
1

ω(B(x, t1/2α))

( |x − z|
t1/2α

)δ′}
tβ/2 dt

t
.

Then for |x − z| ≤ |x − y|/4, we can processes as in the proof of Lemma 5.2 with δ′
instead of η to obtain

|K L
α,β(x, y) − K L

α,β(z, y)| �
( |x − z|
|x − y|

)δ′ |x − y|αβ

ω(B(x, |x − y|)) .

For (iii), we only need to check the T 1-condition. We further assume that αβ < δ1
and pick δ′ such that αβ < δ′ < δ1. Let B = B(x0, r) with r < ρ(x0) and x, z ∈ B.

Then we can write
∣∣∣I Lα,β1(x) − I Lα,β1(z)

∣∣∣ ≤ I + I I + I I I , where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I :=
∣∣∣(I Lα,β − Iα,β)�Bρ (x) − (I Lα,β − Iα,β)�Bρ (z)

∣∣∣;
I I :=

∣∣∣Iα,β�Bρ (x) − Iα,β�Bρ (z)
∣∣∣;

I I I :=
∣∣∣I Lα,β(1 − �Bρ )(x) − I Lα,β(1 − �Bρ )(z)

∣∣∣.
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For I , we denote DL
α,β,t as the kernel of the operator I

L
α,β − Iα,β . Then we have

∫

2Bρ

∣∣∣DL
α,β(x, y) − DL

α,β(z, y)
∣∣∣ω(y)dy = I1 + I2,

where

⎧⎪⎪⎨
⎪⎪⎩

I1 :=
∫

2B

∣∣∣DL
α,β(x, y) − DL

α,β(z, y)
∣∣∣ω(y)dy;

I2 :=
∫

2Bρ\2B

∣∣∣DL
α,β(x, y) − DL

α,β(z, y)
∣∣∣ω(y)dy.

For I1, we can write I1 ≤ I11 + I12, where

⎧⎪⎪⎨
⎪⎪⎩

I11 :=
∫

2B

∣∣∣DL
α,β(x, y)

∣∣∣ω(y)dy;

I12 :=
∫

2B

∣∣∣DL
α,β(z, y)

∣∣∣ω(y)dy.

Since the proofs of I11 and I12 are similar, we only give the proof of I11. Firstly observe
that

|DL
α,β,t (x, y)| ≤

∫ ∞

0

∣∣∣K L
α,t (x, y) − hα,t (x, y)

∣∣∣tβ/2 dt

t
= I3 + I4,

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I3 :=
∫ |x−y|2α

0

∣∣∣K L
α,t (x, y) − hα,t (x, y)

∣∣∣tβ/2 dt

t
;

I4 :=
∫ ∞

|x−y|2α

∣∣∣K L
α,t (x, y) − hα,t (x, y)

∣∣∣tβ/2 dt

t
.

For I3, by Proposition 3.6 (ii) with 0 < δ < min{η, δ0} and the fact that ρ(x) � ρ(x0),
we obtain

I3 � |x − y|δ
ρ(x0)δ

∫ |x−y|2α

0

1

ω(B(x,
√

t1/α+|x−y|2
|x−y| |x − y|))

tβ/2dt

(t1/α + |x − y|2)α

� |x − y|δ
ρ(x0)δω(B(x, |x − y|))

∫ |x−y|2α

0

|x − y|ν
(t1/α + |x − y|2)ν/2

tβ/2dt

(t1/α + |x − y|2)α

� |x − y|δ+αβ

ρ(x0)δω(B(x, |x − y|))
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and

I4 � 1

ρ(x0)δω(B(x, |x − y|))
∫ ∞

|x−y|2α
|x − y|ν

(t1/α + |x − y|2)ν/2

tβ/2+δ/2αdt

(t1/α + |x − y|2)α

� |x − y|δ+αβ

ρ(x0)δω(B(x, |x − y|))
∫ ∞

1

1

uν−αβ−δ

du

u

� |x − y|δ+αβ

ρ(x0)δω(B(x, |x − y|)) ,

where we have used the fact that ν > αβ + δ since ν > 2, αβ < δ′ < 1 and δ < 1.
Therefore, we get

I11 � 1

ρ(x0)δ

∫

2B

|x − y|αβ+δ

ω(B(x, |x − y|))ω(y)dy � rαβ
( r

ρ(x0)

)δ

,

where the last inequality follows by splitting the integral domain into the annulus
2−k B \ 2−(k+1)B and using the doubling property of ω.

