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Abstract
In this paper, we determine the range of a Cesàro-like operator acting on H∞ by
describing characterizations of Carleson type measures on [0, 1). A special case of
our result gives an answer to a question posed by P. Galanopoulos, D. Girela and N.
Merchán recently.
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1 Introduction

Let D be the open unit disk in the complex plane C. Denote by H(D) the space of
functions analytic in D. For f (z) = ∑∞

n=0 anz
n in H(D), the Cesàro operator C is

defined by

C( f )(z) =
∞∑

n=0

(
1

n + 1

n∑

k=0

ak

)

zn, z ∈ D.
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See [7, 12, 14, 21, 23, 24] for the investigation of the Cesàro operator acting on some
analytic function spaces.

Recently, P. Galanopoulos, D. Girela and N.Merchán [16] considered a Cesàro-like
operator Cμ on H(D). For nonnegative integer n, let μn be the moment of order n of
a finite positive Borel measure μ on [0, 1); that is,

μn =
∫

[0,1)
tndμ(t).

For f (z) = ∑∞
n=0 anz

n belonging to H(D), the Cesàro-like operator Cμ is defined by

Cμ( f )(z) =
∞∑

n=0

(

μn

n∑

k=0

ak

)

zn, z ∈ D.

If dμ(t) = dt , then Cμ = C. In [16, 19], the authors studied the action of Cμ on distinct
spaces of analytic functions.

We also need to recall some function spaces. For 0 < p < ∞, H p denotes the
classical Hardy space [13] of those functions f ∈ H(D) for which

sup
0<r<1

Mp(r , f ) < ∞,

where

Mp(r , f ) =
(

1

2π

∫ 2π

0
| f (reiθ )|pdθ

)1/p

.

As usual, denote by H∞ the space of bounded analytic functions inD. It is well known
that H∞ is a proper subset of the Bloch space B which consists of those functions
f ∈ H(D) satisfying

‖ f ‖B = sup
z∈D

(1 − |z|2)| f ′(z)| < ∞.

Denote by Aut(D) the group of Möbius maps of D, namely,

Aut(D) = {eiθσa : a ∈ D and θ is real},
where

σa(z) = a − z

1 − az
, z ∈ D.

In 1995 R. Aulaskari, J. Xiao and R. Zhao [2] introducedQp spaces. For 0 ≤ p < ∞,
a function f analytic in D belongs to Qp if

‖ f ‖2Qp
= sup

w∈D

∫

D

| f ′(z)|2(1 − |σw(z)|2)pd A(z) < ∞,
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where d A is the area measure on C normalized so that A(D) = 1. Qp spaces are
Möbius invariant in the sense that

‖ f ‖Qp = ‖ f ◦ φ‖Qp

for every f ∈ Qp and φ ∈ Aut(D). It was shown in [25] that Q2 coincides with
the Bloch space B. This result was extended in [1] by showing that Qp = B for all
1 < p < ∞. The spaceQ1 coincides with BMOA, the set of analytic functions in D

with boundary values of bounded mean oscillation (see [5, 17]). The space Q0 is the
Dirichlet space D. For 0 < p < 1, the space Qp is a proper subset of BMOA and
has many interesting properties. See J. Xiao’s monographs [26, 27] for the theory of
Qp spaces.

For 1 ≤ p < ∞ and 0 < α ≤ 1, the mean Lipschitz space �
p
α is the set of

those functions f ∈ H(D) with a non-tangential limit almost everywhere such that
ωp(t, f ) = O(tα) as t → 0. Here ωp(·, f ) is the integral modulus of continuity of
order p of the function f (eiθ ). It is well known (cf. [13, Chapter 5]) that�p

α is a subset
of H p and �

p
α consists of those functions f ∈ H(D) satisfying

‖ f ‖�
p
α

= sup
0<r<1

(1 − r)1−αMp(r , f ′) < ∞.

