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Abstract
We introduce a potential theory for a class of QuantumMarkov Chains whose forward
and backward Markov transition operators satisfy a special composition rule. We
study the associated recurrence, transient and irreducibility properties and we prove
that an irreducible quantumMarkov chain is either recurrent or transient.Moreover, we
show that our theory applies in many cases such as: quantum random walks, diagonal
states, entangled QuantumMarkov Chains. A characterization of Entangled Quantum
Markov Chains is also given.

Keywords Quantum Markov chains · Potential · Recurrence · Transience

1 Introduction

Potential theory plays an important role in the analysis of classical (see e.g. [10]) and
quantum Markov processes ([8, 13, 17, 22]) because it allows one to establish the
long time behaviour of the process. Potentials are related with occupation times and
the existence of non-trivial potentials characterizes transient regimes. Moreover, they
define superharmonic functions and enjoy the useful Riesz decomposition property.
It is not clear, however, if this is the case also for Quantum Markov Chains (QMCs)
introduced by Accardi [1, 3] where a transition expectation determines two, typically
different and non-commuting, Markov transition operators. Notwithstanding, a notion
of visit time was introduced in [4, 5] and recurrence (resp. transience) was defined as
divergence (resp. finiteness) of the visit time. This approach was also followed later
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in [8]. Visit times are closely related with potential, however, since QMCs are highly
more general and non trivial objects than classical Markov processes, the potential
obtained in this way does not enjoy characteristic properties such as sub-harmonicity
(Definition 2). This undermines the development of a potential theory as rich as the
classical one as well as applicability in concrete examples.

In this paper we show that, perhaps surprisingly, one can develop a potential theory
for a class of QMCs including diagonal states [6], entangled QMCs [2], quantum
Markov states [3] and, in general, those QMCswhose backward and forward transition
operator T and T ′ satisfy a special composition rule. The starting point of our analysis
is the interpretation of the operatorT n◦T ′ as the n-step transition operator (formula 3).
If T and T ′ satisfy the identity

T ◦ T ′ ◦ T ◦ T ′ = T 2 ◦ T ′, (1)

we can introduce a notion of associated potential enjoying the fundamental properties
of classical potentials such as sub-harmonicity (Theorem 1) and Riesz decomposition
(Theorem 2). As a result we can apply it in the analysis of transience and recurrence
properties.

These properties have been studied in several papers for classical and quantum
Markov processes determined by a single Markov operator (see [2, 4, 5, 13, 17, 18,
22] and the references therein). They have also been investigated for more general
processes such as open quantum random walks [7, 11] and Quantum Markov Chains
in the sense of Gudder [18, 19] that are notMarkovian in the strict sense. Our approach
does not apply to all these processes but extends the potential theoretic approach to
certain non Markovian processes that can be dealt with by two transition operators
instead of a single one.

The paper is organized as follows. In Sect. 2, we recall the basic concepts related to
the QuantumMarkov Chains andwe give amotivation for our approach.Moreover, we
show that many examples of QMCs belong to the class we are considering. We further
introduce, in Sect. 3, the potential for a class of QuantumMarkov Chains and we prove
its properties: superharmonicity (Theorem 1) and Riesz decomposition (Theorem 2).
The study of recurrence and transience by our concept of potential is carried on in
Sect. 4 where we prove, in particular, that an irreducible QMC is either recurrent or
transient (Theorem 4). In Sect. 5 we apply our results to the so-called entangled QMC
[2] and to a QMC associated with a two q-bit model. Finally, in Sect. 6 we collect
some final comments and discuss further developments.

2 QuantumMarkov chains

Let M be a von Neumann subalgebra of the algebra B(h) of all bounded operators
on some complex separable Hilbert space h. For each finite set � ⊂ N

∗ = N\{0}, we
consider A� = ⊗n∈�M, where ⊗ is the minimal C∗-tensor product (cf. [15], [21])
and A = ⊗n∈N∗M is the inductive limit of A�, � ⊂ N

∗ finite.
We denote by 1l the identity operator inM.
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A completely positive normal unital map E : M⊗M → M is called a transition
expectation (see [3]). Let φ0 be a given state onM. If � = {i, . . . , k} ⊂ N

∗, then for
all x j in the j-th copy of M (i ≤ j ≤ k) define

φ�(xi ⊗ xi+1 ⊗ · · · ⊗ xk) = φ0 (E(1l ⊗ . . . E (xi ⊗ E (xi+1 ⊗ · · · ⊗ E(xk ⊗ 1l))))

The family of local states { φ� | � ⊂ N
∗, |�| < ∞} satisfies the compatibility

condition,

φ�′
∣
∣M�

= φ�, where M� = ⊗ j∈�M, � ⊆ �′.

Then there exists a unique state φ on A such that φ
∣
∣M�

= φ�.

Definition 1 The state φ is called Quantum Markov Chain (QMC) on A, associated
with the pair (φ0, E).

With the transition expectation E we associate two completely positive, identity
preserving, normal maps T and T ′ onM defined by

T (x) = E (1l ⊗ x) , T ′(x) = E (x ⊗ 1l) (2)

which are called respectively the backward and forward Markov transition operators.
Note that, as explained in [6] Sect. 2, a usual Markov process with associated

Markov operator T on a commutativeM can be viewed as a QMC with E( f ⊗ g) =
f T (g) (pointwise product) so that T ′ is the identity map.