For I2, by Proposition 3.6 (ii) and ρ(x) � ρ(x0), we obtain

∣∣∣DL
α,β(x, y) − DL

α,β(z, y)
∣∣∣

≤
∫ ∞

0

∣∣∣(K L
α,t (x, y) − hα,t (x, y)) − (K L

α,t (z, y) − hα,t (z, y))
∣∣∣tβ/2 dt

t

�
( |x − z|

ρ(x0)

)δ
∫ ∞

0

1

ω(B(x,
√
t1/α + |x − y|2))

1

(t1/α + |x − y|2)α t
β/2dt

�
( r

ρ(x0)

)δ |x − y|αβ

ω(B(x, |x − y|)) .

Then

I2 �
( r

ρ(x0)

)δ
∫

2Bρ

|x − y|αβ

ω(B(x, |x − y|))ω(y)dy �
( r

ρ(x0)

)δ−αβ

rαβ.

For I I , we use Theorem 5.5 for d = δ − αβ, that certainly satisfies αβ + d < η, and
with f = �Bρ . Notice that �Bρ is smooth and compactly supported, so Ḧα,β�Bρ =
Iα,β�Bρ . Therefore,

I I � |x − z|δ‖�Bρ ‖BMOδ−αβ � r δρ(x0)
αβ−δ �

( r

ρ(x0)

)δ−αβ

rαβ.

For I I I , we use the smoothness of the kernel K L
α,β in this theorem to obtain

I I I � |x − z|δ′
∫

Bc
ρ

|x − y|αβ−δ′

ω(B(x, |x − y|))ω(y)dy � r δ′
ρ(x0)

αβ−δ′ �
( r

ρ(x0)

)δ′−αβ

rαβ.
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Combining all the estimates and having in mind that r < ρ(x0), we have

∣∣∣I Lα,β1(x) − I Lα,β1(z)
∣∣∣ �

( r

ρ(x0)

)δ′−αβ

rαβ

for any αβ < δ′ < δ1.

So for ε = δ′ − αβ, αβ < δ′ < δ1, and we have

1

rαβω2(B)

∫

B

∫

B

∣∣∣I Lα,β1(x) − I Lα,β1(z)
∣∣∣ω(z)dzω(x)dx �

( r

ρ(x0)

)δ′−αβ

.

Finally, we can deduce the desired result from Proposition 6.2. ��
For the operator I Lα,βV

σ/2, we assume that V satisfies RH∞(ω), which implies that

V (y) ≤ ρ−2(y).

Theorem 6.7 Let ω be an A2-weight such that ω ∈ RDν with ν > 2 and V ∈
RH∞(ω). Given αβ and σ with αβ ≥ σ > 0. Assume that η ∈ (0, 1).

(i) For any N > 0, there exists a constant CN such that

K L,σ
α,β (x, y) = K L

α,β(x, y)V σ/2(y) ≤ CN
|x − y|αβ−σ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
.

(ii) For |x − y|/4 > |x − z| and any 0 < δ′ < δ1 = min{2α, η},

|K L,σ
α,β (x, y) − K L,σ

α,β (z, y)| �
( |x − z|
|x − y|

)δ′ |x − y|αβ−σ

ω(B(x, |x − y|)) .

(iii) The operator I Lα,βV
σ/2 is bounded from BMOd

ρ (Rn, ω) into BMOd+αβ−σ
ρ (Rn, ω)

for any 0 ≤ d ≤ σ such that 0 < d + αβ − σ < δ1.

Proof For (i), when αβ ≥ σ , in view of (4.3), multiplying and dividing by |x − y|σ
and using the decay, we have

K L,σ
α,β (x, y) = K L

α,β(x, y)V σ/2(y) ≤ CN
|x − y|αβ−σ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
.

For (ii), we want to use the smoothness of K L
α,β , but we first need an improved version

of Theorem 6.6 (ii), involving decay at infinity. Notice that for any pair of numbers u
and v, we have |u − v| ≤ (|u| + |v|)θ |u − v|1−θ for any fixed 0 < θ < 1. In our case,
set u = K L

α,β(x, y) and v = K L
α,β(z, y). We recall that, by Lemma 4.3(ii),

0 ≤ K L
α,β(z, y) ≤ CN

|z − y|αβ

ω(B(z, |z − y|))
(
1 + |z − y|

ρ(z)

)−N
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for any positive N and our aim is to check that we may replace z by x on the right
hand side provided |x − z| ≤ 1/2|x − y|, so u and v have the same bound. To do
so observe that in such case |x − y| � |z − y| and the doubling property of ω gives
ω(B(x, |x−y|)) � ω(B(z, |z−y|)). Besides, from (2.2) and using |x−z| ≤ 1/2|x−y|
again, we get

1

ρ(z)
� 1

ρ(x)

(
1 + |x − y|

ρ(x)

)−N0/(N0+1)
.