Among these spaces, the spaces �
p
1/p are of special interest. �

p
1/p spaces increase

with p ∈ (1,∞) in the sense of inclusion and they are contained in BMOA (cf. [10]).
By Theorem 1.4 in [4], �

p
1/p ⊆ Qq when 1 ≤ p < 2/(1 − q) and 0 < q < 1. In

particular, �2
1/2 ⊆ Qq ⊆ B for all 0 < q < ∞.

Given an arc I of the unit circleTwith arclength |I | (normalized such that |T| = 1),
the Carleson box S(I ) is given by

S(I ) = {rζ ∈ D : 1 − |I | < r < 1, ζ ∈ I }.

For 0 < s < ∞, a positive Borel measure ν on D is said to be an s-Carleson measure
if

sup
I⊆T

ν(S(I ))

|I |s < ∞.

If ν is a 1-Carleson measure, we write that ν is a Carleson measure characterizing
H p ⊆ L p(dν) for 0 < p < ∞ (cf. [13]). A positive Borel measure μ on [0, 1) can
be seen as a Borel measure on D by identifying it with the measure μ̃ defined by

μ̃(E) = μ(E ∩ [0, 1)),

for any Borel subset E of D. Thus μ is an s-Carleson measure on [0, 1) if there is a
positive constant C such that

μ([t, 1)) ≤ C(1 − t)s
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for all t ∈ [0, 1).We refer to [8] for the investigation of this kind ofmeasures associated
with Hankel measures.

It is known that the Cesàro operator C is bounded on H p for all 0 < p < ∞ (cf.
[21, 23, 24]) but this is not true on H∞. In fact, N. Danikas and A. Siskakis [12] gave
that C(H∞) � H∞ but C(H∞) ⊆ BMOA. Later M. Essén and J. Xiao [14] proved
that C(H∞) � Qp for 0 < p < 1. Recently, the relation between C(H∞) and a class
of Möbius invariant function spaces was considered in [7].

It is quite natural to study Cμ(H∞). In [16] the authors characterized positive
Borel measures μ such that Cμ(H∞) ⊆ H∞ and proved that Cμ(H∞) ⊆ B if and
only if μ is a Carleson measure. Moreover, they showed that if Cμ(H∞) ⊆ BMOA,
then μ is a Carleson measure. In [16, p. 20], the authors asked whether or not μ

being a Carleson measure implies that Cμ(H∞) ⊆ BMOA. In this paper, by giving
some descriptions of s-Carleson measures on [0, 1), for 0 < p < 2, we show that
Cμ(H∞) ⊆ Qp if and only if μ is a Carleson measure, which gives an affirmative
answer to their question. We also consider another Cesàro-like operator Cμ,s and
describe the embedding Cμ,s(H∞) ⊆ X in terms of s-Carleson measures, where X is
between �

p
1/p and B for max{1, 1/s} < p < ∞.

Throughout this paper, the symbol A ≈ B means that A � B � A. We say that
A � B if there exists a positive constant C such that A ≤ CB.

2 Positive Borel measures on [0, 1) as Carleson typemeasures

In this section, we give some characterizations of positive Borel measures on [0, 1) as
Carleson type measures.

The following description of Carleson type measures (cf. [9] ) is well known.

Lemma A Suppose s > 0, t > 0 and μ is a positive Borel measure on D. Then μ is
an s-Carleson measure if and only if

sup
a∈D

∫

D

(1 − |a|2)t
|1 − aw|s+t

dμ(w) < ∞. (2.1)

For Carleson type measures on [0, 1), we can obtain some descriptions that are
different from Lemma A. Now we give the first main result in this section.