Remark 1 If M = L∞(E,F , μ) for a σ -finite measure μ. A normal state φ0 on M
determines a probability measure on the σ -algebra F . In this case, φ0 is the initial
distribution of an E-valued Markov process (Xn)n≥0 such that, for all A1 ∈ F ,

φ(1E ⊗ 1A1) = Eφ0

[

(1E ⊗ 1A1)(X0, X1)
] = Pφ0 {X1 ∈ A1}

where 1A1 denotes the indicator function of the set A1. In addition

Pφ0 {X1 ∈ A1} =
∫

E
(T 1A1)(x)φ0(dx) = φ0(T 1A1) = φ0(T (T ′(1A1))).

In a similar way, if we consider an n-step transition, we find by induction

φ
(

1E ⊗ · · · ⊗ 1An

) = φ
(

E
(

1l ⊗ E
(

1l ⊗ · · · ⊗ E(1An ⊗ 1l)
)))

= Pφ0 {Xn ∈ An} (3)

= φ0

(

T n−1(T ′(1An ))
)

for any n ≥ 1 and An ∈ Fn . Therefore T n ◦ T ′ corresponds to the n-step transition
operator.
The same interpretation holds for quantum Markov processes determined by a single
transition operator T .
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There exist important cases where the forward and backward Markov operator
satisfy some commutation rule which turns out to be useful for introducing our notion
of potential.

2.1 Quantum randomwalks

We consider a quantum randomwalk introduced in [6] as a simple example of a QMC.
Let (X ,X , μ) be a measurable space with a σ -finite measure μ, (Ux )x∈X a collection
of unitary operators on L2(X), (Fx )x∈X a collection of Hilbert-Schmidt operators on
L2(X) such that:

1. The maps x → Ux and x → Fx are strongly measurable,
2.

∫

X tr
(|Fx |2

)

dμ(x) = 1

and define

E(a ⊗ b) = tr2

(∫

X

(

U∗
x a Ux ⊗ FxbF

∗
x

)

dμ(x)

)

=
∫

X
tr

(

|Fx |2b
)

U∗
x a Uxdμ(x).

The forward and backward Markov operators are given by

T ′(a) =
∫

X
tr

(

|Fx |2
)

U∗
x a Uxdμ(x)

T (b) =
(∫

X
tr

(

|Fx |2b
)

dμ(x)

)

1l

It turns out that T is a conditional expectation onto the trivial algebra and the following
commutation relation holds T ′ ◦ T = T .

2.2 Diagonal states

We now describe QMCs appearing in [5] and called “diagonal states”. Let P =
(Pi j )1≤i, j≤d be the stochastic matrix of a classical Markov chain and let ( f j )1≤ j≤d be
a partition of the identity inM = Md(C) ofmutually orthogonal rank one projections.
Choose an orthonormal basis (e j )1≤ j≤d of Cd such that f j = ∣

∣e j
〉 〈

e j
∣
∣ for all j .

Consider the transition expectation E : M ⊗ M → M defined by

E (a ⊗ b) =
d

∑

h=1

K ∗
h aKh tr ( fhb)

where Kh = ∑d
j=1 p

1/2
jh f j .

A straightforward computation yields

T (b) =
d

∑

h=1

K ∗
h Kh tr ( fhb) =

d
∑

h, j=1

p jh 〈eh, b eh〉
∣
∣e j

〉 〈

e j
∣
∣
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T ′(a) =
d

∑

h=1

K ∗
h aKh =

d
∑

h,i, j=1

p1/2ih p1/2jh

〈

ei , a e j
〉 |ei 〉

〈

e j
∣
∣ .

Note that T maps Md(C) onto the subalgebra of diagonal matrices and T ′ acts as the
identity map on this subalgebra. Therefore we have again

T ′ ◦ T = T .

In other words, T ′ acts as the identity map on the range of T .
We shall see later that also the backward and forward Markov operator of the so-

called entangledQMCs introduced byAccardi and Fidaleo [2] also satisfy T ′◦T = T .
A weaker condition turns out to be the key property making potentials for QMCs as
useful as those for standard Markov processes both in the commutative and non-
commutative cases.

2.3 QuantumMarkov states

A quantum Markov state is a quantum Markov chain such that the transition expecta-
tion statisfies

E(x ⊗ y) = E(x ⊗ E(y ⊗ 1l)), ∀x, y ∈ M (4)

Therefore, for all x ∈ M, we have

T (x) = E(1l ⊗ x) = E(1l ⊗ E(x ⊗ 1l)) = T ◦ T ′(x)

and hence, by left composition with T ,

T ◦ T ′ ◦ T = T 2.

3 Potential

Inspired by the classical theory of Markov processes [10], and its non commutative
counterpart forQuantumMarkov Semigroups in [13, 22], in this sectionwe introduce a
notion of potential for QMCs developing the definition sketched in [5]. It is well known
that the existence of non-trivial potential operators characterises transient regimes for
both classical [10] and quantum Markov processes [13].

Definition 2 Let T be a completely positive, unital map onM. A selfadjoint element x
ofM is calledT -subharmonic (resp.T -superharmonic) ifT (x) ≥ x (resp.T (x) ≤ x).

In the sequel, we assume that (1) is satisfied and shall use the quadratic form setting
following the book of Kato [20].
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Definition 3 Given a positive operator x ∈ M we define the form-potential of x as
the quadratic form U(x) on the domain

Dom (U(x)) =
⎧

⎨

⎩
u ∈ h :

∑

n≥1

〈

u, T n(T ′(x))u
〉

< ∞
⎫

⎬

⎭

by

U(x)[u] = 〈u, xu〉 +
∑

n≥1

〈

u, T n(T ′(x))u
〉

.

