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Abstract
First introduced by J. Deny, the classical principle of positivity of mass states that if
καμ ≤ καν everywhere on R

n , then μ(Rn) ≤ ν(Rn). Here μ, ν are positive Radon
measures on R

n , n ≥ 2, and καμ is the potential of μ with respect to the Riesz kernel
|x − y|α−n of order α ∈ (0, 2], α < n. We strengthen Deny’s principle by showing
that μ(Rn) ≤ ν(Rn) still holds even if καμ ≤ καν is fulfilled only on a proper subset
A of R

n that is not inner α-thin at infinity; and moreover, this condition on A cannot
in general be improved. Hence, if ξ is a signed measure on R

n with
∫
1 dξ > 0, then

καξ > 0 everywhere on R
n , except for a subset which is inner α-thin at infinity. The

analysis performed is based on the author’s recent theories of inner Riesz balayage
and inner Riesz equilibrium measures (Potential Anal., 2022), the inner equilibrium
measure being understood in an extended sense where both the energy and the total
mass may be infinite.

Keywords Principle of positivity of mass for α-Riesz potentials · Inner α-thinness at
infinity · Inner α-Riesz balayage · A generalized concept of inner α-Riesz
equilibrium measure

Mathematics Subject Classification Primary 31C15

1 A strengthened version of Deny’s principle of positivity of mass

In this paper we shall deal with the theory of potentials on R
n , n ≥ 2, with respect to

the α-Riesz kernel κα(x, y) := |x − y|α−n of order α ∈ (0, 2], α < n, where |x − y|
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is the Euclidean distance between x, y ∈ R
n . Denote by M+ the cone of all positive

Radon measures μ on R
n such that the α-Riesz potential

καμ(x) :=
∫

κα(x, y) dμ(y)

is not identically infinite, which according to [18, Section I.3.7] occurs if and only if

∫

|y|>1

dμ(y)

|y|n−α
< ∞. (1.1)

Note that the measures in question may be unbounded, namely with μ(Rn) = +∞.
The principle of positivity of mass was first introduced by J. Deny (see e.g. [11]),

and for α-Riesz potentials it reads as follows [15, Theorem 3.11].

Theorem 1.1 For any μ, ν ∈ M+ such that

καμ ≤ καν everywhere on R
n, (1.2)

we have μ(Rn) ≤ ν(Rn).

It is easy to verify that (1.2) can be slightly weakened by replacing ‘everywhere on
R
n’ by ‘nearly everywhere onR

n’ (see e.g. the author’s recent result [26, Theorem2.1],
establishing the principle of positivity of mass for potentials with respect to rather
general functionkernels on locally compact spaces).Recall that a proposition involving
a variable point x ∈ R

n is said to hold nearly everywhere (n.e.) on A ⊂ R
n if

cα(E) = 0, where E is the set of x ∈ A for which the proposition fails to hold, while
cα(E) is the inner α-Riesz capacity of E [18, Section II.2.6] (cf. Sect. 2 below).

In the present studywe shall show that Theorem1.1 still holds even if the assumption
καμ ≤ καν is fulfilled only on a proper subset A of R

n , which however must be ‘large
enough’ in an arbitrarily small neighborhood of ∞Rn , the Alexandroff point of R

n .
This discovery illustrates a special role of the point at infinity in Riesz potential theory,
in particular in the principle of positivity of mass.

To be exact, the following theorem holds true.1

Theorem 1.2 Givenμ, ν ∈ M+, assume there exists A ⊂ R
n which is not inner α-thin

at infinity, and such that

καμ ≤ καν n.e. on A.

Then

μ(Rn) ≤ ν(Rn).

1 Theorem 1.2 has already found an application to minimum α-Riesz energy problems in the presence of
external fields, see the author’s recent work [28] (Section 4.10, Proof of Theorem 2.13).
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Remark 1.3 The concept of inner α-thinness of a set at infinity was introduced in [24,
Definition 2.1]. Referring to Sect. 4 for details, at this point we only note that A ⊂ R

n

is not inner α-thin at infinity if and only if y = 0 is inner α-regular for A∗, the inverse
of A with respect to {|x | = 1}. Such A may in particular be thought of as {xi > q},
where q ∈ R and xi is the i-coordinate of x ∈ R

n , or as Qc := R
n \Q, Q ⊂ R

n being
bounded (see also Example 1.9). If A is not inner α-thin at infinity, it is ‘rather large’
at infinity in the sense that then necessarily cα(A) = ∞, whereas the converse is in
general not true (see Corollary 4.6, cf. Example 4.7 for illustration).

The following theorem shows that Theorem1.2 is sharp in the sense that the require-
ment on A of not being α-thin at infinity cannot in general be weakened.

Theorem 1.4 If a set A ⊂ R
n is inner α-thin at infinity, there exist μ0, ν0 ∈ M+ such

that καμ0 = καν0 n.e. on A, but nonetheless, μ0(R
n) > ν0(R

n).