Proposition 2.1 Suppose 0 < t < ∞, 0 ≤ r < s < ∞ and μ is a finite positive Borel
measure on [0, 1). Then the following conditions are equivalent:

(i) μ is an s-Carleson measure;
(ii)

sup
a∈D

∫

[0,1)
(1 − |a|)t

(1 − x)r (1 − |a|x)s+t−r
dμ(x) < ∞; (2.2)

(iii)

sup
a∈D

∫

[0,1)
(1 − |a|)t

(1 − x)r |1 − ax |s+t−r
dμ(x) < ∞. (2.3)



The range of a Cesàro-like operator acting on H∞ Page 5 of 14 142

Proof (i) ⇒ (i i). Let μ be an s-Carleson measure. Fix a ∈ D with |a| ≤ 1/2. If
r = 0, the desired result holds. For 0 < r < s, using a well-known formula about the
distribution function(cf. [15, p.20 ]), we get

∫

[0,1)
(1 − |a|)t

(1 − x)r (1 − |a|x)s+t−r
dμ(x)

≈

∫

[0,1)

(
1

1 − x

)r

dμ(x)

≈ r
∫ ∞

0
λr−1μ({x ∈ [0, 1) : 1 − 1

λ
< x})dλ

�
∫ 1

0
λr−1μ([0, 1))dλ +

∫ ∞

1
λr−1μ([1 − 1

λ
, 1))dλ

� 1 +
∫ ∞

1
λr−s−1dλ � 1. (2.4)

Fix a ∈ D with |a| > 1/2 and let

Sn(a) = {x ∈ [0, 1) : 1 − 2n(1 − |a|) ≤ x < 1}, n = 1, 2, · · · .

Let na be the minimal integer such that 1 − 2na (1 − |a|) ≤ 0. Then Sn(a) = [0, 1)
when n ≥ na . If x ∈ S1(a), then

1 − |a| ≤ 1 − |a|x . (2.5)

Also, for 2 ≤ n ≤ na and x ∈ Sn(a)\Sn−1(a), we have

1 − |a|x ≥ |a| − x ≥ |a| − (1 − 2n−1(1 − |a|)) = (2n−1 − 1)(1 − |a|). (2.6)

We write

∫

[0,1)
(1 − |a|)t

(1 − x)r (1 − |a|x)s+t−r
dμ(x)

=
∫

S1(a)

(1 − |a|)t
(1 − x)r (1 − |a|x)s+t−r

dμ(x)

+
na∑

n=2

∫

Sn(a)\Sn−1(a)

(1 − |a|)t
(1 − x)r (1 − |a|x)s+t−r

dμ(x)

=:J1(a) + J2(a).

If r = 0, bearing in mind (2.5), (2.6) and that μ is an s-Carleson measure, it is easy
to check that Ji (a) � 1 for i = 1, 2. Now consider 0 < t < ∞ and 0 < r < s < ∞.
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Using (2.5) and some estimates similar to (2.4), we have

J1(a) � (1 − |a|)r−s
∫

S1(a)

(
1

1 − x

)r

dμ(x) � 1.

Note that (2.6) holds, 0 < t < ∞, 0 < r < s < ∞ and μ is an s-Carleson measure.
Then

J2(a) �
na∑

n=2

(1 − |a|)r−s

2n(s+t−r)

∫

Sn (a)\Sn−1(a)

(
1

1 − x

)r
dμ(x)

�
na∑

n=2

(1 − |a|)r−s

2n(s+t−r)

∫ ∞
0

λr−1μ
({

x ∈ [1 − 2n(1 − |a|), 1) : 1 − 1

λ
< x

})
dλ

≈

na∑

n=2

(1 − |a|)r−s

2n(s+t−r)

(∫ 1
2n (1−|a|)

0
λr−1μ

([1 − 2n(1 − |a|), 1))dλ

+
∫ ∞

1
2n (1−|a|)

λr−1μ
([

1 − 1

λ
, 1

))
dλ

)

�
na∑

n=2

(1 − |a|)r−s

2n(s+t−r)

(

2ns (1 − |a|)s
∫ 1

2n (1−|a|)
0

λr−1dλ +
∫ ∞

1
2n (1−|a|)

λr−1−sdλ

)

≈

na∑

n=2

1

2tn
< ∞.