Note that, for a projection p ∈ M the operator

T n−1(T ′(p)) = E (1l ⊗ E (1l ⊗ · · · ⊗ E(p ⊗ 1l)))

appears computing probabilities of visiting the projection p at time n (see formula (3)).
Moreover, for quantum Markov processes as in [13, 17, 22], T ′ is the identity map
and the above definition coincides with the usual one (see [13] Definition 2).

The quadratic form U(x) is clearly a symmetric and positive form and, by Theorem
3.13a and Lemma 3.14a p. 461 of [20], it is also closed. Therefore, when it is densely
defined, it is represented by a self-adjoint operator (see Theorem 2.1, p. 322, Theorem
2.6, p. 323 and Theorem 2.23 p. 331 of [20]). This motivates the following definition.

Definition 4 A positive x ∈ M such that Dom (U(x)) is dense is called integrable.
For an integrable x , we denote by U(x) the self-adjoint operator which represents
the quadratic form U(x). A positive operator y ∈ M is a potential if there exists an
integrable x ∈ M such that y = U(x).

Note that Dom
(

U(x)1/2
) = Dom (U(x)) (see [20] Theorem 2.23, p. 331).

We recall that a closed operator X is affiliated with the von Neumann algebra M
if yDom (X) ⊆ Dom (X) and yX ⊆ Xy for all y ∈ M′ (the commutant of M). If X
is self-adjoint, it is affiliated with M if and only if its spectral projections belong to
M (see [9] Definition 2.5.7, Lemma 2.5.8 p. 87).

Proposition 1 For all integrable x ∈ M, the selfadjoint operator U(x) is affiliated
withM.

Proof Fix y ∈ M′ and define Xn = ∑n
k=1 T k(T ′(x)), for all n ≥ 1. Clearly, both Xn

and X1/2
n belong toM. Given any u ∈ h,

n
∑

k=1

〈

yu, T k(T ′(x))yu
〉

=
〈

yX1/2
n u, yX1/2

n u
〉

≤ ‖y‖2 〈u, Xnu〉 .

As a consequence, if u ∈ Dom (U(x)), then

sup
n≥1

n
∑

k=1

〈

yu, T k(T ′(x))yu
〉

≤ ‖y‖2
∞
∑

k=1

〈

u, T k(T ′(x))u
〉

≤ ‖y‖2 U(x)[u].
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It follows that, if u ∈ Dom (U(x))) = Dom
(

U(x)1/2
)

, then yu ∈ Dom (U(x)).
Now, if v, u ∈ Dom (U(x)), then y∗v, yu ∈ Dom (U(x)) and

n
∑

k=1

〈

y∗v, T k(T ′(x))u
〉

=
n

∑

k=1

〈

T k(T ′(x))u, yu
〉

so that letting n tend to infinity and using complex polarization, we get

〈

y∗v,U(x)u
〉 = 〈U(x)v, yu〉

namely 〈v, y U(x)u〉 = 〈U(x)v, yu〉. It follows that yu ∈ Dom (U(x)) and U(x)yu =
y U(x)u, hence y U(x) ⊆ U(x)y. ��

Potentials defined by a single completely positive map are characterized by simple
properties (see, for instance, [17] Theorem 3.3). It is not clear whether this is true
in general in the present framework. However, if the forward and backward Markov
operator satisfy a weaker form of the composition rule arising from examples in
Sects 2.2, 2.1, namely

T ◦ T ′ ◦ T ◦ T ′ = T 2 ◦ T ′, (5)

one can immediately prove by induction that (T ◦ T ′)m = T m ◦ T ′ for all m ≥ 2. As
a consequence, we have the following

Theorem 1 Let T , T ′ be the backward and forward Markov operators of a QMC with
the property (5). A y ∈ M is a potential if and only if it is T ◦ T ′ superharmonic and
T m ◦ T ′(y) converges strongly to 0 as m → ∞.

Proof Note that, by the property (5), we have

T ◦ T ′ (U(x)) = U(x) − x ≤ U(x).

Moreover, for all m ≥ 1

T m ◦ T ′ (U(x)) =
∞
∑

k=m

T k ◦ T ′ (x)

and T m ◦T ′(y) converges strongly to 0 asm → ∞ because the right-hand side series
is strongly convergent.

Conversely, let y ∈ M with the above properties and define x = y − T (T ′(y)).
For all n ≥ 1, by (5), we have

y − T (T ′(y)) +
n

∑

k=1

T k (

T ′ (y − T (T ′(y))
)) = y − T n+1(T (y)).

Therefore, taking the limit as n → ∞, we find y = U(x). ��
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We can prove also the following version of the Riesz decomposition theorem

Theorem 2 A T ◦ T ′-superharmonic x ∈ M+ can be uniquely decomposed as x =
y + z where y ∈ M+ is a potential and z ∈ M+ is a fixed point for T ◦ T ′.

Proof For all T ◦ T ′-superharmonic x ∈ M+ the sequence (
(

T ◦ T ′)m (x))m≥1 is
decreasing. Therefore, taking the strong limit we can define

z = s − lim
m→∞

(

T ◦ T ′)m (x) = s − lim
m→∞

(

T m ◦ T ′) (x).

Clearly T ◦ T ′(z) = z. Moreover, y is (T ◦ T ′)-superharmonic and (T m ◦ T ′)(y)
converges strongly to 0 as m → ∞ and so it is a potential by Theorem 1.

If x = y′ + z′ is another decomposition of x into the sum of a potential y′ ∈ M+
and a (T ◦ T ′)-fixed point z′ ∈ M+, then y − y′ = z′ − z is also a (T ◦ T ′)-fixed
point. Moreover

z′ − z = (T ◦ T ′)m(z′ − z) = (T ◦ T ′)m(y − y′) = (T m ◦ T ′)(y − y′)

and, taking the limit as m → +∞, z = z′ so that also y = y′. ��
The following resultwill be useful for producing bounded potentials from integrable

operators which are only self-adjoint.

