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Abstract
Nonlinear evolution equations (NLEEs) are extensively used to establish the elemen-
tary propositions of natural circumstances. In this work, we study the Konopelchenko–
Dubrovsky (KD) equation which depicts non-linear waves in mathematical physics
with weak dispersion. The considered model is investigated using the combination
of generalized exponential rational function (GERF) method and dynamical system
method. The GERF method is utilized to generate closed-form invariant solutions to
the (2+1)-dimensional KDmodel in terms of trigonometric, hyperbolic, and exponen-
tial forms with the assistance of symbolic computations. Moreover, 3D, 2D combined
line graph and their contour graphics are displayed to depict the behavior of obtained
solitary wave solutions. The model is observed to have multiple soliton profiles, kink-
wave profiles, and periodic oscillating nonlinear waves. These generated solutions
have never been published in the literature. All the newly generated soliton solutions
are checked by putting them back into the associated systemwith the soft computation
via WolframMathematica. Moreover, the system is converted into a planer dynamical
system using a certain transformation and the analysis of bifurcation is examined.
Furthermore, the quasi-periodic solution is investigated numerically for the perturbed
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system by inserting definite periodic forces into the considered model. With regard to
the parameter of the perturbed model, two-dimensional and three-dimensional phase
portraits are plotted.

Keywords Mathematical methods · Bright and dark solitons · Nonlinear evolution
equation · Quasi-periodic solution · Analytical solutions

1 Introduction

1.1 Aims and scope

Nonlinear evolution equations (NLEEs) have extensive significance in the area of
applied mathematics and physics. Finding the exact solutions for NLEE is an essential
task as NLEE describes numerous phenomenon in nonlinear dynamics, engineering,
optical fibre, plasma physics, fluid mechanics, natural sciences, biomedical applica-
tions etc. A large number of researchers and mathematicians have developed various
effective techniques for computing exact solutions of NLPDEs (nonlinear partial dif-
ferential equations), for instance, tanh function method [1], Hirota’s bilinear method
[2, 3], the Jacobi elliptic function expansion method [4], Kudryashov method [5], the
G ′
G -expansion method [6], Darboux transformation method [7], the Backlund trans-
formation method [8], the inverse scattering method [9], Lie-symmetry analysis [10],
multiple exp-function method, and many others. Among these techniques, GERF
method [11–14] is very effective, robust and straightforward approach for finding
the abundant exact soliton-form solutions of various NLPDEs.

1.2 Historical background

Konopelchenko andDubrovsky [15] derived (2+1)-dimensionalKD (Konopelchenko–
Dubrovsky) equation in 1984.
They derived some nonlinear equations in (2+1)-dimensions (x, y, t) for one depen-
dent variable u(x, y, t)which can be represented as commutativity condition [L, T ] =
LT − T L = 0. The differential operator L is of the form

L = VN (x, y, t)∂N
x + VN−1(x, y, t)∂

N−1
x + ...V1(x, y, t)∂x + V0(x, y, t) + ∂y,

where ∂x ≡ ∂
∂x , ∂y ≡ ∂

∂ y ,V0(x, y, t), ..., VN (x, y, t) are scalar functions. The operator

T is explicitly defined. They have also shown that the obtained equations are the two-
dimensional generalization of the well-known Gardner equation, the Sawada-Kotera,
the Kaup-Kupershmidt and the Harry Dim equations. Accordingly they derived the
following (2+1)-dimensional Konopelchenko–Dubrovsky (KD) model

uy = vx ,

ut − uxxx − 6buux + 3

2
a2u2ux − 3vy + 3auxv = 0, (1)
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where u and v are the differentiable functions with respect to x , y and t variables. Here,
a and b are arbitrary constants. It is generalization of other well known equations as
follows:

• If a = 0, (1) reduces into the well-known Kadomtsev–Petviashvili(KP) equation.
• If b = 0, it turns into the modified KP equation.
• If uy = 0, the second row of Eq. (1) reduces into the Gardner equation, the com-
bination of KdV and modified KdV.

1.3 Literature survey

Many reseachers have used some productive techniques to investigate the exact analyt-
ical solutions of the KD system. In 2014 Kumar et. al [16] used Lie symmetry analysis
with particular choices of the functions of t as well as travelling wave hypothesis to
extract solutions to KD equations. Motivated by their work in 2018 Kumar and Tiwari
[17] obtain exact solutions of theKDsystembyusing similarity transformationmethod
with arbitary choice of functions. The bifurcation theory method of planar dynamical
systems is efficiently applied by Tian-lan He [18] in 2008 to find the bounded traveling
wave solutions of the (2 + 1) dimensional Konopelchenko–Dubrovsky equations. In
2019 Alfalqi et al. [19] applied the modified simplest equation method and B-spline
method to KD-equation. Recently, Khater et al. [20] implement modified auxiliary
equation technique to this system to find analytical traveling wave solutions. Ren et al.
[21] in 2016 obtained the non-local symmetries for the KD equation with the truncated
Painleve method and the Mobius conformal invariant form. By applying the modified
extended direct algebraic method, Seadawy et. al. [22] in 2019 constructed some exact
traveling wave solutions in the terms of Jacobi elliptic function, Weierstrass elliptic
function solutions, new elliptic and so on. Song et. al. [23] obtained exact solutions
of the equation by applying extended Riccati equation rational expansion method.