Nevertheless, Theorem 1.2 remains valid for arbitrary A ⊂ R
n once we impose

upon the measures μ and ν suitable additional requirements (see Theorem 1.5).
A measure μ ∈ M+ is said to be concentrated on A ⊂ R

n if Ac is μ-negligible,
or equivalently if A is μ-measurable and μ = μ|A, μ|A being the restriction of μ to
A. We denote byM+

A the cone of all μ ∈ M+ concentrated on A. (For a closed set A,
a measure μ belongs toM+

A if and only if its support S(μ) is contained in A.)
A measure μ ∈ M+ is said to be cα-absolutely continuous if μ(K ) = 0 for every

compact set K ⊂ R
n with cα(K ) = 0. This certainly occurs if

∫
καμ dμ is finite or,

more generally, if καμ is locally bounded (but not conversely, see [18, pp. 134–135]).

Theorem 1.5 For any set A ⊂ R
n and any cα-absolutely continuous measures μ, ν ∈

M+
A such that καμ ≤ καν n.e. on A, we still have μ(Rn) ≤ ν(Rn).

Remark 1.6 If A ∩ AI = ∅, where AI consists of all inner α-irregular points for
the set A, then the condition of the cα-absolute continuity imposed on μ and ν, is
unnecessary for the validity of Theorem 1.5. Namely, for any A ⊂ R

n such that
A ∩ AI = ∅, and any μ, ν ∈ M+

A with the property καμ ≤ καν n.e. on A, we still
have μ(Rn) ≤ ν(Rn). (See the end of Sect. 5.3 for the proof of this assertion, and
Sect. 3 for the concept of inner α-irregular point and relevant results.)

Let M stand for the linear space of all real-valued (signed) Radon measures ξ on
R
n such that (1.1) is fulfilled with μ replaced by |ξ | := ξ+ + ξ−, where ξ+ and ξ−

denote the positive and negative parts of ξ in the Hahn–Jordan decomposition. Then
the potential καξ of any ξ ∈ M is well defined and finite n.e. on R

n (actually, even
everywhere on R

n except for a polar set, see [18, Section III.1.1]).
The next two corollaries follow directly from Theorem 1.2.

Corollary 1.7 For any ξ ∈ Mwith ξ+(Rn) > ξ−(Rn), καξ > 0 holds true everywhere
on R

n, except for a subset that is inner α-thin at infinity.

Corollary 1.8 For any ξ ∈ M with ξ+(Rn) 	= ξ−(Rn), the set of all x ∈ R
n for which

καξ(x) = 0 is inner α-thin at infinity.
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Fig. 1 The set F1 in
Example 1.9 with
�1(x1) = 1/x1

Example 1.9 Let n = 3 and α = 2. Consider the rotation bodies

Fj := {
x ∈ R

3 : 0 ≤ x1 < ∞, x22 + x23 ≤ �2
j (x1)

}
, j = 1, 2, (1.3)

where

�1(x1) := x−s
1 with s ∈ [0,∞),

�2(x1) := exp(−xs1) with s ∈ (0,∞). (1.4)

By the strengthened principle of positivity of mass (Theorem 1.2), for anyμ, ν ∈ M+
such that καμ ≤ καν n.e. on F1, we have μ(R3) ≤ ν(R3), the set F1 being not 2-thin
at infinity [24, Example 2.1] (see Fig. 1).

On the other hand, the set F2 is 2-thin at infinity [24, Example 2.1] (see Fig. 2), and
hence, according to Theorem 1.4, there are μ0, ν0 ∈ M+ such that

ν0(R
3) < μ0(R

3), though καμ0 = καν0 n.e. on F2.

(In fact, any nonzero bounded positive measure concentrated on Fc
2 may serve as μ0,

and the Newtonian balayage of this μ0 onto F2 then serves as ν0 [23, Example 8.8].)

The proofs of Theorems 1.2, 1.4, and 1.5 (see Sect. 5) are based on the theory of
inner α-Riesz balayage as well as on the theory of innerα-Riesz equilibriummeasures,
both originated in [23, 24] (see also [25–27] for some further relevant results). The
innerα-Riesz equilibriummeasure is understood in an extended sensewhere its energy
as well as its total mass may be infinite. To make the present study self-contained, we
give a brief summary of [23–27] (see Sects. 3, 4). To begin with, we first review some
basic facts of the theory of α-Riesz potentials, see [18].
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Fig. 2 The set F2 in
Example 1.9 with
�2(x1) = exp(−x1)

2 Basic facts of the theory of˛-Riesz potentials

In what follows we shall use the notations and conventions introduced in Sect. 1.
Throughout the paper the linear space M is meant to be equipped with the (Haus-

dorff) vague topology of pointwise convergence on the class C0(R
n) of all continuous

functions f : R
n → R of compact support.