Theorem 3 For all integrable x ∈ M, the contraction

y = U(x) (1l + U(x))−1

is T ◦ T ′-superharmonic and (T m ◦ T ′)(y) converges strongly to 0 as m → ∞. In
particular y is a potential.

Proof For all n ≥ 1 let Un(x) = x + ∑n
k=1 T k(T ′(x)) and note that, for all m ≥ 1

T m ◦ T ′ (Un(x)) = Un+m(x) − Um−1(x), U0 = 1l. (6)

For m = 1 it follows that

T ◦ T ′ (Un(x)) ≤ Un+1(x). (7)

Since T ◦T ′ is unital completely positive, and the function r → (1+ r)−1 is operator
convex on [0,+∞[, we have the inequality

(

1l + T ◦ T ′(Un(x))
)−1 ≤ T ◦ T ′ ((1l + Un(x))

−1
)

Note that that r → −(1 + r)−1 is operator monotone on [0,∞). It follows that

(1l + Un+1(x))
−1 ≤ T ◦ T ′ ((1l + Un(x)))

−1 .
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It follows that

T ◦ T ′ (Un(x) (1l + Un(x))
−1

)

= 1l − T ◦ T ′ ((1l + Un(x))
−1

)

≤ 1l − (1l + Un+1(x))
−1

= Un+1(x) (1l + Un+1(x))
−1 .

Taking the limit as n → ∞, we find T ◦ T ′(y) ≤ y.
Finally, from (6), we have

T m ◦ T ′ (Un(x) (1l + Un(x))
−1

)

≤ T m ◦ T ′(Un(x)) = Un+m(x) − Un(x)

so that, for all u ∈ Dom (U(x)),

〈

u, T m ◦ T ′ (Un(x) (1l + Un(x))
−1

)

u
〉

≤
n+m
∑

k=m

〈

u, T k ◦ T ′(x)u
〉

.

Taking the limit as n → ∞

〈

u, T m ◦ T ′(y)u
〉 ≤

∞
∑

k=m

〈

u, T k ◦ T ′(x)u
〉

,

thus
〈

u, T m ◦ T ′(y)u
〉

vanishes as m goes to infinity. Since Dom (U(x)) is dense, and
the operators T m(y) are uniformly bounded in norm by ‖y‖ ≤ 1, it follows that
T m ◦ T ′(y) converges strongly to 0 as m → ∞. ��

Next results identify two subharmonic projections naturally associated with form
potentials with non-zero domain.

Proposition 2 For all positive x ∈ M the orthogonal projection p onto the closure of
Dom (U(x)) belongs toM and it is T ◦ T ′-subharmonic.

Proof Wefirst check that p ∈ M. To this end, note that, as in the proof of Proposition 1,
for all y ∈ M′, n > 0, and u ∈ Dom (U(x)) we have

n
∑

k=1

〈

yu, T k(T ′(x))yu
〉

≤ ‖y‖
n

∑

k=1

〈

u, T k(T ′(x))u
〉

so that, adding 〈yu, xyu〉 and letting n tendo to infinity, we find yu ∈ Dom (U(x)).
This implies that yu = ypu = pypu and since Dom (U(x)) is dense in the range of
p, we obtain yp = pyp. Considering y∗ instead of y we also obtain y∗ p = py∗ p
and, taking the adjoint py = pyp. It follows that py = yp, namely p ∈ M by von
Neumann bicommutant theorem.
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In order to show that T ◦ T ′(p) ≥ p consider a u ∈ Dom (U(x)) and note that,
since, for all n ≥ 1 we have

tr
(

(T ◦ T ′)∗(|u〉 〈u|)T n(T ′(x))
) = tr

(

|u〉 〈u| T n+1(T ′(x))
)

=
〈

u, T n+1(T ′(x))u
〉

.

The normal state (T ◦T ′)∗(|u〉 〈u|) has spectral decomposition
∑

k ρk |uk〉 〈uk |where
summation is (obviously) on all k such that ρk > 0; therefore, summing on n the
previous identity we find

∑

k

ρk
∑

n≥1

〈

uk, T n(T ′(x))uk
〉 =

∑

n≥1

〈

u, T n+1(T ′(x))u
〉

=
∑

n≥2

〈

u, T n(T ′(x))u
〉

< ∞.

This shows that uk ∈ Dom (U(x)) for all k and so p(T ◦ T ′)∗(|u〉 〈u|) = (T ◦
T ′)∗(|u〉 〈u|)p = (T ◦ T ′)∗(|u〉 〈u|). It follows that

tr
(|u〉 〈u| (T ◦ T ′)(p)

) = tr
(

(T ◦ T ′)∗(|u〉 〈u|)p) = tr
(

(T ◦ T ′)∗(|u〉 〈u|)) = 1

and

0 = tr
(|u〉 〈u| (p − (T ◦ T ′)(p)

))

= tr
(|u〉 〈u| (p − p(T ◦ T ′)(p)p

))

.

However, we also have p(T ◦ T ′)(p)p ≤ p(T ◦ T ′)(1l)p ≤ p. Therefore p(T ◦
T ′)(p)p = p, i.e. p(T ◦T ′)∗(p⊥)p = 0 so that, byLemma II.1 [12] (T ◦T ′)∗(p) ≥ p.