1.4 Motivation

Motivated by the rich literature available on KD system, in this research article, we
investigated the (2 + 1)-dimensional Konopelchenko–Dubrovsky (KD) model (1)
using two techniques, GERF (generalized exponential rational function) technique
and dynamical system method. To best of our knowledge considered system had not
been taken into consideration by these techniques. This motivated us to apply one of
the effective methods available in the literature to construct abundant exact analytical
closed-form solutions for the system (1).
Moreover the dynamics of NLPDEs grants us to understand and predict the acceptable
structures of the associated complex nonlinear systems.A soliton or solitarywave is the
particle-like object with the finite energy and amplitude, which save its form during
propagation and restore it after the collision with another solitons. Nowadays, as a
consequence, it is a very hot subject matter to derive the exact closed form solutions of
NLPDEs.The soliton-formsolutions of such typeofNLPDEsare extensively favorable
in the various areas such as nonlinear sciences, mathematical physics, plasma physics,
applied mathematics, engineering, applied sciences and nonlinear dynamics. Also in



40 Page 4 of 30 S. Kumar et al.

recent years, the investigation of differential equations through the bifurcation analysis
has becomean important topic in thefield of research.Bifurcation is a rapid quantitative
shift in the model with a gentle change in the values of parameters. The exploration of
the dynamics of nonlinear periodic forms is a significant part for the investigation of
the physical propositions in detail. For example, the occurrence of homoclinic orbits,
smooth heteroclinic orbits and periodic orbits for travelling wave models describes
the periodic wave solutions, oscillatory travelling wave solutions, smooth kink wave
solutions and smooth solitary solutions for considered PDEs, respectively. One can
refer to [24–28] for the study of recent work in this field.

1.5 Structure of the paper

The strategy of this article is organised as follows: Sect. 2 deals with the introduction
and methodology of GERF approach is presented. In Sect. 3, we find exact travelling
wave solution of KD equations. This section also includes some particular 3D, 2D
combined line graph and their contour graphics which provide more explanation to
the behavior of these generated solutions. Graphically, periodic-solitonic structures,
kink-wave structures, and the interaction of multi-soliton and kink wave solution have
been observed for some soliton solutions. Section4 deals with the bifurcation analysis
of the dynamical system of Eq. (1), and relative phase portraits are plotted for the
considered system. Section5 is related to the investigation of quasi-periodic solution
for the perturbed system by inserting perturbation term to the associated model (1).
Finally, the conclusion is given at the end.

2 Methodology of GERFmethod

This GERF method was introduced by Ghanbari and Inc [11]. We will provide an
explanation of GERF technique step-wise in this section:

• Let us consider the system of two nonlinear PDEs including three variables x , y
and t given as

M(u, v, ux , uy, ut , vx , vy, vt , uxx , uxtvx , uyx ...) = 0.

N (u, v, ux , uy, ut , vx , vy, vt , uxx , uxtvx , uyx ...) = 0. (2)

here u(x, y, t) = U (ξ) and v(x, y, t) = V (ξ) are the wave transformations where
ξ = αx + β y − μt is used to obtain a system of ODEs (ordinary differential
equations) which further provides an ordinary differential as

W(U ,U ′,U ′′, ...) = 0, (3)

where U = U (ξ), U ′ = dU
dξ

and α, β and μ are constants, to be calculated later.
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• Assume that the solitary wave solution of (3) can be represented as

U (ξ) = R0 +
M∑

k=1

Rk�(ξ)k +
M∑

k=1

Si�(ξ)−k, (4)

where

�(ξ) = r1es1ξ + r2es2ξ

r3es3ξ + r4es4ξ
, (5)

and ri , si (1 ≤ i ≤ 4), R0, Rk and Sk (1 ≤ k ≤ M) are constants to be calculated
and M (a positive integer) is evaluated by homogeneous balancing method.

• Substituting (4) into (3) plugging with (5) and arranging all the terms yields

A(es1ξ , es2ξ , es3ξ , es4ξ , ....) = 0. (6)

Equalizing the coefficients of A to zero, yields a set of algebraic equations.
• With the assistance of Mathematica, we find the values of the coefficients R0, Rk ,

Sk , α, β and μ by solving above mentioned algebraic equations.
• Inserting all these values into (4) we get the solution of determining Eq. (3).
Accordingly we can get other function and hence we achieve some new solitary
wave solutions of (2).

3 GERFmethod—applications

In this section, we apply the GERF technique to construct the exact closed-form
solutions of (2+1)-dimensional Konopelchenko–Dubrovsky (KD) model (1).

3.1 GERFmethod for the (2+1)-D Konopelchenko–Dubrovsky(KD) model

Making use of wave transformation u(x, y, t) = U (ξ) and v(x, y, t) = V (ξ) where
ξ = αx + β y − μt in Eq. (1), we obtain the following system of ODEs

βU ′(ξ) = αV ′(ξ)

3

2
a2αU (ξ)2U ′(ξ) + 3aαV (ξ)U ′(ξ) − 6αbU (ξ)U ′(ξ) − μU ′(ξ)

− α3U (3)(ξ) − 3βV ′(ξ) = 0.44 (7)

Integrating the first equation we find,

βU (ξ) = αV (ξ) (8)
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Putting it into the second equation of (7) and integrating the resulting equation, and
neglecting the constant of integration, the following ODE is obtained as

α3U ′′(ξ) − a2

2
αU (ξ)3 + 3

2
(2αb − aβ)U (ξ)2 +

(
3β2

α
+ μ

)
U (ξ) = 0. (9)

Using balancing principle on terms U (3) and U ′′ of the Eq. (9), we get M + 2 = 3M
which yields M = 1. Employing M = 1 in (4), we obtain the trial solution given as

U (ξ) = R0 + R1�(ξ) + S1
�(ξ)

. (10)

By using Eq. (10) into (9) and according to the step of GERF method, the following
cases are considered for finding the exact solitary wave solutions of (1) with the
assistance of Mathematica.
Family 1: For [r1, r2, r3, r4] = [1,−3,−1, 1] and [s1, s2, s3, s4] = [1,−1, 1,−1],
Eq. (5) yields

�(ξ) = coth(ξ) − 2. (11)

With the assistance of soft computation via Mathematica, we solve algebraic equation
for obtaining the values of parameters and hence following set of solutions can be
achieved.
Solution set 1.1:

R0 = −6α

a
, R1 = −2α

a
, S1 = 0, β = 2

(
aα2 + αb

)

a
,

μ = −4
(
4a2α3 + 6aα2b + 3αb2

)

a2
.