The Riesz composition identity κα = κα/2 ∗ κα/2 [19, Section 1, Eq. (12)] (cf. also
[18, Eq. (1.1.12)]) implies that the kernel κα is strictly positive definite, which means
that for any (signed) μ ∈ M, the α-Riesz energy

κα(μ,μ) :=
∫

κα(x, y) d(μ ⊗ μ)(x, y)

is ≥ 0 whenever defined, and moreover it is zero only for zero measure. This in
turn implies (see e.g. [14, Lemma 3.1.2]) that all the measures inM of finite α-Riesz
energy form a pre-Hilbert space Eα with the inner product

〈μ, ν〉 := κα(μ, ν) :=
∫

κα(x, y) d(μ ⊗ ν)(x, y)

and the energy norm ‖μ‖ := √
κα(μ,μ). The (Hausdorff) topology on Eα defined by

means of this norm is said to be strong.
ByDeny [10] (for α = 2, see also H. Cartan [8]), the cone E+

α := {μ ∈ Eα : μ ≥ 0}
is strongly complete, and the strong topology on E+

α is finer than the (induced) vague
topology.2 Thus every strong Cauchy net (μs) ⊂ E+

α converges to the same (unique)
limit both strongly and vaguely. This in particular implies that if a set A ⊂ R

n is closed

2 In B. Fuglede’s terminology [14], the Riesz kernel is, therefore, perfect.
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(inR
n), then the cone E+

A := E+
α ∩M+

A is strongly complete,M+
A being vaguely closed

[4, Section III.2, Proposition 6].
The inner α-Riesz capacity cα(A) of arbitrary A ⊂ R

n is defined by the formula3

cα(A) := 1
/
inf ‖μ‖2, (2.1)

the infimum being taken over all μ ∈ E+
A with μ(Rn) = 1. If cα(A) < ∞, there exists

the unique solution γA to the minimum α-Riesz energy problem over the class of all
ν ∈ E+

α such that καν ≥ 1 n.e. on A (see e.g. [14, Theorem 4.1]). This γA is said to
be the inner α-Riesz equilibrium measure for A,4 and it satisfies the relations

γA(Rn) = κα(γA, γA) = cα(A) ∈ [0,∞), (2.2)

καγA = 1 n.e. on A. (2.3)

For closed A ⊂ R
n , the inner α-Riesz equilibrium measure γA can alternatively

be characterized as the only measure in E+
A satisfying (2.3). But if A is not closed,

γA may not be concentrated on the set A itself, but on A, the closure of A in R
n ;

and moreover, there is in general no ν ∈ E+
A having the property καν = 1 n.e. on A.

Regarding the latter, see [26] (Theorem 1.1(e) and footnote 3).
For reasons of homogeneity,

cα(A) = 0 ⇐⇒ E+
A = {0} ⇐⇒ E+

K = {0} for every compact K ⊂ A

(cf. [14, Lemma 2.3.1]). This in turn implies that for any measure μ ∈ E+
α and any

μ-measurable set A ⊂ R
n with cα(A) = 0, A is μ-negligible.

Along with the perfectness of the α-Riesz kernels, the following Theorems 2.1
and 2.2 were crucial to the development of the theory of inner balayage and that of
inner equilibrium measures γA, γA being understood in an extended sense where both
κα(γA, γA) and γA(Rn) may be infinite (see [23–27], cf. Sects. 3, 4 below).

Theorem 2.1 If a net (καμs)s∈S, where (μs)s∈S ⊂ M+, increases pointwise on R
n,

and is majorized by καν for some ν ∈ M+, then there exists μ0 ∈ M+ such that
καμs ↑ καμ0 pointwise on R

n and μs → μ0 vaguely (as s ranges through S).

Proof If (μs)s∈S is a sequence, Theorem 2.1 is, in fact, [18, Theorem 3.9] (cf. also [6,
8]). The proof of [18, Theorem 3.9] can be generalized to the case where (μs)s∈S is a
net, by use of [12, Appendix VIII, Theorem 2] and [4, Section IV.1, Theorem 1]. ��

The property of the α-Riesz kernels (of order α ∈ (0, 2], α < n), presented in the
following theorem (see [18, Theorems 1.27, 1.29]), is known in the literature as the
complete maximum principle; for q = 0, it is also called the domination principle,
and for ν = 0, the Frostman maximum principle.

3 As usual, the infimum over the empty set is taken to be +∞. We also agree that 1/(+∞) = 0 and
1/0 = +∞.
4 We also refer to the author’s recent work [26] providing a number of alternative characterizations of the
inner capacity cα(A) and the inner equilibrium measure γA , the results in [26] being actually valid even
for quite a large class of general function kernels on locally compact spaces.
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Theorem 2.2 If καμ ≤ καν + q holds true μ-a.e. (μ-almost everywhere), where
μ ∈ E+

α , ν ∈ M+, and q ∈ [0,∞), then the same inequality is fulfilled on all of R
n.