��
Proposition 3 For all positive x ∈ M the orthogonal projection p onto K(x) =
{u ∈ Dom (U(x)) : U(x)[u] = 0} is (T ◦ T ′)-subharmonic.

Proof Note that for a positive element x ∈ M, U(x)[u] = 0 if and only if Un(x)u = 0
for all n ≥ 0, where Un(x) = x + ∑n

k=1 T k(T ′(x)) for n ≥ 1 and U0(x) = x . Fix
n ≥ 1 and let qm(n) denote the spectral projection ofUn(x) associatedwith the interval
]1/m, ‖Un(x)‖] (m ≥ 1). Note that q(n) := l.u.b. qm(n) is the projection onto the
closure of the range of Un(x). From identity (7), one gets

T ◦ T ′ (qm(n)) ≤ mT ◦ T ′ (Un(x)) ≤ m Un+1(x).

Since T ◦ T ′ (qm(n)) ≤ 1l, then we have

(T ◦ T ′ (qm(n)))m ≤ m Un+1(x)
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and

T ◦ T ′ (qm(n)) ≤ m1/m Un+1(x)
1/m

By taking m → ∞, we obtain

T ◦ T ′ (q(n)) ≤ q(n + 1). (8)

Note that the family q(n) is increasing with n and q = l.u.b. q(n) = 1− p. Therefore
by taking n → ∞ in (8), one gets T ◦ T ′ (p) ≥ p. ��

4 Recurrent and transient QMCs

Irreducible classical Markov Chains are recurrent (resp. transient) if and only if they
spend an infinite (resp. finite) mean time in bounded regions. The mean visit time,
when finite, defines potentials. Therefore transient regimes are characterized by the
existence of non trivial (i.e. non-zero or non-infinite) potentials. In this sectionwe show
how one can establish recurrence or transience by means of our notion of potential.

We begin by the following preliminary result.

Proposition 4 The following are equivalent:

1. There exists x ∈ M+ with U(x) bounded and U(x) > 0,
2. There exists a strictly positive x ∈ M such that U(x) is bounded,
3. There exists x ∈ M+ with U(x) self-adjoint and U(x) > 0,
4. There exists an increasing family (pn)n≥1 of projections in M such that

supn≥1 pn = 1l with U(pn) bounded for all n.

Proof 1. ⇒ 2. Consider

y = x +
∑

m≥1

2−m T m ◦ T ′(x).

Clearly y ∈ M+ and y > 0 because U(x) > 0. Moreover, by (5),

U(y) ≤ U(x) +
∑

m≥1

2−m U(x) = 2U(x)

2. ⇒ 1. Clear from U(x) ≥ x .
1. ⇒ 3. Obvious
3. ⇒ 1. From Theorem 3

y = U(x) (1l + U(x))−1

is a potential. In particular y = U(z) > 0 where z = y−T ◦T ′(y) ∈ M+. Moreover
it is clear that y = U(z) is bounded.
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2. ⇒ 4. For all n ≥ 1 consider the spectral projection pn of x corresponding to the
interval ]1/n, ‖x‖].

4. ⇒ 2. Consider

x =
∑

n≥1

2−n(1 + ‖U(pn)‖)−1 pn .

��
Definition 5 A projection p ∈ M is called transient if there is a family (pi )i∈I of
projections with U(pi ) bounded for all i such that p ≤ ∨

i∈I pi .
A QMC is called transient if the identity 1l is transient.

Note that the above notion of transience matches the classical one for Markov
processes and its non-commutative generalization [13] Definition 3.

Definition 6 A projection p is recurrent if, for all u in the range of p either u /∈
Dom (U(x)) or u ∈ Dom (U(x)) and U(x)[u] = 0.

A QMC is called recurrent if every projection is recurrent.

A classical or quantum Markov semigroups T is called irreducible if there exists
no non-trivial projection p ∈ M which is T -subharmonic. This definition does not
seem appropriate in the context of QMCs where one-step transition probabilities to
p are computed with T ′(p), and n steps transitions (n ≥ 2) with T n−1(T ′(p)). The
following should be the natural definition

Definition 7 A QMC is called irreducible if there exists no non-trivial projection
p ∈ M such that

T n(T ′(p)) ≤ p

for all n ≥ 1.

Remark 2 . Since T n ◦ T ′ = (T ◦ T ′)n , Definition 7 is equivalent that there exists
non-trivial T ◦ T ′–superhamonic projection.

It is worth noticing here that the above definition, for a QMS, i.e. when T ′ is the
identity map, coincides with the usual one. It is, however, weaker than Definition 6 of
[4] (the projection here is inM, there in ⊗n≥1M...).

The following proposition gives a necessary condition for irreducibility.

Proposition 5 If there exists a non-trivial projection p which is T -subharmonic and
T ′-subharmonic then the QMC is not irreducible.

We are now in a position to prove the following
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Theorem 4 An irreducible QMC is either recurrent or transient.

Proof Consider an irreducible quantum Markov chain and suppose that it is not
recurrent. Then there exists a non-zero projection p with Dom (U(p)) �= {0}. From
Proposition 2, the orthogonal projection q1 on the closure of Dom (U(p)) belongs to
M and it is T ◦ T ′-subharmonic. If we denote by qc1 = I − q1, then T ◦ T ′(qc1) ≤ qc1
and from the commutation rule T n ◦ T ′(qc1) ≤ qc1 for all n ≥ 1. Since the Markov
chain is irreducible, qc1 = I or qc1 = 0. If qc1 = I , then q1 = 0 and Dom (U(p)) = {0}
which is a contradiction with the fact that Dom (U(p)) �= {0}. It follows that q1 = I ,
Dom (U(p)) is dense in h and p is integrable. Therefore from Theorem 3 the contrac-
tion

y = U(p) (1l + U(p))−1

is T ◦ T ′-superharmonic and it is a potential. In particular, y = U(z) with z =
y − T ◦ T ′(y) is a positive operator. Now our purpose is to prove that y > 0. From
Proposition 3, the orthogonal projection q2 onto

K(p) = {u ∈ Dom (U(p)) : U(p)[u] = 0}

is (T ◦ T ′)-subharmonic. This means T n ◦ T ′(qc2) ≤ qc2 for all n ≥ 1. Note that the
QMC is irreducible. Then we have qc2 = 0 or qc2 = I .