So multiplying by |z − y| and adding the inequality 1 ≥
(
1 + |x−y|

ρ(x)

)−N0/(N0+1)
, we

have

(
1 + |z − y|

ρ(z)

)
�

(
1 + |x − y|

ρ(x)

)−N0/(N0+1) + |z − y|
ρ(x)

(
1 + |x − y|

ρ(x)

)−N0/(N0+1)
.

Then

(
1 + |z − y|

ρ(z)

)−N
�

(
1 + |x − y|

ρ(x)

)−Ñ

with Ñ = N − NN0/(N0 + 1), which derives the desired result.
Therefore, inserting the estimates for |u − v| and |u| + |v|, we obtain

∣∣∣K L
α,β(x, y) − K L

α,β(z, y)
∣∣∣ �

( |x − z|
|x − y|

)δ′(1−θ) |x − y|αβ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−θN
.

Since Theorem 6.6 (ii) is valid for any δ′ < δ1, by choosing θ small enough and N
sufficiently large, we get

∣∣∣K L
α,β(x, y) − K L

α,β(z, y)
∣∣∣ �

( |x − z|
|x − y|

)δ′ |x − y|αβ

ω(B(x, |x − y|))
(
1 + |x − y|

ρ(x)

)−N
(6.1)

for any 0 < δ′ < δ1. Using the previous arguments, we easily obtain the smoothness
for K L,σ

α,β in view of the inequality

∣∣∣K L,σ
α,β (x, y) − K L,σ

α,β (z, y)
∣∣∣ ≤

∣∣∣K L
α,β(x, y) − K L

α,β(z, y)
∣∣∣V σ/2(y)

and

V σ/2(y) � ρ(y)−σ � ρ(x)−σ
(
1 + |x − y|

ρ(x)

)N0
� |x − y|−σ

(
1 + |x − y|

ρ(x)

)N0+σ

.

(6.2)
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Therefore, choosing N = N0 + σ , it follows from the last three inequalities that

∣∣∣K L,σ
α,β (x, y) − K L,σ

α,β (z, y)
∣∣∣ �

( |x − z|
|x − y|

)δ′ |x − y|αβ−σ

ω(B(x, |x − y|)) (6.3)

for 0 < δ′ < δ1.
For (iii), we need to check the T 1-condition. Let B = B(x0, r) with r < ρ(x) and

x, z ∈ B. Then we have

∣∣∣I Lα,βV
σ/21(x) − I Lα,βV

σ/21(z)
∣∣∣ ≤ I + I I ,

where

⎧⎪⎨
⎪⎩

I :=
∣∣∣I Lα,β(V σ/2χ5B)(x) − I Lα,β(V σ/2χ5B)(z)

∣∣∣;

I I :=
∫

(5B)c

∣∣∣K L,σ
α,β (x, y) − K L,σ

α,β (z, y)
∣∣∣ω(y)dy.

We first estimate I . Notice that in the proof of Theorem 5.3, we just use the size and
smoothness of the kernel and the doubling property of the weight. Therefore, a more
general result could be obtained for an integral operator with kernel satisfying (5.2)
and (4.1). So I Lα,β can be extended to a bounded operator from Mαβ−d

1 (Rn, ω) into

BMOd(Rn, ω) for d < min{αβ, δ1} since its kernel satisfies the appropriate size and
smoothness estimates (see Lemma 4.3(ii) and Theorem 6.6(ii)). Moreover, V σ/2χ5B

is a function in Mαβ−d
1 (Rn, ω) and is compactly supported. In fact, if we take any ball

Q = B(x1, s), then

sαβ−d

ω(Q)

∫

Q
V σ/2(y)χ5B(y)ω(y)dy � sαβ−dρ(x0)

−σ ω(Q
⋂

5B)

ω(Q)
.

Assume Q
⋂

5B �= ∅. If s ≤ 5r , we control the above quantity by crαβ−dρ(x0)−σ ,
having in mind that ρ(y) � ρ(x0) for y ∈ 5B. Otherwise, |x1 − x0| ≤ 2s and also
Q ⊂ B̃ = B(x0, 3s) ⊂ 5Q. Since ω is doubling and ν-reverse doubling, so we have

ω(Q) � ω(B̃) ≥ (s/r)νω(B) � (s/r)αβ−dω(B),

which, together with the obvious inequality ω(Q
⋂

5B) ≤ ω(5B), gives the bound
rαβ−dρ(x0)−σ when 5r ≤ s. In a word, we conclude that ‖V σ/2χ5B‖

Mαβ−d
1

�
rαβ−dρ(x0)−σ .