Consequently,

sup
a∈D

∫

[0,1)
(1 − |a|)t

(1 − x)r (1 − |a|x)s+t−r
dμ(x) < ∞.

The implication of (i i) ⇒ (i i i) is clear.
(i i i) ⇒ (i). For r ≥ 0, it is clear that

∫

[0,1)
(1 − |a|)t

(1 − x)r |1 − ax |s+t−r
dμ(x) ≥

∫

[0,1)
(1 − |a|)t

|1 − ax |s+t
dμ(x)

for all a ∈ D. Combining this with Lemma A, we see that if (2.3) holds, then μ is an
s-Carleson measure. 
�
Remark 1 The condition 0 ≤ r < s < ∞ in Proposition 2.1 can not be changed to
r ≥ s > 0. For example, let dμ1(x) = (1 − x)s−1dx , x ∈ [0, 1). Then μ1 is an
s-Carleson measure but for r ≥ s > 0,

sup
a∈D

∫

[0,1)
(1 − |a|)t

(1 − x)r |1 − ax |s+t−r
dμ1(x)

≥
∫ 1

0
(1 − x)s−1−r dx = +∞.



The range of a Cesàro-like operator acting on H∞ Page 7 of 14 142

Remark 2 μ supported on [0, 1) is essential in Proposition 2.1. For example, consider
0 < t < 1, 0 < r < s < 1 and s = r + t . Set dμ2(w) = | f ′(w)|2(1− |w|2)sd A(w),
w ∈ D, where f ∈ Qs \ Qt . Note that for 0 < p < ∞ and g ∈ H(D), |g′(w)|2(1 −
|w|2)pd A(w) is a p-Carleson measure if and only if g ∈ Qp (cf. [26]). Hence dμ2 is
an s-Carleson measure. But

sup
a∈D

∫

D

(1 − |a|)t
(1 − |w|)r |1 − aw|s+t−r

dμ2(w)

= sup
a∈D

∫

D

| f ′(w)|2 (1 − |a|)t (1 − |w|)s−r

|1 − aw|s+t−r
d A(w)

≈ sup
a∈D

∫

D

| f ′(w)|2(1 − |σa(w)|2)t d A(w) = +∞.

Before giving the other characterization of Carleson type measures on [0, 1), we
need to recall some results.

The following result is Lemma 1 in [20], which generalizes Lemma 3.1 in [18]
from p = 2 to 1 < p < ∞.

Lemma B Let f ∈ H(D) with f (z) = ∑∞
n=0 anz

n. Suppose 1 < p < ∞ and the
sequence {an} is a decreasing sequence of nonnegative numbers. If X is a subspace
of H(D) with �

p
1/p ⊆ X ⊆ B, then

f ∈ X ⇐⇒ an = O

(
1

n

)

.

We recall a characterization of s-Carleson measure μ on [0, 1) as follows (cf. [6,
Theorem 2.1] or [11, Proposition1]).

Proposition C Let μ be a finite positive Borel measure on [0, 1) and s > 0. Then μ

is an s-Carleson measure if and only if the sequence of moments {μn}∞n=0 satisfies
supn≥0(1 + n)sμn < ∞.

The following characterization of functions with nonnegative Taylor coefficients in
Qp is Theorem 2.3 in [3].

Theorem D Let 0 < p < ∞ and let f (z) = ∑∞
n=0 anz

n be an analytic function in D

with an ≥ 0 for all n. Then f ∈ Qp if and only if

sup
0≤r<1

∞∑

n=0

(1 − r)p

(n + 1)p+1

(
n∑

k=0

(k + 1)ak+1(n − k + 1)p−1rn−k

)2

< ∞.

We need the following well-known estimates (cf. [28, Lemma 3.10]).
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Lemma E Let β be any real number. Then

∫ 2π

0

dθ

|1 − ze−iθ |1+β
≈

⎧
⎪⎨

⎪⎩

1 if β < 0,

log 2
1−|z|2 if β = 0,
1

(1−|z|2)β if β > 0,

for all z ∈ D.