3 Basic facts of the theory of inner˛-Riesz balayage

The theory of inner α-Riesz balayage of arbitrary μ ∈ M+ to arbitrary A ⊂ R
n ,

originated by the author in [23] (for α = 2, see the pioneering paper by Cartan [9]),
has recently found a further development in [24–27]. The present section as well as
Sect. 4 describes some basic facts from [23–27], useful for the understanding of the
results of the current study and the methods applied.

Assume for a moment that a set A := F is closed, and that a measure μ := σ is
of finite energy, i.e. σ ∈ E+

α . Based on the facts that the α-Riesz kernel is perfect and
satisfies the domination principle, one can prove by generalizing the classical Gauss
variational method (see [7, 9], cf. also [18, Section IV.5.23]) that there exists σ F ∈ E+

F
uniquely determined within E+

F by the equality κασ F = κασ n.e. on F . This σ F is
said to be the α-Riesz balayage of σ ∈ E+

α onto (closed) F , and it can alternatively be
characterized as the orthogonal projection of σ in the pre-Hilbert space Eα onto the
convex, strongly complete cone E+

F (see Sect. 2); that is,5

‖σ − σ F‖ = min
ν∈E+

F

‖σ − ν‖. (3.1)

However, if A is not closed, or if μ is of infinite energy, then there is in general no
measure ν whichwould be uniquely determinedwithinM+

A by the equality καν = καμ

n.e. on A (see e.g. Remark 3.5). Nevertheless, a substantial theory of inner α-Riesz
balayage of arbitrary μ ∈ M+ to arbitrary A ⊂ R

n was developed [23–26], and this
was performed by means of several alternative approaches described below.6

Given arbitrary μ ∈ M+ and A ⊂ R
n , denote

	A,μ := {
ν ∈ M+ : κν ≥ κμ n.e. on A

}
. (3.2)

The class 	A,μ is obviously nonempty, for μ ∈ 	A,μ, and it is convex, the latter being
clear from the following strengthened version of countable subadditivity for inner
capacity (see [9, p. 253], [14, p. 158, Remark]; compare with [18, Section II.2.6]).

Lemma 3.1 For arbitrary A ⊂ R
n and Borel B j ⊂ R

n, j ∈ N,

cα

⎛

⎝
⋃

j∈N
A ∩ Bj

⎞

⎠ ≤
∑

j∈N
cα(A ∩ Bj ).

5 Concerning the orthogonal projection in a pre-Hilbert space, see e.g. [13, Theorem 1.12.3].
6 The outer α-Riesz balayage was investigated by J. Bliedtner andW. Hansen [1] in the general framework
of balayage spaces. See also N.S. Landkof [18, Section V.1.2], where, however, certain restrictions were
imposed upon A and μ, e.g. that A ⊂ R

n be Borel while μ ∈ M+ be bounded.
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Definition 3.2 The inner balayageμA ofμ ∈ M+ to A ⊂ R
n is defined as themeasure

of minimum potential in the class 	A,μ, that is, μA ∈ 	A,μ and

καμA = min
ν∈	A,μ

καν on R
n . (3.3)

This definition is in agreement with Cartan’s classical concept of inner Newtonian
balayage (cf. [9, Section 19, Theorem 1]). Nonetheless, the results presented below
are largely new even for the Newtonian kernel |x − y|2−n on R

n , n ≥ 3.
Denote by E ′

A the closure of E+
A in the strong topology on E+

α . The class E ′
A is

convex, for so is E+
A ; and it is strongly complete, being a strongly closed subset of the

strongly complete cone E+
α (cf. Sect. 2).

Theorem 3.3 Given arbitrary μ ∈ M+ and A ⊂ R
n, the inner balayage μA, intro-

duced by Definition 3.2, exists and is unique. Furthermore,7

καμA = καμ n.e. on A, (3.4)

καμA ≤ καμ on R
n . (3.5)

The inner balayage μA can alternatively be characterized by means of either of the
following (equivalent) assertions:

(a) μA is the unique measure in M+ satisfying the symmetry relation

κα(μA, σ ) = κα(σ A, μ) for all σ ∈ E+
α ,

where σ A denotes the only measure in E ′
A with κασ A = κασ n.e. on A.8

(b) μA is the unique measure in M+ satisfying either of the two limit relations

μA
j → μA vaguely inM+ as j → ∞,

καμA
j ↑ καμA pointwise on R

n as j → ∞,

7 Relation (3.4) actually holds true everywhere on Ar , Ar ⊂ A being the set of all inner α-regular points
for A (see (3.10), cf. also (3.12)).
8 For any σ ∈ E+

α and any A ⊂ R
n , the measure σ A ∈ E ′

A having the property κασ A = κασ n.e. on A,
exists and is unique. It is in fact the orthogonal projection of σ in the pre-Hilbert space Eα onto the convex,
strongly complete cone E ′

A; that is (compare with (3.1)),

‖σ − σ A‖ = min
ν∈E ′

A

‖σ − ν‖.