If qc2 = 0, then q2 = I , K(p) = h = Dom (U(p)). Hence we have

U(p)[u] = 0 = 〈pu, pu〉 +
∑

n≥1

〈u, T n ◦ T ′(p)u〉

Therefore p(u) = 0, for all u ∈ h and this is a contradiction with the fact that p �= 0.
Then qc2 = I and q2 = 0. It follows that K(p) = {0}, U(p) > 0 and y > 0. Finally
from Proposition 4, the QMC is transient. ��

5 Applications

5.1 Entangled QMCs

In this section we exhibit another family of Quantum Markov Chains whose forward
and backward transition operators satisfy the key property (5). They are essentially a
generalization of infinite dimensional entangledMarkov chains [16] (see [16]Theorem
4.1 on mean ergodicity of states). A characterization of entangled QMCs is given in
the Appendix.

Let I be a countable set and P = (pi j )i j∈I be a stochastic matrix. Consider the
Hilbert space h = �2(I ) with canonical orthonormal basis (ei )i∈I . It is easy to see
that the linear map V : h → h ⊗ h satisfying

Vei =
∑

j∈I
p1/2i j ei ⊗ e j (9)
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defines an isometry of h into h ⊗ h so that one can define a transition expectation
E : B(h) ⊗ B(h) → B(h) by

E(a ⊗ b) = V ∗(a ⊗ b)V .

Note that

V ∗eh ⊗ ek =
∑

j

〈e j , V ∗eh ⊗ ek〉e j

=
∑

j

〈Ve j , eh ⊗ ek〉 e j

=
∑

j,m

p1/2jm 〈e j ⊗ em, eh ⊗ ek〉 e j

= p1/2hk eh .

The corresponding forward and backward transition operators are

E(a ⊗ 1l) = T ′(a) =
∑

i j

ai j
∑

k

p1/2ik p1/2jk |ei 〉〈e j | =
∑

i j

ai j 〈ri , r j 〉|ei 〉〈e j |

E(1l ⊗ b) = T (b) =
∑

k

⎛

⎝
∑

i j

p1/2ki p1/2k j bi j

⎞

⎠ |ek〉〈ek | =
∑

k

〈rk, brk〉|ek〉〈ek |

where ri denotes the unit vector
∑

k p
1/2
ik ek (note that |〈rk, brk〉| ≤ ‖b‖∞‖rk‖2 =

‖b‖∞ so that T is a contraction).
Note that T maps B(h) onto the maximal abelian subalgebra D of operators in

B(h) which are diagonal in the given basis. Moreover each operator in D is a fixed
point for T ′, therefore one immediately checks the identity

T ′ ◦ T = T (10)

(as in the case of quantum random walks and diagonal states) and (5) follows by left
composition with T and right composition with T ′.

In addition, denotingP the transition operator on �∞(I ) determined by the stochas-
tic matrix (pi j )i, j∈I , for all operator x ∈ D, x = ∑

j f j |e j 〉〈e j | one has

(T ◦ T ′)x = T x =
∑

j

(P f ) j |e j 〉〈e j |

where f = ( f j ) j∈I ∈ �∞(I ) and, iterating,

(T m ◦ T ′)x =
∑

j

(Pm f ) j |e j 〉〈e j | (11)
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for all m ≥ 1. This shows that the action of T ◦ T ′ on operators x ∈ D is determined
by the action of the classical Markov operator P . In fact, the dynamic behaviour of
the entangled QMCs is related with the one of the classical Markov chain (see [16]
Theorem 4.1 on mean ergodicity of states) as proved by the following

Proposition 6 If the classical Markov chain with transition operator P is transient,
thenalso the entangledQMCis transient.Conversely, if the entangledQMCis transient
and there exists x ∈ M+ with a potential y = U(x) such that the positive operator
U(x) − x is strictly positive, then the classical Markov chain with transition operator
P is also transient.

Proof If the classical Markov chain with transition operator P is transient, then there
exists an increasing sequence of projections (pn)n≥1 inD ⊆ M such that supn≥1 pn =
1l with bounded classical potential

∑

m≥0

Pm pn

Since T ′(pn) = pn and T (pn) = P pn (see (11)) it follows that also the entangled
QMC is transient.

Conversely, suppose that the entangled QMC is transient and let y = U(x) (x ∈
M+) be a strictly positive potential. If, in addition, U(x) − x is strictly positive, note
that (T ◦ T ′)(x) is an element of the diagonal algebra D and satisfies

∑

m≥0

Pm (

(T ◦ T ′)(x)
) =

∑

m≥0

T m+1 ◦ T ′(x) = U(x) − x .

Therefore the positive operator (T ◦ T ′)(x) ∈ D has a strictly positive potential and
the classical Markov chain with transition operator P is transient. ��

Thinking of entangled QMC as a sort of extension of the classical Markov chain
with transition operator P , it is not surprising that transience of the latter only implies
but is not equivalent to transience of the former. One can find the same phenomenon
in several other cases such as the two-dimensional quantum Brownian motion [13]
Sect. 6.1, and the quantum Laguerre process considered in [14].