For 0 < s < ∞ and a finite positive Borel measure μ on [0, 1), set

fμ,s(z) =
∞∑

n=0


(n + s)


(s)n! μnz
n, z ∈ D.

Now we state the other main result in this section which is inspired by Lemma B and
Proposition C.

Proposition 2.2 Suppose 0 < s < ∞ and μ is a finite positive Borel measure on
[0, 1). Let 1 < p < ∞ and let X be a subspace of H(D) with �

p
1/p ⊆ X ⊆ B. Then

μ is an s-Carleson measure if and only if fμ,s ∈ X.

Proof Let μ be an s-Carleson measure. Clearly,

fμ,s(z) =
∫

[0,1)
1

(1 − t z)s
dμ(t)

for any z ∈ D. For p > 1, it follows from the Minkowski inequality and Lemma E
that

Mp(r , f ′
μ,s) ≤s

(
1

2π

∫ 2π

0

(∫

[0,1)
1

|1 − treiθ |s+1 dμ(t)

)p

dθ

)1/p

≤s
∫

[0,1)

(
1

2π

∫ 2π

0

1

|1 − treiθ |(s+1)p
dθ

)1/p

dμ(t)

�
∫

[0,1)
1

(1 − tr)s+1− 1
p

dμ(t)

for all 0 < r < 1. Combining this with Proposition 2.1, we get fμ,s ∈ �
p
1/p and hence

fμ,s ∈ X .
On the other hand, let fμ,s ∈ X . Then fμ,s ∈ Qq with q > 1. By the Stirling

formula,


(n + s)


(s)n! ≈ (n + 1)s−1
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for all nonnegative integers n. Consequently, by Theorem D we deduce

∞ >

∞∑

n=0

(1 − r)q

(n + 1)q+1

(
n∑

k=0

(k + 2)sμk+1(n − k + 1)q−1rn−k

)2

�
∞∑

n=0

(1 − r)q

(4n + 1)q+1

(
4n∑

k=0

(k + 2)sμk+1(4n − k + 1)q−1r4n−k

)2

�
∞∑

n=0

(1 − r)q

(4n + 1)q+1

(
2n∑

k=n

(k + 2)s
∫ 1

r
tk+1dμ(t)(4n − k + 1)q−1r4n−k

)2

� μ2([r , 1))(1 − r)q
∞∑

n=0

r8n+2

(4n + 1)q+1

(
2n∑

k=n

(k + 2)s(4n − k + 1)q−1

)2

� μ2([r , 1))(1 − r)q
∞∑

n=0

(4n + 2)2s+q−1r8n+2

≈
μ2([r , 1))
(1 − r)2s

for all r ∈ [0, 1) which yields that μ is an s-Carleson measure. The proof is complete.

�

3 Qp spaces and the range of C� acting on H∞

In this section, we characterize finite positive Borel measures μ on [0, 1) such that
Cμ(H∞) ⊆ Qp for 0 < p < 2. Descriptions of Carleson measures in Proposition 2.1
play a key role in our proof.

The following lemma is from [22].

Lemma F Suppose s > −1, r > 0, t > 0 with r + t − s − 2 > 0. If r , t < 2+ s, then

∫

D

(1 − |z|2)s
|1 − az|r |1 − bz|t d A(z) � 1

|1 − ab|r+t−s−2

for all a, b ∈ D. If t < 2 + s < r , then

∫

D

(1 − |z|2)s
|1 − az|r |1 − bz|t d A(z) � (1 − |a|2)2+s−r

|1 − ab|t

for all a, b ∈ D.

We give our result as follows.

Theorem 3.1 Suppose 0 < p < 2 and μ is a finite positive Borel measure on [0, 1).
Then Cμ(H∞) ⊆ Qp if and only if μ is a Carleson measure.
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Proof Suppose Cμ(H∞) ⊆ Qp. Then Cμ(H∞) is a subset of the Bloch space. By [16,
Theorem 5], μ is a Carleson measure.