Alternatively, σ A is uniquely characterized within M+ by the extremal property (3.3) with μ := σ .
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where (μ j ) ⊂ E+
α is an arbitrary sequence having the property9

καμ j ↑ καμ pointwise on R
n as j → ∞, (3.6)

whereasμA
j denotes the onlymeasure in E ′

A with καμA
j = καμ j n.e. on A. (Regard-

ing the existence and uniqueness of this μA
j , see footnote 8).

Remark 3.4 The inner balayage μA is in general not concentrated on the set A itself,
but on its closure A, and this occurs even for the Newtonian kernel on R

n , n ≥ 3, and
A := Br := {|x | < r}, r ∈ (0,∞). Indeed, for any μ ∈ M+

B
c
r
, we have S(μBr ) =

{|x | = r} (see [24, Theorems 4.1, 5.1]), and hence actually S(μBr ) ∩ Br = ∅.

Remark 3.5 Assume for a moment that μ ∈ E+
α . As noted in Theorem 3.3 and foot-

note 8, the inner balayage μA is then the only measure in E ′
A satisfying (3.4). This in

turn implies that there is in general no ν ∈ E+
A with καν = καμ n.e. on A. Indeed, if

there were such ν, then it would necessarily serve as μA; which however is in general
impossible, for μA may not be concentrated on A (see Remark 3.4).

Corollary 3.6 For anyμ ∈ M+ and any A ⊂ R
n, the inner balayageμA is of minimum

total mass in the class 	A,μ, that is,

μA(Rn) = min
ν∈	A,μ

ν(Rn). (3.7)

Proof SinceμA ∈ 	A,μ, we only need to show thatμA(Rn) ≤ ν(Rn) for all ν ∈ 	A,μ,
which however follows directly from definition (3.2) by use of the (classical) principle
of positivity of mass (see Theorem 1.1). ��
Remark 3.7 However, the extremal property (3.7) cannot serve as an alternative char-
acterization of inner balayage, for it does not determine μA uniquely within 	A,μ.
Indeed, consider a closed proper subset A of R

n that is not α-thin at infinity (take, for
instance, A := {|x | ≥ 1}). Then for any μ ∈ M+

Ac ,

μA 	= μ and μA(Rn) = μ(Rn), (3.8)

the former relation being obvious, and the latter following from Theorem 4.2(iii).
Noting that μ,μA ∈ 	A,μ while 	A,μ is convex, we conclude by combining (3.7)
with (3.8) that there are actually in 	A,μ infinitely many measures of minimum total
mass, for so is everymeasure of the form aμ+bμA, where a, b ∈ [0, 1] and a+b = 1.

9 Such μ j ∈ E+
α , j ∈ N, do exist; they can be defined, for instance, by means of the formula

καμ j := min
{
καμ, jκαλ

}
,

λ ∈ E+
α being fixed (see e.g. [18, p. 272] or [9, p. 257, footnote]). Here we have used the fact that for any

μ1, μ2 ∈ M+, there is μ0 ∈ M+ such that καμ0 := min {καμ1, καμ2} [18, Theorem 1.31].
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Corollary 3.8 Given μ ∈ M+ and A ⊂ R
n,

κα(μA, ν) = κα(μ, νA) for all ν ∈ M+. (3.9)

Proof Fix μ, ν ∈ M+, and choose a sequence (μ j ) ⊂ E+
α satisfying (3.6). By Theo-

rem 3.3 (see (a) and (b)), (καμA
j ) increases pointwise on R

n to καμA, whereas

∫
καμA

j dν =
∫

καμ j dνA for all j .

Applying the monotone convergence theorem [4, Section IV.1, Theorem 3] to each of
these two integrals, we obtain (3.9). ��
Remark 3.9 It follows from Theorem 3.3(a) and Corollary 3.8 that, if for a given
μ ∈ M+, there exists ζ ∈ M+ having the property

κα(ζ, ν) = κα(μ, νA) for all ν ∈ M+,

then necessarily ζ = μA. Actually, this characteristic property of the inner balayage
μA needs only to be verified for certain countably many ν j ∈ E+

α that are independent
of the choice of μ ∈ M+.10 This is implied by the fact that there are countably many
ν j ∈ E+

α whose potentials καν j form a dense subset of C0(R
n) ([24, Lemmas 3.1,

3.2]).

Given A ⊂ R
n , denote by CA the upward directed set of all compact subsets K of

A, where K1 ≤ K2 if and only if K1 ⊂ K2. If a net (xK )K∈CA ⊂ Y converges to
x0 ∈ Y , Y being a topological space, then we shall indicate this fact by writing

xK → x0 in Y as K ↑ A.

The following theorem (cf. [23, Theorem 4.5]), analyzing the convergence of inner
swept measures and their potentials under the exhaustion of A ⊂ R

n by compact
subsets K ⊂ A, justifies the term ‘inner’ balayage.

