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Abstract
We develop the concept of operators in Hilbert spaces which are similar to their
adjoints via antiunitary operators, the latter being not necessarily involutive. We dis-
cuss extension theory, refined polar and singular-value decompositions, and antilinear
eigenfunction expansions. The study is motivated by physical symmetries in quantum
mechanics with non-self-adjoint operators.

Mathematics Subject Classification 47A15 · 47B28 · 47B35 · 81Q12

1 Introduction

A fundamental postulate of quantum mechanics says that physical observables are
represented by self-adjoint operators in Hilbert spaces. It does not mean that quantum
theory is free of non-self-adjoint operators. For instance, physical symmetries are rep-
resented by unitary and antiunitary operators. There are also quantum open systems
which are conveniently modelled by non-self-adjoint operators; more generally, the
latter arise in many other areas of physics where the time evolution is not conservative.
What is more, recent years have brought motivations for considering unconventional
representations of observables by possibly non-self-adjoint operators which are how-
ever similar to self-adjoint operators (see [2] for a mathematical overview).

To cover these more general circumstances in the recent developments of quantum
mechanics, the concept of linear operators H satisfying the complex-self-adjointness
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relation
H∗ = CHC−1 (1)

with an antiunitary C was proposed in [3, 15, 16]. Here the physical meaning of C
is typically a time-reversal symmetry or its composition with the parity and charge
symmetries.

If C is involutive, i.e. C2 = I (so that C−1 = C), then C is called conjugation and
the operators satisfying (1) are sometimes called C-self-adjoint (see [11, Sect. I.4]
and [6, Sect. III.5]). This class of operators represent a well studied area of functional
analysis, notably due to the highly influential works of Garcia and Putinar [9, 10] (see
also [18] and the excellent survey [8]).

However, it was pointed out in [15] that the involutive requirement about C is too
restrictive once the spin is taken into account. Indeed, the time-reversal operator for
fermionic systems modelled by the Pauli or Dirac operators is rather anti-involutive,
i.e. C2 = −I . To cover these and other circumstances, the more general identity (1)
was proposed in [15] (see also [16, Sect. 5.2.5.4]). Unfortunately, despite the prevailing
physical motivations, there seem to be no systematic theory of the general complex-
self-adjoint operators and the objective of this paper is precisely to initiate to fill in
this gap.

The organisation of this paper is as follows. In Sect. 2, we introduce the concept
of complex-symmetric and complex-self-adjoint operators and summarise their basic
properties. The extension theory for symmetric and complex-symmetric operators is
discussed in Sect. 3.Wemanage to go beyond the involutive approach of [6, Sect. III.5]
in several directions, however, the question whether anyC-symmetric operator admits
a C-self-adjoint extension remains open (unless C is involutive). In Sect. 4, we extend
the results of [10] about refined polar decompositions for C-self-adjoint operators
to the present general setting. In Sects. 5 and 6, we try to extend the results of
[10] about refined singular-value decompositions for compactC-self-adjoint operators
and antilinear eigenfunction expansions for C-self-adjoint operators with compact
resolvents, respectively. However, we manage to do so only under an extra hypothesis
about the simplicity of the singular values. In Sect. 7 we present an operator in the
spinorial Hilbert space L2(R; C

2) which is complex-symmetric but for which there is
no obvious involutive conjugation. Further illustrations, including examples in model
spaces, are given in Sect. 8.

2 Definitions and basic properties

Let H be a complex separable Hilbert space; the norm and the inner product are
denoted by ‖ · ‖ and (·, ·), respectively, and our convention is that the latter is linear in
the second component. A linear (respectively, antilinear) operator A inH is a function
which sends every vector ψ in a (linear) subspace D(A) ⊂ H called the domain of A
to a vector Aψ ∈ H and satisfies the additivity condition A(φ + ψ) = Aφ + Aψ

for every φ,ψ ∈ D(A) together with the homogeneity (respectively, antihomogeneity)
condition A(αψ) = αAψ (respectively, A(αψ) = ᾱAψ ) for every ψ ∈ D(A) and
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α ∈ C. If D(A) = H, the operator A is said to be defined on H. We denote the range
and kernel of A by R(A) and N(A), respectively.

An operator A onH is said to be isometric if it preserves the norm: ‖Aψ‖ = ‖ψ‖
for every ψ ∈ H. By the polarisation identity, it follows that (Aφ, Aψ) = (φ,ψ)

(respectively, (Aφ, Aψ) = (ψ, φ)) for every φ,ψ ∈ H, provided that A is linear
(respectively, antilinear). In either case, the adjoint of A coincides with the left inverse
of A. More specifically, in distinction to some recent papers (see, e.g., [5, 14]), we
use the same notation A∗ for the adjoint of any densely defined operator A: it satisfies
(φ, Aψ) = (A∗φ,ψ) (respectively, (φ, Aψ) = (A∗φ,ψ)), for every ψ ∈ D(A) and
φ ∈ D(A∗), if A is linear (respectively, antilinear). Then the left-inverse property
for the isometric operator A precisely means that A∗A = I , where I stands for
the identity operator on H. If, in addition, R(A) = H, then A is called unitary or
antiunitary depending on whether A is linear or antilinear, respectively. Then the
adjoint of A coincides with the right inverse of A too, i.e. AA∗ = I . In summary, A is
bijective as an operator on H onto H and A−1 = A∗ if A is unitary or antiunitary.
Any unitary or antiunitary operator A is bounded and boundedly invertible, in fact
‖A‖ = 1 = ‖A−1‖.