Thus we obtain a similar conclusion to Theorem 5.3 for

H̃L
α,β( f )(x) =

∫

Rn
(K L

α,β(x, y) − K L
α,β(0, y)χBc

1
)( f )(y)ω(y)dy.
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By analogy with the conclusion of Theorem 5.3, we can see that

I Lα,β(V σ/2χ5B)(x) = H̃L
α,β(V σ/2χ5B)(x).

Going back to the estimate for I , it follows that

I ≤ 2|I Lα,β(V σ/2χ5B)(x)| = 2H̃L
α,β(V σ/2χ5B)(x).

Similarly to the discussion of Theorem 5.3, we split H̃L
α,β(V σ/2χ5B)(x) that

H̃L
α,β(V σ/2χ5B)(x) = G1(x) + G2(x) + aB, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

G1(x) :=
∫

B(x0,2r)
K L

α,β(x, y)(V σ/2χ5B)(y)ω(y)dy;

G2(x) :=
∫

B(x0,2r)c
(K L

α,β(x, y) − K L
α,β(x0, y))(V

σ/2χ5B)(y)ω(y)dy;

aB :=
∫

Rn
(K L

α,β(x0, y)χB(x0,2r)c − K L
α,β(0, y)χBc

1
)(V σ/2χ5B)(y)ω(y)dy.

For aB , similarly to the proof in Theorem 5.3, we know that aB is a finite constant.
For G1(x), since x ∈ B(x0, r) and y ∈ B(x0, 2r), we have |x − y| ≤ 3r . By Lemma
4.3, we obtain

|G1(x)| ≤
∫

B(x,3r)
|K L

α,β(x, y)||(V σ/2χ5B)(y)|ω(y)dy

�
∫

B(x,3r)

|x − y|αβ

ω(B(x, |x − y|)) |(V
σ/2χ5B)(y)|ω(y)dy

�
0∑

j=−∞

∫

2 j+1r<|x−y|≤2 j+2r

(2 j r)αβ

ω(B(x, 2 j r))
|(V σ/2χ5B)(y)|ω(y)dy

� rd‖V σ/2χ5B‖
Mαβ−d

1 (Rn ,ω)
.

Therefore, we only need to control the integral of |G2(x)|, whose proof is the same
as the one in Theorem 5.3. By (6.1), we obtain

|G2(x)| � |x0 − x |δ′
∫

B(x0,2r)c

|x0 − y|αβ−δ′

ω(B(x0, |x0 − y|)) |(V
σ/2χ5B)(y)|ω(y)dy

� ‖V σ/2χ5B‖
Mαβ−d

1 (Rn ,ω)
rd .

In conclusion, we deduce that

I � ‖V σ/2χ5B‖
Mαβ−d

1 (Rn ,ω)
rd � rαβ−dρ(x0)

−σ rd � rαβ−σ
( r

ρ(x0)

)σ

.
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For I I , we may use the smoothness of the kernel due to the fact that in our situation
|x − y| ≥ 4r ≥ 2|x − z|, but instead of (6.3) we will use a somehow stronger variant,
namely,

∣∣∣K L,σ
α,β (x, y) − K L,σ

α,β (z, y)
∣∣∣ � 1

ρ(x0)σ

( |x − z|
|x − y|

)δ′ |x − y|αβ

ω(B(x, |x − y|)) ,

which can be seen from (6.1) and (6.2) just stopping before the last inequality and
using that, in our case, ρ(x) � ρ(x0). Plugging that estimate into I I , we obtain

I I � |x − z|δ′

ρ(x0)σ

∫

(5B)c

|x − y|αβ−δ′

ω(B(x, |x − y|))ω(y)dy.

Since the integral in bounded by Crαβ−δ′
, we get

I I � rαβ

ρ(x0)σ
� rαβ−σ

( r

ρ(x0)

)σ

,

which is the same estimate that we obtain for the first term.
In this way we have shown that T 1-condition holds with ε = σ . Collecting esti-

mates, we have proved that I Lα,βV
σ/2 is an (αβ −σ)-Schrödinger-Calderón-Zygmund

operator with respect to ωdx and has the smoothness of order δ′ for any 0 < δ′ < δ1.
Therefore, an application of Proposition 6.2 gives the desired result. ��
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