Theorem 3.10 For any μ ∈ M+ and any A ⊂ R
n,

μK → μA vaguely inM+ as K ↑ A,

καμK ↑ καμA pointwise on R
n as K ↑ A.

If now μ ∈ E+
α , then also

μK → μA strongly in E+
α as K ↑ A.

10 This result has recently been extended to inner balayage on a locally compact space, see [27].
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A point y ∈ R
n is said to be inner α-regular for A if εy = (εy)

A =: εAy , εy being

the unit Dirac measure at y;11 the set of all those y is denoted by Ar . Then Ar ⊂ A,
since obviously εAx ∈ E+

α for all x /∈ A. The other points of A, i.e.

y ∈ A \ Ar =: AI ,

are said to be inner α-irregular for A. As seen from (3.9) with ν := εy ,

y ∈ Ar ⇐⇒ καμA(y) = καμ(y) for all μ ∈ M+. (3.10)

It is also worth noting that for any A ⊂ R
n , the sets Ar and AI are Borel measurable

[24, Theorem 5.2], and hence capacitable.
By the Wiener type criterion [23, Theorem 6.4],

y /∈ Ar ⇐⇒
∑

j∈N

cα(A j )

q j(n−α)
< ∞, (3.11)

where q ∈ (0, 1) and A j := A ∩ {x ∈ R
n : q j+1 < |x − y| ≤ q j }, while by the

Kellogg–Evans type theorem [23, Theorem 6.6],12

cα(A ∩ AI ) = 0. (3.12)

Relation (3.11) implies, in particular, that AI ⊂ ∂A, where ∂A denotes the boundary
of A in the Euclidean topology on R

n .

4 Basic facts of the theory of inner˛-Riesz equilibriummeasures

This section reviews some basic facts of the theory of inner α-Riesz equilibrium
measures, developed in [23, 24, 26]. The inner equilibrium measure γA of A ⊂ R

n is
understood in an extended sense where its energy κα(γA, γA) as well as its total mass
γA(Rn) may be infinite (compare with (2.2)).

For arbitrary A ⊂ R
n , define

	A := {
ν ∈ M+ : καν ≥ 1 n.e. on A

}
. (4.1)

11 εAy is said to be the (fractional) inner α-harmonic measure of A ⊂ R
n at y ∈ R

n . Being a natural

generalization of the classical concept of (2-)harmonic measure [1–3, 18], εAy serves as the main tool in
solving the generalized Dirichlet problem for α-harmonic functions. Besides, due to the integral represen-
tation formula μA = ∫

εAy dμ(y) [24, Theorem 5.1], the inner α-harmonic measure εAy is a powerful tool

in the investigation of the inner balayage μA for arbitrary μ (see [24]).
12 Observe that both (3.11) and (3.12) refer to inner capacity; compare with the Kellogg–Evans andWiener
type theorems established for outer balayage (see e.g. [1, 5, 9, 12]). Regarding (3.12), we also note that the
whole set AI may be of nonzero capacity [18, Section V.4.12].
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Definition 4.1 A measure γA is said to be the inner α-Riesz equilibrium measure of
A ⊂ R

n if it is of minimum potential in 	A, that is, if γA ∈ 	A and13

καγA = min
ν∈	A

καν onR
n .

It follows easily by use of [18, Theorem 1.12] that the inner α-Riesz equilibrium
measure γA is unique (if it exists). Theorem 4.2 below provides a number of equivalent
conditions, each of which is necessary and sufficient for the existence of this γA.
The approach applied is based on the close interaction between the concept of inner
equilibrium measure and that of inner balayage, described by means of equality (4.5)
with the Kelvin transformation involved.

For every y ∈ R
n , define the inversion Jy with respect to the sphere S(y, 1) :=

{x ∈ R
n : |x − y| = 1} mapping each point x 	= y to the point x∗ = Jy(x) on the

ray through x issuing from y which is uniquely determined by

|x − y| · |x∗ − y| = 1.

This is a homeomorphism of R
n \ {y} onto itself having the property

|x∗ − z∗| = |x − z|
|x − y||z − y| for all x, z ∈ R

n \ {y}. (4.2)

If now A ⊂ R
n is given, then for any q ∈ (0, 1) and any A j appearing in the Wiener

type criterion (3.11) of inner α-regularity,

q−2 j(n−α)cα(A j ) ≤ cα(A∗
j ) ≤ q−(2 j+2)(n−α)cα(A j ), j ∈ N,

where A∗
j := Jy(A j ). This follows from (4.2) by use of [18, Remark to Theorem 2.9].

For every ν ∈ M+ with ν({y}) = 0, define the Kelvin transform ν∗ = Kyν ∈ M+
by means of the formula (see [18, Section IV.5.19])

dν∗(x∗) = |x − y|α−n dν(x), where x∗ = Jy(x) ∈ R
n . (4.3)

Noting that (ν∗)∗ = ν, we derive from (4.2) and (4.3) that

ν(Rn) = καν∗(y),
κα(ν∗, ν∗) = κα(ν, ν), (4.4)

καν∗(x∗) = |x − y|n−ακαν(x) for all x∗ ∈ R
n .