Remark. It is worth noticing that irreducibility of the classical Markov chain with
transition matrix P may not imply irreducibility of the associated entangled QMC.
Indeed, consider I = {0, 1} and pi j = 1/2 so that vectors r1 = r2 are not linearly
independent and the classical MC is irreducible. Consider now the projection

ai j = (−1)i+ j

2
, i.e. a = 1

2

[

1 −1
−1 1

]

≥ 0.

Clearly 〈ri , r j 〉 = 1 for all i, j so that T ′(a) = a. Since 〈rk, ark〉 = 0 for all k follows
that

(T ◦ T ′)(a) = T (a) = 0
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and the QMC is not irreducible.
Diagonal states defined in Sect. 2.2 can be dealt with in the same way, considering

an infinite transition matrix P if one wants to find transient QMC.

5.2 QMC associated with two q-bits

In this subsection we consider a QMC generalizing the QMC associated with the
Heisenberg potential defined in [4] Sect. 6. This will serve as an example of an
irreducible QMC which is recurrent and, moreover, satisfies our key condition
T ◦T ′ ◦T = T 2 as in (1) but not in its stronger form T ′ ◦T �= T as entangled QMC.

Let h = C
2, consider self-adjoint operators on h ⊗ h

H = ασ1 ⊗ σ2 + βσ2 ⊗ σ3 (12)

where α, β ≥ 0. For α = β we get the Heisenberg potential as in [4]. Since σ j and σk
anticommute for j �= k, the operators σ1 ⊗ σ2 and σ2 ⊗ σ3 commute and

exp (iH) = exp(iα σ1 ⊗ σ2) exp(iβ σ2 ⊗ σ3).

Keeping into account (σ j ⊗ σk)
2 = 1l we have

eiα σ1⊗σ2 = cos(α)1l + i sin(α) σ1 ⊗ σ2

so that

eiH = (cos(α)1l + i sin(α) σ1 ⊗ σ2) (cos(β)1l + i sin(β) σ2 ⊗ σ3)

= cos(α) cos(β)1l + i sin(α) cos(β) σ1 ⊗ σ2

+i cos(α) sin(β) σ2 ⊗ σ3 + sin(α) sin(β)σ3 ⊗ σ1

As a consequence

e−iH (a ⊗ b)eiH

= cos2(α) cos2(β) a ⊗ b − i sin(α) cos(α) cos2(β)(σ1 ⊗ σ2)(a ⊗ b)

+ cos(α) cos(β) (−i cos(α) sin(β) σ2 ⊗ σ3 + sin(α) sin(β)σ3 ⊗ σ1) a ⊗ b

+ a ⊗ b cos(α) cos(β) (i sin(α) cos(β) σ1 ⊗ σ2 + i cos(α) sin(β) σ2 ⊗ σ3)

+ cos(α) cos(β) sin(α) sin(β)(a ⊗ b)(σ3 ⊗ σ1)

+ sin2(α) cos2(β)(σ1aσ1) ⊗ (σ2bσ2) + cos2(α) sin2(β)(σ2aσ2) ⊗ (σ3bσ3)

+ sin2(α) sin2(β)(σ3aσ3) ⊗ (σ1bσ1) + sin(α) cos(α) sin(β) cos(β)(σ1aσ2) ⊗ (σ2bσ3)

− i sin2(α) sin(β) cos(β)(σ1aσ3) ⊗ (σ2bσ1)

+ sin(α) cos(α) sin(β) cos(β)(σ2aσ1) ⊗ (σ3bσ2)

− i sin(α) cos(α) sin2(β)(σ2aσ3) ⊗ (σ3bσ1) + i sin2(α) sin(β) cos(β)(σ3aσ1) ⊗ (σ1bσ2)

+ i sin(α) cos(α) sin2(β)(σ3aσ2) ⊗ (σ1bσ3)
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It follows that

e−iH (1l ⊗ b)eiH

= cos2(α) cos2(β) 1l ⊗ b

+ i sin(α) cos(α) sin2(β) σ1 ⊗ [b, σ2] + i cos2(α) sin(β) cos(β) σ2 ⊗ [b, σ3]

+ sin(α) cos(α) sin(β) cos(β) σ3 ⊗ (bσ1 + σ1b) + sin2(α) sin2(β) 1l ⊗ (σ1bσ1)

+ sin2(α) cos2(β) 1l ⊗ σ2bσ2 + cos2(α) sin2(β) 1l ⊗ (σ3bσ3)

+ i sin(α) cos(α) sin(β) cos(β) σ3 ⊗ (σ2bσ3 − σ3bσ2)

+ sin2(α) sin(β) cos(β)σ2 ⊗ (σ1bσ2 + σ2bσ1)

+ sin(α) cos(α) sin2(β)σ1 ⊗ (σ1bσ3 + σ3bσ1)

Taking the normalized partial trace 1
2Tr2 we find

T (b) = E(1l ⊗ b) = 1

2
(tr (b) 1l + sin(2α) sin(2β)tr (bσ1) σ3)

Note that

T 2(b) = 1

2
tr (b) 1l (13)