Substituting the values of above known-constant parameters into Eq. (10) and plugging
it with Eq. (9), we obtain the expression for U as

U (ξ) = −2α (coth(ξ) − 2)

a
− 6α

a
. (12)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = −2β (coth(ξ) − 2)

a
− 6β

a
. (13)

Accordingly, the solution of (1) is obtained as

u(x, y, t) = −
2α

(
coth

(
4t

(
4a2α3+6aα2b+3αb2

)

a2
+ 2y

(
aα2+αb

)

a + αx

)
− 2

)

a
− 6α

a
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v(x, y, t) = −
4

(
aα2 + αb

) (
coth

(
4t

(
4a2α3+6aα2b+3αb2

)

a2
+ 2y

(
aα2+αb

)

a + αx

)
− 2

)

a2

− 12
(
aα2 + αb

)

a2
. (14)

Solution set 1.2:

R0 = 2α

a
, R1 = 0, S1 = 6α

a
, β = 2

(
aα2 + αb

)

a
,

μ = −4
(
4a2α3 + 6aα2b + 3αb2

)

a2
.

Substituting the values of above known-constants into Eq. (10) and plugging it with
Eq. (9), we obtain the expression for U as

U (ξ) = 6α

a(coth(ξ) − 2)
+ 2α

a
. (15)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = 6β

a(coth(ξ) − 2)
+ 2β

a
. (16)

Accordingly, the solution of (1) is obtained as

u(x, y, t) = 6α

a
(
coth

(
4t(4a2α3+6aα2b+3αb2)

a2
+ 2y(aα2+αb)

a + αx
)

− 2
) + 2α

a

v(x, y, t) =
12

(
aα2 + αb

)

a2
(
coth

(
4t(4a2α3+6aα2b+3αb2)

a2
+ 2y(aα2+αb)

a + αx
)

− 2
)

+
4

(
aα2 + αb

)

a2
. (17)

Solution set 1.3:

R0 = 8α

a
, R1 = 2α

a
, S1 = 6α

a
, β = −2

(
2aα2 − αb

)

a
,

μ = −4
(
13a2α3 − 12aα2b + 3αb2

)

a2
.

Substituting the values of known-constants mentioned above into Eq. (10) and plug-
ging it with Eq. (9), we obtain the value for U as

U (ξ) = 2α(coth(ξ) − 2)

a
+ 6α

a(coth(ξ) − 2)
+ 8α

a
. (18)
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Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = 2β(coth(ξ) − 2)

a
+ 6β

a(coth(ξ) − 2)
+ 8β

a
. (19)

Accordingly, the solution of (1) is obtained as

u(x, y, t) = 8α

a
+

2α

(
coth

(
4t

(
13a2α3−12aα2b+3αb2

)

a2
− 2y

(
2aα2−αb

)

a + αx

)
− 2

)

a

+ 6α

a
(
coth

(
4t(13a2α3−12aα2b+3αb2)

a2
− 2y(2aα2−αb)

a + αx
)

− 2
)

v(x, y, t) = −16
(
2aα2 − αb

)

a2

−
4

(
2aα2 − αb

) (
coth

(
4t

(
13a2α3−12aα2b+3αb2

)

a2
− 2y

(
2aα2−αb

)

a + αx

)
− 2

)

a2

− 12
(
2aα2 − αb

)

a2
(
coth

(
4t(13a2α3−12aα2b+3αb2)

a2
− 2y(2aα2−αb)

a + αx
)

− 2
) . (20)

Family 2: For [r1, r2, r3, r4] = [−5ι̇, 5ι̇, 6, 6] and [s1, s2, s3, s4] = [3ι̇,−3ι̇, 0, 0],
Eq. (5) yields

�(ξ) = 5

6
sin(3ξ). (21)

With the assistance of soft computation via Mathematica, we solve algebraic equation
for obtaining the values of parameters and hence following set of solutions can be
achieved.
Solution set 2.1:

R0 = −3
√
2α

a
, R1 = 0, S1 = −5α

a
, β = 3

√
2aα2 + 2αb

a
,

μ = −
12

(
6a2α3 + 3

√
2aα2b + αb2

)

a2
.

We substitute the values of known-constants mentioned above and expression (21)
into Eq. (10), and plugging it with Eq. (9), we obtain the value for U as

U (ξ) = −6α csc(3ξ)

a
− 3

√
2α

a
. (22)
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Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = −6β csc(3ξ)

a
− 3

√
2β

a
. (23)

Accordingly, the solution of Eq. (1) is obtained as

u(x, y, t) =

−
6α csc

(
3

(
12t

(
6a2α3+3

√
2aα2b+αb2

)

a2
+ y

(
3
√
2aα2+2αb

)

a + αx

))

a
− 3

√
2α

a
v(x, y, t) =

−
3α

(
3
√
2aα + 2b

) (
2 csc

(
3α

(
72α2a2t+a2x+3

√
2αa(ay+12bt)+2b(ay+6bt)

)

a2

)
+ √

2

)

a2
.

(24)

Solution set 2.2:

R1 = 0, S1 = − 5R0

3
√
2
, α = − aR0

3
√
2
, β = 1

6

(√
2a2R2

0 − 2
√
2bR0

)
,

μ =
2

(√
2a4R3

0 − 3
√
2a2bR2

0 + 3
√
2b2R0

)

3a
.