The proof of the following theorem is based on the theory of inner balayage,
reviewed in Sect. 3, as well as on the above-quoted elementary properties of the
inversion and the Kelvin transformation (see [24, Theorems 2.1, 2.2, 5.1] for details).

13 In view of (permanent) assumption (1.1), the inner α-Riesz equilibrium measure γA does not exist if
there is no ν ∈ M+ with καν ≥ 1 n.e. on A. This implication can actually be reversed, and hence γA exists
if and only if 	A 	= ∅, see Theorem 4.2(ii).
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Theorem 4.2 For arbitrary A ⊂ R
n, the following (i)–(v) are equivalent.

(i) There exists the inner α-Riesz equilibriummeasureγA for A, uniquely determined
by Definition 4.1.

(ii) There exists ν ∈ M+ with

ess inf
x∈A

καν(x) > 0,

where x ranges over all of A except for a subset of inner capacity zero.
(iii) There exists μ ∈ M+ having the property14

μA(Rn) < μ(Rn).

(iv) For some (equivalently, every) y ∈ R
n,

∑

j∈N

cα(A j )

q j(n−α)
< ∞,

where q ∈ (1,∞) and A j := A ∩ {x ∈ R
n : q j ≤ |x − y| < q j+1}.

(v) For some (equivalently, every) y ∈ R
n, the inner α-harmonic measure ε

A∗
y

y is
cα-absolutely continuous.

If these (i)–(v) hold true, then for every y ∈ R
n, theKelvin transform (γA)∗ = KyγA

of the inner equilibrium measure γA for the set A is actually the inner α-harmonic

measure ε
A∗
y

y for the inverse A∗
y = Jy(A). That is,

ε
A∗
y

y = (γA)∗. (4.5)

Definition 4.3 [see [24, Definition 2.1]] A ⊂ R
n is said to be inner α-thin at infinity

if any of the (equivalent) assertions (i)–(v) in Theorem 4.2 holds true. Thus A is
inner α-thin at infinity if and only if some (equivalently, every) point y ∈ R

n is inner
α-irregular for A∗

y , the inverse of A with respect to the sphere S(y, 1).15

Remark 4.4 The concept of inner α-thinness at infinity thus introduced actually
coincides with that of α-thinness at infinity by T. Kurokawa and Y. Mizuta [17, Defi-
nition 3.1]. Indeed, to validate this, it is enough to show that the concept of capacity
used in [17] (see p. 534 therein) is equivalent to that given by (2.1), which however
directly follows from [26, Theorem 4.2]. Also note that in the case where α = 2 while
A is Borel, the above concept of inner 2-thinness at infinity coincides with that of
outer 2-thinness at infinity, introduced by J.L. Doob [12, pp. 175–176].

14 In general, μQ(Rn) ≤ μ(Rn), where μ ∈ M+ and Q ⊂ R
n are arbitrary. This follows e.g. from (3.5)

by use of the (classical) principle of positivity of mass (see Theorem 1.1).
15 The concept of inner α-thinness of a set at infinity, and particularly its alternative characterization
provided by Theorem 4.2(iii), has already found a number of applications to minimum α-Riesz energy
problems for condensers (see e.g. [16], [20–22]).
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For the following theorem we refer to [24, Theorem 2.3] (compare with [18, Sec-
tion V.2.8], where A was Borel).

Theorem 4.5 For arbitrary A ⊂ R
n, the following (i)–(iii) are equivalent.

(i) The inner α-Riesz capacity of A is finite:

cα(A) < ∞.

(ii) For some (equivalently, every) y ∈ R
n,

∑

j∈N
cα(A j ) < ∞,

where q ∈ (1,∞) and A j := A ∩ {x ∈ R
n : q j ≤ |x − y| < q j+1}.

(iii) For some (equivalently, every) y ∈ R
n,

ε
A∗
y

y ∈ E+
α .

Corollary 4.6 The following two conclusions (a) and (b) are obtained by comparing
Theorems 4.2 and 4.5.

(a) If A ⊂ R
n is not α-thin at infinity, then necessarily cα(A) = ∞.

(b) There exists A0 ⊂ R
n which is α-thin at infinity, but nonetheless, cα(A0) = ∞.

Example 4.7 For instance, the set F2 ⊂ R
3, defined by means of formulae (1.3) and

(1.4), is 2-thin at infinity; whereas its Newtonian capacity is finite if and only if s > 1,
where s is the parameter involved in (1.4).

Using (4.4) and (4.5), we conclude from Theorem 4.5 that the inner α-Riesz equi-
librium measure γA has finite energy if and only if cα(A) < ∞; and in the affirmative
case it can alternatively be characterized, for instance, as the only measure in E ′

A
having the property καγA = 1 n.e. A. Regarding the latter, see [26, Theorem 9.1].