In the sequel, H stands for a generic linear operator inH.

Definition 1 We say that H is complex-symmetric with respect to C (or briefly C-
symmetric) if H is densely defined and there exists an antiunitary operator C in H
such that the adjoint H∗ is an extension of CHC−1, i.e. CHC−1 ⊂ H∗.

We say that H is complex-self-adjoint with respect to C (or briefly C-self-adjoint)
if H is densely defined and there exists an antiunitary operator C in H such that
CHC−1 = H∗.

We say that H is complex-symmetric (respectively, complex-self-adjoint) if there
exists an antiunitary operator with respect to which it is complex-symmetric (respec-
tively, complex-self-adjoint).

Remark 1 Since we allow for the concise notations “C-symmetric” and “C-self-
adjoint”, it is important to emphasise that our definition generalises the usual concepts
of just involutive antiunitaryC (see [11, Sect. I.4] and [6, Sect. III.5] for the traditional
references); in this special case, C is called conjugation. Occasionally, we shall use
the same terminology in the present more general setting when C is not necessarily
involutive.

At the same time, we warn the reader that the same notation is used in the theory of
Krein spaces where C is a linear involution (see, e.g., [1]). Even more confusingly, in
physics literature, the property of H being “C-symmetric” (with C unitary or antiu-
nitary) occasionally means the commutation relation [C, H ] = 0 (which precisely
means CH = HC). We refer to [16, Sect. 5.2.5] for an overview of these different
notions.

The C-self-adjointness of H particularly requires that C : D(H) → D(H∗) is a
bijection. Obviously, H is C-self-adjoint, if, and only if, H∗ is C−1-self-adjoint.

If C is antiunitary, it is easily seen that

(φ,Cψ) = (ψ,C−1φ) (2)
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for every φ,ψ ∈ H. Furthermore, for any densely defined linear operator H , it is
easily shown that

(CHC−1)∗ = CH∗C−1 . (3)

It follows that H is C-symmetric if, and only if, H ⊂ C−1H∗C = (C−1HC)∗ and
this implies that H is closable, the closure being also C-symmetric. At the same time,
by the closedness of the adjoint, any complex-self-adjoint operator is automatically
closed.

Recall that the spectrum σ(H)of any closed linear operator H inH is the set of those
complex numbers λ for which H − λI : D(H) → H is not bijective. The resolvent
set is the complement ρ(H) := C \ σ(H). The point spectrum σp(H) of H is the set
of eigenvalues of H (i.e. the operator H − λI is not injective). For the surjectivity,
one says that λ ∈ σ(H) belongs to the continuous spectrum σc(H) (respectively,
residual spectrum σr(H)) of H if λ /∈ σp(H) and the closure of the range R(H − λI )
equals H (respectively, the closure is a proper subset of H). If H is densely defined,
then N(H∗) = R(H)⊥, where ⊥ denotes the orthogonal complement; consequently,
one has the general characterisation

σr(H) = {λ /∈ σp(H) : λ̄ ∈ σp(H
∗)
}

. (4)

It is well known that the residual spectrum of any self-adjoint operator is empty. It
turns out that the same holds true for complex-self-adjoint operators. In the context of
applications in quantum mechanics, this simple observation goes back to [3] and [15]
in the involutive and the general case, respectively.

Proposition 1 Let H be a linear operator which is complex-self-adjoint. Then

σr(H) = ∅ .

Proof Let H satisfy (1)with some antiunitary operatorC . Thenλ is an eigenvalue of H
(with eigenvectorψ ∈ D(H)) if, and only if, λ̄ is an eigenvalue of H∗ (with eigenvector
Cψ ∈ D(H∗)). So the absence of elements in the residual spectrum follows from the
general formula (4). �	

3 Extension theory

The nullity (respectively, deficiency) of a linear operator H in H is nul(H) :=
dimN(H) (respectively, def(H) := codim R(H)). Recall that the codimension of
a subspace H′ ⊂ H is defined as the dimension of the quotient space H/H′. If H′ is
closed, then codimH′ = dimH′⊥, where ⊥ denotes the orthogonal complement.

If H is closed, it is well known (see, e.g., [6, Thm. III.2.3]) that def(H − λI ) is
constant in each connected component of the exterior of the numerical range of H .
In particular, if H is symmetric (i.e. H is densely defined and H ⊂ H∗), then the
deficiency indices:

m±(H) := def(H − λI ) , λ ∈ C∓ := {λ ∈ C : �λ ≶ 0}
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are well defined and constant. By extension theory of symmetric operators (see, e.g.,
[6, Sect. III.4]), a symmetric operator H admits a self-adjoint extension if, and only
if,m+(H) = m−(H); H is self-adjoint if, and only if,m+(H) = 0 = m−(H).