We substitute the values of known-constants mentioned above and expression (21)
into Eq. (10), and plugging it with Eq. (9), we obtain the value for U as

U (ξ) = R0 − √
2R0 csc(3ξ). (25)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) =
βR0

(
1 − √

2 csc(3ξ)
)

α
. (26)

Accordingly, the solution of (1) is obtained as

u(x, y, t) =

R0

⎛

⎝√
2 csc

⎛

⎝
R0

(
a2R0

(
4a2R0t − ay − 12bt

)
+ a2x + 2b(ay + 6bt)

)

√
2a

⎞

⎠ + 1

⎞

⎠

v(x, y, t) =
R0

(
2b − a2R0

) (√
2 csc

(
R0

(
a2R0

(
4a2R0t−ay−12bt

)+a2x+2b(ay+6bt)
)

√
2a

)
+ 1

)

a
. (27)
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Family 3: For [r1, r2, r3, r4] = [1, 0, 1, 1] and [s1, s2, s3, s4] = [1, 0, 1, 0], Eq. (5)
yields

�(ξ) = 1

1 + e−ξ
. (28)

With the assistance of soft computation via Mathematica, we solve algebraic equation
for obtaining the values of parameters and hence following set of solutions can be
achieved.
Solution set 3.1:

R0 = 2b − 2
√
b2 − a2β

a2
, R1 =

2
(√

b2 − a2β − b
)

a2
,

S1 = 0, α = b − √
b2 − a2β

a
,

μ =
4

((
b2 − a2β

)3/2 − b3
)

a3
.

We substitute the values of known-constants described above and expression (28) into
Eq. (10), and plugging it with Eq. (9), we obtain the expression for U as

U (ξ) = −
2

(√
b2 − a2β − b

)

a2
(
eξ + 1

) . (29)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) =
2β

(
b − √

b2 − a2β
)

a2α
(
eξ + 1

) . (30)

Accordingly, the solution of Eq. (1) is obtained as

u(x, y, t) = −
2

(√
b2 − a2β − b

)
e
4t

(
(b2−a2β)

3/2−b3
)

a3

a2

⎛

⎝e
x
(
b−

√
b2−a2β

)

a +β y + e
4t

(
(b2−a2β)

3/2−b3
)

a3

⎞

⎠

v(x, y, t) = 2β

a

(
exp

(
x
(
b−

√
b2−a2β

)

a − 4t
(
(b2−a2β)

3/2−b3
)

a3
+ β y

)
+ 1

) . (31)



Dynamical behavior of analytical soliton solutions, bifurcation Page 11 of 30 40

Solution set 3.2:

R0 = 2α

a
, R1 = −2α

a
, S1 = 0, β = 2αb − aα2

a
,

μ = −4
(
a2α3 − 3aα2b + 3αb2

)

a2
.

We substitute the values of known-constants mentioned above and expression (28)
into Eq. (10), and plugging it with Eq. (9), we obtain the expression for U as

U (ξ) = 2α

a
− 2αeξ

a
(
eξ + 1

) . (32)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = 2β

a
− 2βeξ

a
(
eξ + 1

) . (33)

Accordingly, the solution of (1) is obtained as

u(x, y, t) = 2α

a
−

2α exp

(
4t

(
a2α3−3aα2b+3αb2

)

a2
+ y

(
2αb−aα2

)

a + αx

)

a
(
exp

(
4t(a2α3−3aα2b+3αb2)

a2
+ y(2αb−aα2)

a + αx
)

+ 1
)

v(x, y, t) = 2
(
2αb − aα2

)

a2

−
2

(
2αb − aα2

)
exp

(
4t

(
a2α3−3aα2b+3αb2

)

a2
+ y

(
2αb−aα2

)

a + αx

)

a2
(
exp

(
4t(a2α3−3aα2b+3αb2)

a2
+ y(2αb−aα2)

a + αx
)

+ 1
) . (34)

Solution set 3.3:

R1 = −R0, S1 = 0, α = −1

2
(aR0) , β = 1

4
R0

(
a2R0 − 4b

)
,

μ = R0
(
a4R2

0 − 6a2bR0 + 12b2
)

2a
.

We substitute the values of known-constants mentioned above and expression (28)
into Eq. (10), and plugging it with Eq. (9), we obtain the expression for U as

U (ξ) = R0 − R0eξ

eξ + 1
. (35)
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Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = βR0

αeξ + α
. (36)

Accordingly, the solution of (1) is obtained as

u(x, y, t) = R0

⎛

⎝1 − 1

exp
(
R0(a2R0(2a2R0t−ay−12bt)+2a2x+4b(ay+6bt))

4a

)
+ 1

⎞

⎠

v(x, y, t) = − M0
(
a2M0 − 4b

)

2a
(
exp

(
R0(a2R0(−2a2R0t+ay+12bt)−2(a2x+2b(ay+6bt)))

4a

)
+ 1

) . (37)

Family 4: For [r1, r2, r3, r4] = [−2ι̇,−2ι̇, 5,−5] and [s1, s2, s3, s4] = [3ι̇,−3ι̇,
3ι̇,−3ι̇], Eq. (5) yields

�(ξ) = 2

5
cot(3ξ). (38)

With the assistance of soft computation via Mathematica, we solve algebraic equation
for obtaining the values of parameters and hence following set of solutions can be
achieved.
Solution set 4.1:

R0 = −12iα

a
, R1 = 15α

a
, S1 = −12α

5a
, β = 2

(
αb + 6iaα2

)

a
,

μ = 12
(
48a2α3 − 12iaα2b − αb2

)

a2
.

We substitute the values of known-constants described above and expression (38) into
Eq. (10), and plugging it with Eq. (9), we obtain the expression for U as

U (ξ) = −6α tan(3ξ)

a
+ 6α cot(3ξ)

a
− 12iα

a
. (39)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = −6β tan(3ξ)

a
+ 6β cot(3ξ)

a
− 12iβ

a
. (40)

Accordingly, the solution of (1) is obtained as

u(x, y, t) =

− 12iα

a
−

6α tan

(
3

(
− 12t

(
48a2α3−12iaα2b−αb2

)

a2
+ 2y

(
αb+6iaα2

)

a + αx

))

a
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+
6α cot

(
3

(
− 12t

(
48a2α3−12iaα2b−αb2

)

a2
+ 2y

(
αb+6iaα2

)

a + αx

))

a
v(x, y, t) =

− 24i
(
αb + 6iaα2

)

a2

−
12

(
αb + 6iaα2

)
tan

(
3

(
− 12t

(
48a2α3−12iaα2b−αb2

)

a2
+ 2y

(
αb+6iaα2

)

a + αx

))

a2

+
12

(
αb + 6iaα2

)
cot

(
3

(
− 12t

(
48a2α3−12iaα2b−αb2

)

a2
+ 2y

(
αb+6iaα2

)

a + αx

))

a2
.