Conversely, suppose μ is a Carleson measure and f ∈ H∞. Then f is also in the
Bloch space B. From Proposition 1 in [16],

Cμ( f )(z) =
∫

[0,1)
f (t z)

1 − t z
dμ(t), z ∈ D.

Hence for any z ∈ D,

‖Cμ( f )‖Qp � sup
a∈D

(∫

D

(∫

[0,1)
|t f ′(t z)|
|1 − t z| dμ(t)

)2

(1 − |σa(z)|2)pd A(z)

) 1
2

+ sup
a∈D

(∫

D

(∫

[0,1)
|t f (t z)|
|1 − t z|2 dμ(t)

)2

(1 − |σa(z)|2)pd A(z)

) 1
2

� ‖ f ‖B sup
a∈D

(∫

D

(∫

[0,1)
1

(1 − |t z|)|1 − t z|dμ(t)

)2

(1 − |σa(z)|2)pd A(z)

) 1
2

+ ‖ f ‖H∞ sup
a∈D

(∫

D

(∫

[0,1)
1

|1 − t z|2 dμ(t)

)2

(1 − |σa(z)|2)pd A(z)

) 1
2

.

(3.1)

Let c be a positive constant such that 2c < min{2 − p, p}. Then

(1 − |t z|)2 ≥ (1 − t)2−2c(1 − |z|)2c (3.2)

for all t ∈ [0, 1) and all z ∈ D. By the Minkowski inequality, (3.2), Lemma F and
Proposition 2.1, we get

sup
a∈D

(∫

D

(∫

[0,1)
1

(1 − |t z|)|1 − t z|dμ(t)

)2

(1 − |σa(z)|2)pd A(z)

) 1
2

≤ sup
a∈D

∫

[0,1)

(∫

D

1

(1 − |t z|)2|1 − t z|2 (1 − |σa(z)|2)pd A(z)

) 1
2

dμ(t)

� sup
a∈D

(1 − |a|2) p
2

∫

[0,1)
1

(1 − t)1−c
dμ(t)

(
∫

D

(1 − |z|2)p−2c

|1 − t z|2|1 − āz|2p d A(z)
) 1
2

� sup
a∈D

∫

[0,1)
(1 − |a|2) p

2

(1 − t)1−c|1 − ta| p
2 +c

dμ(t) < ∞. (3.3)
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Similarly, it follows from Lemma F and Proposition 2.1 that

sup
a∈D

(∫

D

(∫

[0,1)
1

|1 − t z|2 dμ(t)

)2

(1 − |σa(z)|2)pd A(z)

) 1
2

≤ sup
a∈D

∫

[0,1)

(∫

D

1

|1 − t z|4 (1 − |σa(z)|2)pd A(z)

) 1
2

dμ(t)

� sup
a∈D

∫

[0,1)
(1 − |a|2) p

2

(1 − t2)1−
p
2 |1 − at |p

dμ(t) < ∞. (3.4)

From (3.1), (3.3) and (3.4), we get that Cμ( f ) ∈ Qp. The proof is complete. 
�
Remark 3 Set dμ0(x) = dx on [0, 1). Then dμ0 is a Carleson measure and
Cμ0(1)(z) = 1

z log
1

1−z . Clearly, the function Cμ0(1) is not in the Dirichlet space.
Thus Theorem 3.1 does not hold when p = 0.

Note thatQp = B for any p > 1. Theorem 3.1 generalizes Theorem 5 in [16] from
the Bloch space B to all Qp spaces. For p = 1, Theorem 3.1 gives an answer to a
question raised in [16, p. 20]. The proof given here highlights the role of Proposition
2.1. In the next section, we give a more general result where an alternative proof of
Theorem 3.1 will be provided.

4 s-Carlesonmeasures and the range of another Cesàro-like operator
acting on H∞

It is also natural to consider how the characterization of s-Carlesonmeasures in Propo-
sition 2.2 can play a role in the investigation of the range ofCesàro-like operators acting
on H∞. We consider this topic by another kind of Cesàro-like operators.