Similarly

e−iH (a ⊗ 1l)eiH

= cos2(α) cos2(β) a ⊗ 1l

+ i sin(α) cos(α) cos2(β) [a, σ1] ⊗ σ2 + i cos2(α) sin(β) cos(β) [a, σ2] ⊗ σ3

+ sin(α) sin(β) cos(α) cos(β)(aσ3 + σ3a) ⊗ σ1

+ sin2(α) cos2(β)(σ1aσ1) ⊗ 1l + cos2(α) sin2(β)(σ2aσ2) ⊗ 1l

+ sin2(α) sin2(β)(σ3aσ3) ⊗ 1l + i sin(α) cos(α) sin(β) cos(β)(σ1aσ2) ⊗ σ1

− sin2(α) sin(β) cos(β)(σ1aσ3) ⊗ σ3 − i sin(α) cos(α) sin(β) cos(β)(σ2aσ1) ⊗ σ1

− sin(α) cos(α) sin2(β)(σ2aσ3) ⊗ σ2 − sin2(α) sin(β) cos(β)(σ3aσ1) ⊗ σ3

− sin(α) cos(α) sin2(β)(σ3aσ2) ⊗ σ2

Taking the normalized partial trace 1
2Tr2 we get

T ′(a) = E(a ⊗ 1l)

= cos2(α) cos2(β)a + sin2(α) cos2(β)σ1aσ1

+ cos2(α) sin2(β)σ2aσ2 + sin2(α) sin2(β)σ3aσ3

Clearly

T ′ ◦ T (b) = 1

2
tr (b) 1l + 1

2
sin(2α) sin(2β)tr (bσ1) T ′(σ3)
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= 1

2
tr (b) 1l + 1

8
sin(4α) sin(4β)tr (bσ1) σ3

and, since T (σ3) = 0,

T ◦ T ′ ◦ T (b) = T 2(b) = 1

2
tr (b) 1l

but T ′ ◦ T �= T for almost all choices of α, β.

Proposition 7 The QMC associated with the two q-bit Hamiltonian (12) is irreducible
and recurrent.

Proof We first prove that it is irreducible. Any non-trivial projection p ∈ M2(C) can
be written as p = (1l + u1σ1 + u2σ2 + u3σ3) /2 with u1, u2, u3 ∈ R, |u1|2 + |u2|2 +
|u3|2 = 1. A straightforward computation yields

T ◦ T ′(p) = 1

2

(

1l + u1
2

sin(2α) sin(2β) cos(2β)σ3

)

and so T ◦T ′(p) ≤ p implies u1 = u2 = 0, i.e. u3 = ±1, but in this case T ◦T ′(p) =
1l/2 and T ◦ T ′(p) ≤ p does not hold.
We now check that it is recurrent. By (13) we have

T 2 ◦ T ′(p) = tr
(

T ′(p)
)

2
1l = 1

2
1l

therefore (Definition 3) the series defining the form potential is convergent only for
u = 0 and the QMC is recurrent. ��

6 Conclusion and outlook

We introduced a notion of potential for QMCs whose forward and backward transition
operator satisfy the identity (1). Although these processes are not Markov in the strict
sense because their transitions are not given by a single transition operator, it is possible
to define a notion of potential with all the good properties of potentials determined by
a single Markovian operator.

One may guess that any QMC determines “its own” potential. Composition rules
of T and T ′ can make it more or less similar to the classical potentials defined by a
single Markov operator. However, we do not expect that all QMCs have a “nice” (i.e.
satisfying Riesz decomposition etc...) potential. Moreover, T ′, T do not determine a
unique E (consider e.g. T , T ′ as in Sect. 5.2 with two choices of angles α = π/2, β =
π/4 and α = π/2, β = 3π/4). It would be interesting to find a characterization of
QMCs with forward and backward Markov transition operator satisfying (1).
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Appendix: characterization of entangled QMCs

Entangled QMCs can be characterized as follows.

Theorem 5 Let h be a complex separable Hilbert space, (ei )i∈I an orthonormal basis
and D be the von Neumann algebra of diagonal operators in this basis. Let E :
B(h) ⊗ B(h) → B(h) be a transition expectation such that

1. it is purely generated, i.e. E(a⊗b) = V ∗(a⊗b)V for some isometry V : h → h⊗h,
2. E(a ⊗ 1l) = a for all a ∈ D.

Then there exists a stochastic matrix (qi j )i, j∈I and a collection of phases (ei θi j )i, j∈I
such that

V ei =
∑

j

q1/2i j ei θi j ei ⊗ e j

and we have also

E(1l ⊗ D) ⊆ D.

Proof By property 2,

∑

j

|V ∗ei ⊗ e j 〉〈V ∗ei ⊗ e j | = E(|ei 〉〈ei | ⊗ 1l) = |ei 〉〈ei |

It follows that, for all i , we have V ∗ei ⊗ e j = wi j ei for some complex number wi j

with
∑

j |wi j | = 1. As a consequence, for all j ,

E(1l ⊗ |e j 〉〈e j |) =
∑

k

|V ∗ek ⊗ e j 〉〈V ∗ek ⊗ e j |) =
∑

k

|wk j |2|ek〉〈ek |.
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Moreover, we have also

1l =
∑

j

E(1l ⊗ |e j 〉〈e j |) =
∑

k

⎛

⎝
∑

j

|wk j |2
⎞

⎠ |ek〉〈ek |.

It follows that
∑

j |wk j |2 = 1 and the matrix qkj = |wk j |2 is stochastic. Defining
θk j = −Arg(wk j ) we find

Vei =
∑

h,k

〈eh ⊗ ek, Vei 〉eh ⊗ ek

=
∑

h,k

〈V ∗eh ⊗ ek, ei 〉eh ⊗ ek

=
∑

h,k

whk〈eh, ei 〉 eh ⊗ ek =
∑

k

wikei ⊗ ek

the conclusion follows. ��
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