(41)

Solution set 4.2:

R0 = −6iα

a
, R1 = 0, S1 = −12α

5a
, β = 2

(
αb + 3iaα2

)

a
,

μ = 12
(
12a2α3 − 6iaα2b − αb2

)

a2
.

We substitute the values of known-constants mentioned above and expression (38)
into Eq. (10), and plugging it with Eq. (9), we obtain the expression for U as

U (ξ) = −6α tan(3ξ)

a
− 6iα

a
. (42)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = −6β tan(3ξ)

a
− 6iβ

a
. (43)

Accordingly, the solution of (1) is obtained as

u(x, y, t) =

−
6α tan

(
3

(
− 12t

(
12a2α3−6iaα2b−αb2

)

a2
+ 2y

(
αb+3iaα2

)

a + αx

))

a
− 6iα

a
v(x, y, t) =

−
12

(
αb + 3iaα2

)
tan

(
3

(
− 12t

(
12a2α3−6iaα2b−αb2

)

a2
+ 2y

(
αb+3iaα2

)

a + αx

))

a2

− 12i
(
αb + 3iaα2

)

a2
. (44)
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Solution set 4.3:

R0 = 6iα

a
, R1 = 15α

a
, S1 = 0, β = 2

(
αb − 3iaα2

)

a
,

μ = 12
(
12a2α3 + 6iaα2b − αb2

)

a2
.

We substitute the values of known-constants described above and expression (38) into
Eq. (10), and plugging it with Eq. (9), we obtain the expression for U as

U (ξ) = 6α cot(3ξ)

a
+ 6iα

a
. (45)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = 6β cot(3ξ)

a
+ 6iβ

a
. (46)

Accordingly, the solution of (1) is obtained as

u(x, y, t)

=
6α cot

(
3

(
− 12t

(
12a2α3+6iaα2b−αb2

)

a2
+ 2y

(
αb−3iaα2

)

a + αx

))

a
+ 6iα

a
v(x, y, t)

=
12

(
αb − 3iaα2

)
cot

(
3

(
− 12t

(
12a2α3+6iaα2b−αb2

)

a2
+ 2y

(
αb−3iaα2

)

a + αx

))

a2

+ 12i
(
αb − 3iaα2

)

a2
. (47)

Family 5: For [r1, r2, r3, r4] = [1, 1, 1, 1] and [s1, s2, s3, s4] = [ 32 ,− 3
2 , 0, 0], Eq. (5)

yields

�(ξ) = cosh

(
3ξ

2

)
. (48)

With the assistance of soft computation via Mathematica, we solve algebraic equation
for obtaining the values of parameters and hence following set of solutions can be
achieved.
Solution set 5.1:

R0 = − 3iα√
2a

, R1 = 0, S1 = −3iα

a
, β = 2αb

a
+ 3iα2

√
2

,
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μ =
6α

(
3a2α2 − 3i

√
2aαb − 2b2

)

a2
.

We substitute the values of known-constants mentioned above and expression (48)
into Eq. (10), and plugging it with Eq. (9), we obtain the expression for U as

U (ξ) = −
3iαsech

(
3ξ
2

)

a
− 3iα√

2a
. (49)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = −
3iβsech

(
3ξ
2

)

a
− 3iβ√

2a
. (50)

Accordingly, the solution of (1) is obtained as

u(x, y, t) =

−
3iα

(√
2 + 2sech

(
3α

(
−36α2a2t+2a2x+3

√
2iαa(ay+12bt)+4b(ay+6bt)

)

4a2

))

2a
v(x, y, t)

=
3α

(
3
√
2aα − 4ib

)(√
2 + 2sech

(
3α

(
−36α2a2t+2a2x+3

√
2iαa(ay+12bt)+4b(ay+6bt)

)

4a2

))

4a2
.

(51)

Solution set 5.2:

R0 = 0, R1 = 0, S1 = 3iα

a
, β = 2αb

a
, μ = −3

(
3a2α3 + 16αb2

)

4a2
.

We substitute the values of known-constants described above and expression (58) into
Eq. (10), and plugging it with Eq. (9), we obtain the expression for U as

U (ξ) =
3iαsech

(
3ξ
2

)

a
. (52)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) =
3iβsech

(
3ξ
2

)

a
. (53)
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Accordingly, the solution of (1) is obtained as

u(x, y, t) =
3iαsech

(
3
2

(
3t

(
3a2α3+16αb2

)

4a2
+ 2αby

a + αx

))

a

v(x, y, t) =
6iαbsech

(
3
2

(
3t

(
3a2α3+16αb2

)

4a2
+ 2αby

a + αx

))

a2
. (54)

Solution set 5.3:

R1 = 0, S1 = −√
2R0, β = −1

3
i
(
2
√
2bR0 − √

2a2R2
0

)
,

μ =
4i

(√
2a4R3

0 − 3
√
2a2bR2

0 + 3
√
2b2R0

)

3a
,

α = −1

3
i
√
2aR0.

We substitute the values of known-constants mentioned above and expression (58)
into Eq. (10), and plugging it with Eq. (9), we obtain the expression for U as

U (ξ) = R0 − √
2R0sech

(
3ξ

2

)
. (55)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) =
βM0

(
1 − √

2sech
(
3ξ
2

))

α
. (56)

Accordingly, the solution of (1) is obtained as

u(x, y, t)

= R0

(
1 − √

2 sec

(
R0

(
a2R0

(
4a2R0t − ay − 12bt

) + a2x + 2b(ay + 6bt)
)

√
2a

))

v(x, y, t)

=
R0

(
a2R0 − 2b

) (√
2 sec

(
R0

(
a2R0

(
4a2R0t−ay−12bt

)+a2x+2b(ay+6bt)
)

√
2a

)
− 1

)

a
.