Suppose 0 < s < ∞ and μ is a finite positive Borel measure on [0, 1). For
f (z) = ∑∞

n=0 anz
n in H(D), we define

Cμ,s( f )(z) =
∞∑

n=0

(

μn

n∑

k=0


(n − k + s)


(s)(n − k)! ak
)

zn, z ∈ D.

Clearly, Cμ,1 is equal to Cμ.

Lemma 4.1 Suppose 0 < s < ∞ and μ is a finite positive Borel measure on [0, 1).
Then

Cμ,s( f )(z) =
∫

[0,1)
f (t z)

(1 − t z)s
dμ(t)

for f ∈ H(D).

Proof The proof follows from a simple calculation with power series. We omit it. 
�
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We have the following result.

Theorem 4.2 Suppose 0 < s < ∞ and μ is a finite positive Borel measure on [0, 1).
Let max{1, 1

s } < p < ∞ and let X be a subspace of H(D) with �
p
1/p ⊆ X ⊆ B.

Then Cμ,s(H∞) ⊆ X if and only if μ is an s-Carleson measure.

Proof Let Cμ,s(H∞) ⊆ X . Then Cμ,s(1) ∈ X ; that is, fμ,s ∈ X . It follows from
Proposition 2.2 that μ is an s-Carleson measure.

On the other hand, let μ be an s-Carleson measure and f ∈ H∞. By Lemma 4.1,
we see

Cμ,s( f )
′(z) =

∫

[0,1)
t f ′(t z)

(1 − t z)s
dμ(t) +

∫

[0,1)
st f (t z)

(1 − t z)s+1 dμ(t), z ∈ D.

Then

sup
0<r<1

(1 − r)1−
1
p

(
1

2π

∫ 2π

0
|Cμ,s( f )

′(reiθ )|pdθ

) 1
p

� ‖ f ‖B sup
0<r<1

(1 − r)1−
1
p

(
1

2π

∫ 2π

0

(∫

[0,1)
1

|1 − treiθ |s(1 − tr)
dμ(t)

)p

dθ

) 1
p

+ ‖ f ‖H∞ sup
0<r<1

(1 − r)1−
1
p

(
1

2π

∫ 2π

0

(∫

[0,1)
1

|1 − treiθ |s+1 dμ(t)

)p

dθ

) 1
p

.

(4.1)

Note that ps > 1. By the Minkowski inequality, Lemma E and Lemma A, we deduce

sup
0<r<1

(1 − r)1−
1
p

(
1

2π

∫ 2π

0

(∫

[0,1)
1

|1 − treiθ |s(1 − tr)
dμ(t)

)p

dθ

) 1
p

≤ sup
0<r<1

(1 − r)1−
1
p

∫

[0,1)

(
1

2π

∫ 2π

0

1

|1 − treiθ |sp(1 − tr)p
dθ

) 1
p

dμ(t)

� sup
0<r<1

(1 − r)1−
1
p

∫

[0,1)
1

(1 − tr)s+1− 1
p

dμ(t) < ∞,

(4.2)

and

sup
0<r<1

(1 − r)1−
1
p

(
1

2π

∫ 2π

0

(∫

[0,1)
1

|1 − treiθ |s+1 dμ(t)

)p

dθ

) 1
p

� sup
0<r<1

(1 − r)1−
1
p

∫

[0,1)

(
1

2π

∫ 2π

0

1

|1 − treiθ |(s+1)p
dθ

) 1
p

dμ(t)

� sup
0<r<1

(1 − r)1−
1
p

∫

[0,1)
1

(1 − tr)s+1− 1
p

dμ(t) < ∞. (4.3)
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From (4.1), (4.2) and (4.3), Cμ,s( f ) ∈ �
p
1/p. Note that �

p
1/p ⊆ X . The desired result

follows. 
�
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