In the case where the inner equilibrium measure γA still exists, although its energy
may now be infinite, γA can be described as follows (see [23, Sections 5, 6]).

Theorem 4.8 For any A ⊂ R
n that is inner α-thin at infinity, the inner α-Riesz equi-

librium measure γA has the properties16

καγA = 1 on Ar , (4.6)

καγA ≤ 1 on R
n .

Furthermore, γA can be characterized as the unique measure inM+ satisfying either
of the two limit relations

γK → γA vaguely inM+ as K ↑ A, (4.7)

16 Thus καγA = 1 n.e. on A, see (3.12) and (4.6).
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καγK ↑ καγA pointwise on R
n as K ↑ A, (4.8)

where γK denotes the only measure in E+
K with καγK = 1 n.e. on K .

Remark 4.9 Alternatively, (4.7) and (4.8) will follow from Theorem 3.10 once we
show that for any given Q ⊂ A,

γQ = (γA)Q .

To this end, it is enough to prove that 	Q = 	Q,γA (cf. Definitions 3.2, 4.1). This
however is obvious in view of the fact that for any given ν ∈ 	Q,γA ∪ 	Q ,

καν ≥ 1 = καγA n.e. on Q,

which in turn is derived from (3.2) (with A := Q and μ := γA), (4.1), and (4.6) by
making use of Lemma 3.1.

5 Proofs of Theorems 1.2, 1.4, and 1.5

5.1 Proof of Theorem 1.2

Given μ, ν ∈ M+, assume that

καμ ≤ καν n.e. on A, (5.1)

where A ⊂ R
n is not inner α-thin at infinity (Definition 4.3). By Theorem 4.2(iii),

μA(Rn) = μ(Rn), (5.2)

μA being the inner balayage of μ to A. Noting from (5.1) that ν ∈ 	A,μ, where 	A,μ

was introduced by (3.2), we conclude from Definition 3.2 that

καμA ≤ καν everywhere on R
n,

and hence, by applying Theorem 1.1, that

μA(Rn) ≤ ν(Rn).

Combining this with (5.2) proves μ(Rn) ≤ ν(Rn), which was the claim.

5.2 Proof of Theorem 1.4

Let A ⊂ R
n be inner α-thin at infinity. Then, by virtue of Definition 4.3 and Theo-

rem 4.2(iii), one can choose μ0 ∈ M+ so that

μA
0 (Rn) < μ0(R

n). (5.3)
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But according to (3.4) applied to μ0,

καμA
0 = καμ0 n.e. on A,

which together with (5.3) validates the theorem for μ0, chosen above, and ν0 := μA
0 .

5.3 Proof of Theorem 1.5

Given A ⊂ R
n and cα-absolutely continuous measures μ, ν ∈ M+

A having property
(5.1), we aim to show that then necessarily

μ(Rn) ≤ ν(Rn).

The set Ac being ξ -negligible for any ξ ∈ M+
A , this is equivalent to the inequality

∫
1A dμ ≤

∫
1A dν, (5.4)

where 1A denotes the indicator function of A.
We can certainly assume that the set A is inner α-thin at infinity, for if not, the claim

holds by virtue of Theorem 1.2. According to Theorem 4.2, then there exists the inner
α-Riesz equilibrium measure γA, uniquely determined by Definition 4.1.

For any compact K ⊂ A, we obtain by Fubini’s theorem

∫
καγK dμ =

∫
καμ dγK ≤

∫
καν dγK =

∫
καγK dν, (5.5)

where γK ∈ E+
K denotes the equilibrium measure on K . (The inequality in (5.5) is

valid in view of the fact that καμ ≤ καν holds n.e. on K , hence γK -a.e., every Borel
E ⊂ R

n with cα(E) = 0 being ξ -negligible for any ξ ∈ E+
α , see Sect. 2.)

According to (4.8), the net (καγK )K∈CA of positive, lower semicontinuous functions
increases pointwise on R

n to καγA. Applying [4, Section IV.1, Theorem 1] to the first
and the last integrals in (5.5), we therefore get

∫
καγA dμ ≤

∫
καγA dν.

This implies (5.4), because καγA = 1 holds true n.e. on A (see (4.6) and (3.12)), hence
(μ + ν)-a.e. To verify the latter, observe that N := A ∩ {καγA < 1} is (μ + ν)-mea-
surable, for so is the set A, μ + ν being concentrated on A. Since cα(N ) = 0 while
μ + ν is cα-absolutely continuous, the set N must be (μ + ν)-negligible.

This completes the proof of Theorem 1.5. With regard to Remark 1.6, note that in
the case A ∩ AI = ∅, the cα-absolute continuity of μ and ν is unnecessary for the
validity of the above proof, for then, again by (4.6), καγA = 1 everywhere on A.
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