(57)



Dynamical behavior of analytical soliton solutions, bifurcation Page 17 of 30 40

Family 6: For [r1, r2, r3, r4] = [ 52 ,− 5
2 , 2, 2] and [s1, s2, s3, s4] = [4,−4, 0, 0], Eq.

(5) yields

�(ξ) = 5

4
sinh(4ξ). (58)

With the assistance of soft computation via Mathematica, we solve algebraic equation
for obtaining the values of parameters and hence following set of solutions can be
achieved.
Solution set 6.1:

R0 = −4i
√
2α

a
, R1 = 0, S1 = −10α

a
, β =

2α
(
b + 2

√
2iaα

)

a
,

μ =
4α

(
32a2α2 − 12i

√
2aαb − 3b2

)

a2
.

We substitute the values of known-constants mentioned above and expression (58)
into Eq. (10), and plugging it with Eq. (9), we obtain the expression for U as

U (ξ) = −8αcsch(4ξ)

a
− 4i

√
2α

a
. (59)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) = −8βcsch(4ξ)

a
− 4i

√
2β

a
. (60)

Accordingly, the solution of (1) is obtained as

u(x, y, t)

=
−8αcsch

(
4α

(
−128α2a2t+a2x+4

√
2iαa(ay+12bt)+2b(ay+6bt)

)

a2

)
− 4

√
2iα

a
v(x, y, t)

=
8α

(
2
√
2aα − ib

)(√
2 − 2icsch

(
4α

(
−128α2a2t+a2x+4

√
2iαa(ay+12bt)+2b(ay+6bt)

)

a2

))

a2
.

(61)

Solution set 6.2:

R1 = 0, S1 = −5i R0

2
√
2

, β = −1

8
i
(
2
√
2bR0 − √

2a2R2
0

)
,
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μ =
i
(√

2a4R3
0 − 3

√
2a2bR2

0 + 3
√
2b2R0

)

2a
,

α = − iaR0

4
√
2

.

We substitute the values of known-constants described above and expression (58) into
Eq. (10), and plugging it with eq. (9), we obtain the expression for U as

U (ξ) = R0 − i
√
2R0csch(4ξ). (62)

Hence, from Eq. (8), we obtain the expression for V as

V (ξ) =
βR0

(
1 − i

√
2csch(4ξ)

)

α
. (63)

Accordingly, the solution of (1) is obtained as

u(x, y, t)

= R0

(√
2 csc

(
R0

(
a2R0

(
4a2R0t − ay − 12bt

) + a2x + 2b(ay + 6bt)
)

√
2a

)
+ 1

)

v(x, y, t)

=
R0

(
2b − a2R0

) (√
2 csc

(
R0

(
a2R0

(
4a2R0t−ay−12bt

)+a2x+2b(ay+6bt)
)

√
2a

)
+ 1

)

a
.

(64)

3.2 Results and discussion

The (2+1)-dimensional Konopelchenko–Dubrovsky (KD) model delivers new forms
of exact solutions in terms of exponential, trigonometric, and hyperbolic functions,
including tanh, coth, sech, csch, tan, cot, and their combinations. These solutions
include periodic-wave solutions, kink waves, combinations of kink and multi solitons,
periodic lumps and periodic solitons. In this section, we discuss physical interpreta-
tions of the obtained solutions via GERFM approach and numerical simulations by
choosing different values of the involving parameters.

Figure 1 depicts 3D, 2D combined line graph and their contour shapes for the
solution (14) corresponding to the values α = 0.188, a = 2, b = −0.195 with
−90 ≤ x ≤ 90,−300 ≤ y ≤ 300. 1(a) represents interaction of kink waves and multi
soliton wave profile. 1(b) shows wave propagation at different time.

Figure 2 illustrates depicts 3D, 2D combined line graph and their contour shapes
for the solution (24) corresponding to the values α = 0.108, a = 1, b = 0.2 with
−20 ≤ x ≤ 20,−30 ≤ y ≤ 30 at time t = 0.1. In Fig. 2b hyperbolic form wave
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(a) 3D (b) 2D (c) Contour-plot

(d) 3D (e) 2D (f) Contour-plot

Fig. 1 Wave propogation structures for solution (14)

solution is depicted at different time while in 2(c) contour shape has been plotted for
−50 ≤ x ≤ 50,−50 ≤ y ≤ 50.

Figure 3 represents 3D, 2D combined line graph and their contour shapes for
solution (34) corresponding to the values α = 2.5, a = 1, b = 4.59 with
−2 ≤ x ≤ 2,−3 ≤ y ≤ 3 at time t = 0.01. It is observed from the investiga-
tion of 3a that the obtained solution (34) behaves like kink wave. Moreover, by 2D
plot it is observed that the wave is shifted towards the negative x-axis as we change
time.

Figure 4 depicts traveling periodic solitonic wave profile for solution (41) where
3D plots are shown for real, imaginary and absolute values corresponding to the values
α = 0.1, a = 1.2, b = 0.358 with −20 ≤ x ≤ 20,−30 ≤ y ≤ 0 at time t = 5.

Figure 5 depicts 3D, 2D combined line graph and their contour shapes for absolute
value of the solution (44) corresponding to the values α = 0.108, a = 1.2, b = 0.357
with −20 ≤ x ≤ 20,−30 ≤ y ≤ 30 at time t = 0.5. We observed by 5a that solution
(44) represents periodic wave solitonic structure and in 5c their contour shapes has
been recorded. By wave propagation in 5b it is observed that there is change in the
amplitude of the wave with the change in the time.

Figure 6 illustrates 3D, 2D combined line graph and their contour shapes for abso-
lute value of the solution (51) corresponding to the values α = 0.259, a = 1.23, b =
0.32 with −50 ≤ x ≤ 50,−50 ≤ y ≤ 50 at time t = 0.1. It is observed that 6(a)
shows periodic soliton wave profile. Moreover, it is observed by wave propagation in
6(b) that with the increase in time the amplitude of the solitary wave decreases towards
origin.

Figure 7 shows 3D, 2D combined line graph and their contour shapes for absolute
value of the solution (61) corresponding to the values α = 0.18, a = 1, b = 0.35
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(a) 3D (b) 2D (c) Contour-plot

(d) 3D (e) 2D (f) Contour-plot

Fig. 2 Wave propagation structures for solution (24)

with −50 ≤ x ≤ 40,−30 ≤ y ≤ 30 at time t = 0.3. It is observed that 7a shows
periodic multi-soliton wave structure. Moreover, it is observed by wave propagation in
7b that with the increase in time the amplitude and width of the solitary wave changes.

4 Bifurcation analysis

We explore the new dynamics of KD system (1), in this section, by utilizing the
concepts of bifurcation theory.
After simplification, Eq. (9) can be rewritten in the following form of planar dynamical
system as

dU

dξ
= P,

dP

dξ
= A1U

3 − A2U
2 − A3U ,

(65)

where A1 = a2

2α2 , A2 = 3
2

(
2b
α2 − aβ

α3

)
and A3 = 3β2

α4 + μ

α3 .

The three equilibrium points for the above system of differential equations are com-
puted as (0, 0), (U1, 0) and (U2, 0) on U-axis, where

U1 = 1

2A1

(
A2 + √

δ

)
, U2 = 1

2A1

(
A2 − √

δ

)
.
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(a) 3D (b) 2D (c) Contour-plot

(d) 3D (e) 2D (f) Contour-plot

Fig. 3 Wave propagation structures for solution (34)

and δ = A2
2 + 4A1A3.

Let M(Ui , 0) is the coefficient matrix of the linearized system of (65) at equilibrium
point (Ui , 0); J and T be the determinant and trace of the matrix M , respectively.
Here,

J = −(3A1U
2 − 2A2U − A3) and

T = 0.

By using the theory of planar dynamical system [29], we can discuss following defi-
nitions for the critical points (Ui , 0).

(1) When J < 0, then (Ui , 0) is a saddle point.
(2) When J > 0 and T 2 − 4J ≥ 0, then (Ui , 0) is a node; which is stable if T < 0

and unstable if T > 0.
(3) When J > 0, T 2 − 4J < 0 and T �= 0, then (Ui , 0) is a focus; which is stable if

T < 0 and unstable if T > 0.
(4) When J > 0 and T = 0, then (Ui , 0) is a center.
(5) When J = 0 and Poincare index of (Ui , 0) is zero, then it is called the zero point.

For different choices of parameters A1, A2 and A3, various cases in detail are explained
as:
Case 1 A1 > 0, A2 > 0, and A3 > 0: Fig. 8a exhibits the phase portrait for the
values of parameters considered as A1 = 1, A2 = 1, A3 = 1. For this case, we have
three equilibrium points where (0, 0) is center point whereas (U1, 0) and (U2, 0) are
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Fig. 4 Wave propagation structures for solution (41)

(a) 3D (b) 2D (c) Contour-plot

(d) 3D (e) 2D (f) Contour-plot

Fig. 5 Wave propagation structures for solution (44)
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(a) 3D (b) 2D (c) Contour-plot

(d) 3D (e) 2D (f) Contour-plot

Fig. 6 Wave propagation structures for solution (51)

(a) 3D (b) 2D (c) Contour-plot

(d) 3D (e) 2D (f) Contour-plot

Fig. 7 Wave propagation structures for solution (61)

saddle points.Here, presence of nonlinear periodic trajectory andnonlinear homoclinic
trajectory ensure the occurrence of closed-form solutions of the KD Eq. (1).
Case 2 A1 > 0, A2 > 0, and A3 < 0: Fig. 8b explains the phase portrait for the values
of parameters given as A1 = 1, A2 = 1, A3 = −1. For this case, we have only one
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(a) A1 > 0, A2 > 0, and A3 > 0 (b) A1 > 0, A2 > 0, and A3 < 0

(c) A1 > 0, A2 < 0, and A3 > 0 (d) A1 > 0, A2 < 0, and A3 < 0

Fig. 8 Phase portraits

real equilibrium point, trivial equilibrium point (0, 0), which is a saddle point. Here,
it has been observed that the closed form trajectories are not obtained.
Case 3 A1 > 0, A2 < 0, and A3 > 0: Fig. 8c describes the phase portrait for the
values of parameters given by A1 = 1, A2 = −1, A3 = 1. For this case, we have
three equilibrium points, where (0, 0) is a center point whereas (U1, 0) and (U2, 0)
are saddle points. In this case also, the presence of nonlinear homoclinic trajectory
and nonlinear periodic trajectory ensure the occurrence of closed form solutions of
the KD Eq. (1).
Case 4 A1 > 0, A2 < 0, and A3 < 0: Fig. 8d exhibits the phase portrait for the
parameter values A1 = 1, A2 = −1, A3 = −1. For this case, we have only one
equilibrium points namely (0, 0)which is a saddle point. Here, closed form trajectories
are not obtained.
Case 5 A1 < 0, A2 > 0, and A3 > 0: Fig. 9a describes the phase portrait for the values
of parameters A1 = −1, A2 = 1, A3 = 1. For this case, we have obtained only one
real equilibrium point, namely (0, 0) which is a center point. For this case, presence
of non-linear periodic trajectories ensures the existence of closed form solutions.
Case 6 A1 < 0, A2 > 0, and A3 < 0: Fig. 9b exhibits the phase portrait for the
parameter values A1 = −1, A2 = 1, A3 = −1. For this case, we have three
equilibriumpoints,where (0, 0) is a saddle pointwhereas (U1, 0) and (U2, 0) are center
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(a) A1 < 0, A2 > 0, and A3 > 0 (b) A1 < 0, A2 > 0, and A3 < 0

(c) A1 < 0, A2 < 0, and A3 > 0 (d) A1 < 0, A2 < 0, and A3 < 0

Fig. 9 Phase portraits

points. Here, the presence of nonlinear periodic trajectory and nonlinear homoclinic
trajectory ensure the occurrence of closed form solutions of the KD Eq. (1).
Case 7 A1 < 0, A2 < 0, and A3 > 0: Fig. 9c describes the phase portrait for the
values of parameters A1 = −1, A2 = −1, A3 = 1. For this case, we have obtained
only one real equilibrium point namely (0, 0) which is a center point. For this case
also, presence of non-linear periodic trajectories ensures the existence of closed for
solutions.
Case 8 A1 < 0, A2 < 0, and A3 < 0: Fig. 9d explains the phase portrait for
the parameter values A1 = −1, A2 = −1, A3 = −1. For this case, we have three
equilibrium points where (0, 0) is a saddle point whereas (U1, 0) and (U2, 0) are center
points. Here, the presence of nonlinear periodic trajectory and nonlinear homoclinic
trajectory insure the occurrence of closed form solutions of the KD Eq. (1).

5 Quasi-periodic solution

The exploration of different dynamics of the perturbed system of the main system (1)
by adding perturbation term ρ1cos(ση) is investigated in this section. Thus, equation
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(a) 2D Phase portraits with perturbation term
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Fig. 10 For A1 = −0.1, A2 = 1.056, A3 = 8.12, ρ1 = −0.8 and σ = π , 2-D and 3-D phase portraits of
the perturbed system (66)
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(b) 3D−Phase portraits with perturbation term

Fig. 11 For A1 = −1, A2 = −1.056, A3 = 8.12, ρ1 = −0.8 and σ = π , 2-D and 3-D phase portraits of
the perturbed system (66)

(7) with the addition of perturbation term becomes

dU

dξ
= P,

dP

dξ
= A1U

3 − A2U
2 − A3U + ρ1cos(ση),

(66)

where ρ1 is constant representing the intensity of the perturbed term and σ represents
the frequency. To analyze the chaotic and periodic behavior of system (7) with the
existence of a perturbation term, we will fix the influence of force and frequency of
disruption and retain the physical parameters of the system under observation.

Figure6 exhibits the 2-D and 3-D phase portraits of the perturbed model (66) for
A1 = −0.1, A2 = 1.056, A3 = 8.12, ρ1 = −0.8 and σ = π . Figure 6 depicts the 2-D
and 3-D phase portraits for the perturbed system (66) for A1 = −1, A2 = −1.056,
A3 = 8.12, ρ1 = −0.8 and σ = π . Figure 6 describes the 2-D and 3-D phase portraits
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Fig. 12 For A1 = −0.93, A2 = −1.056, A3 = −2.5, ρ1 = −0.8 and σ = π , 2-D and 3-D phase portraits
of the perturbed system (66)

for the perturbed system (66) for A1 = −0.93, A2 = −1.056, A3 = −2.5, ρ1 = −0.8
and σ = π .

6 Novelty and comparison

In this section, we have briefly compared our attained exact traveling wave solutions
in the form of periodic-solitons, kink-wave profiles, the interaction of multi-soliton
and kink-wave solutions, and other types of solitonic structures with the work carried
out by the reseachers [20, 22, 23] and concludes the following:

• In [23], Song et. al. obtained exact solutions of the equation by applying extended
Riccati equation rational expansion method.

• We exhibit the dynamics of solitary wave profiles of some soliton solutions in three
dimensional, twodimensional and contour graphics by selecting appropriate values
for the parameters a, b, α, β and μ, and hence we believe that the evolutionary
profile dynamics of generated exact closed-form solutions are very impressive and
advantageous for physical phenomena see Figs. 1, 2, 3, 4, 5, 6, 7.

• Wehave used generalized exponential rational functionmethod, throughwhichwe
have obtained various soliton solutions in more generalized form than the earlier
published articles [23]. The solutions which we have generated are in the form of
exponential, trigonometric and hyperbolic functions alongwith their combinations
involving tanh, coth, tan, cot, sec and cosec functions.

• Also, the quasi-periodic solution is investigated for the perturbed systemby includ-
ing definite forces to the considered model. Moreover, and two-dimensional and
three-dimensional phase portraits are also plotted for the perturbed system which
is not recorded in the [18].

• Moreover, we have observed the chaotic and periodic attractors for the perturbed
system which is not shown in [18] see Figs. 10, 11, 12.
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7 Conclusion

In summary, we investigated the (2+1)-dimensional Konopelchenko–Dubrovsky (KD)
model and constructed numerous exact closed-form solutions using GERF (general-
ized exponential rational function) approach with soft symbolic computations via
Mathematica. The established soliton solutions exhibit that the KD Eq. (1) admits
abundant exact closed-form solutions having arbitrary constant parameters. The find-
ings depict rich dynamical formations of the generated closed-form solutions in the
forms of multi-solitons, kink-wave profiles, the interaction of multi-soliton and kink-
wave solutions, and periodic solitons in Figs. 1, 2, 3, 4, 5, 6, 7. The obtained solutions
will be beneficial in the theory of solitons, nonlinear dynamics, fluid mechanics,
applied physics, optic fiber, natural sciences, physics, and many other areas. The
technique we have used is one of the powerful techniques for obtaining the exact
analytical solutions of NLPDEs as this GERF method constructs an extensive scale
of established solitary wave solutions to the associated system. This method is very
effective, trustworthy, and efficient. Moreover, the dynamics of KD Eq. (1) is also
examined by using the bifurcation analysis in which we have found various equilib-
rium points, and different types of phase portraits have been discussed, see Figs. 8
and 9. Furthermore, we numerically studied the existence of quasi-periodic solutions
for the perturbed model, which is obtained after inserting the periodic forces to the
considered KD system (1). Also, 2D and 3D phase portraits shown by Figs. 10, 11,
12 for the perturbed system were also plotted.

Availability of data and material Data sharing is not applicable to this article as no data sets were created
or analyzed in this study.
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