There are well-known examples of symmetric operators which do not admit
any self-adjoint extension. It is interesting that these pathological situations can be
excluded for operators admitting an antiunitary symmetry in the sense of the follow-
ing definition.

Definition 2 We say that H is real with respect to C (or briefly C-real) if there exists
an antiunitary operator C inH such that CHC−1 = H .

Remark 2 The definition is an extension of the terminology of [6, Thm. III.5.1] to not
necessarily involutive operators C . In physical terms, the present general notion is
equivalent to the commutation relation [C, H ] = 0 (cf. Remark 1).

The following theorem is an extension of [6, Thm. III.5.3], where the symmetry C
was assumed to be involutive.

Theorem 1 Let H be a closed symmetric operator which is C-real. Then m+(H) =
m−(H). Consequently, H admits a self-adjoint extension.

Proof Since H is C-real, it follows from (3) that also the adjoint H∗ is C-real. Note
also that the range R(H − λI ) is closed for λ ∈ C±. Consequently,

H/R(H + i I ) ∼= R(H + i I )⊥ = N(H∗ − i I )

= N((CHC−1)∗ − i I )

= N(CH∗C−1 − i I )

= N(C(H∗ + i I )C−1)

= CN(H∗ + i I ) .

Sincem±(H) = dimN(H∗ ∓ i I ) and C is a bijection, we havem+(H) = m−(H). �	
We now turn to complex-symmetric operators. The following simple observation

is an extension of [6, Lem. III.5.4], where the operator is assumed to be complex-
symmetric/complex-self-adjoint with respect to (involutive) conjugations.

Lemma 1 Let H be a closed complex-symmetric operator. Then, for any λ ∈ C,

N(H − λI ) ⊂ C−1N(H∗ − λ̄I ) , (5)

so

nul(H − λI ) ≤ nul(H∗ − λ̄I ) .

If H is complex-self-adjoint, the inclusion and the inequality become equalities.
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Proof If H is C-symmetric, then H ⊂ C−1H∗C , so for f ∈ D(H)

(H − λI ) f = 0 ⇐⇒ (C−1H∗C − λI ) f = 0

⇐⇒ C−1(H∗ − λ̄I )C f = 0

⇐⇒ (H∗ − λ̄I )C f = 0

⇐⇒ f ∈ C−1N(H∗ − λ̄I ) .

Thus, (5) holds. If H isC-self-adjoint, then H = C−1H∗C , so f ∈ D(H) if, and only
if, C f ∈ D(H∗), therefore we have equality in (5). �	

Before we proceed further, let us recall (see, e.g., [6, Def. III.2.5]) that the field of
regularity �(H) of H is defined as the set of complex points λ for which there exist
positive constants kλ such that ‖(H − λI )ψ‖ ≥ kλ‖ψ‖ for all ψ ∈ D(H). If H is
closed, then �(H) coincides with the set of points λ for which R(H − λI ) is closed
and nul(H − λI ) = 0. In this case, λ �→ def(H − λI ) is constant in any connected
component of �(H).

Now we are in a position to state the following generalisation of [6, Thm. III.5.5].

Theorem 2 A closed C-symmetric operator is C-self-adjoint if, and only if, def(H −
λI ) = 0 for some, and hence all, λ ∈ �(H).

Proof If H is complex-self-adjoint and λ ∈ �(H), then R(H − λI ) is closed and
Lemma 1 implies

def(H − λI ) = nul(H∗ − λ̄I ) = nul(H − λI ) = 0 .

Conversely, suppose that def(H−λI ) = 0 for some λ ∈ �(H). Then R(H−λI ) =
H and

R(CHC−1 − λ̄I ) = R(C(H − λI )C−1) = H . (6)

If CHC−1 �= H∗, there exists a non-zero ψ ∈ D(H∗) \ D(CHC−1). From (6),

(H∗ − λ̄I )ψ = (CHC−1 − λ̄I )φ

for some φ ∈ D(CHC−1) and since CHC−1 ⊂ H∗ we have (H∗ − λ̄I )(ψ −φ) = 0.
That is,ψ−φ ∈ N(H∗−λ̄I ). ButN(H∗−λ̄I ) = R(H−λI )⊥ = {0} and consequently
ψ = φ ∈ D(CHC−1), contradicting the hypothesis that CHC−1 �= H∗. �	

Now, following [6, Sect. III.5.2], given a C-symmetric operator H , we define A :=
H and B := C−1HC . Then, for every ψ ∈ D(A) = D(H) and φ ∈ D(B) =
C−1D(H), one has

(φ, Aψ) = (φ,C−1H∗Cψ) = (H∗Cψ,Cφ) = (Cψ, HCφ) = (Bφ,ψ) ,

where the second and last equalities employ (2). Hence, A and B are adjoint to each
other. Also if λ ∈ �(A) and ψ ∈ D(B),

‖(B − λ̄)ψ‖ = ‖C−1(H − λI )Cψ‖ ≥ kλ ‖Cψ‖ = kλ ‖ψ‖ ,
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so that λ̄ ∈ �(B). Then the theory of extensions of closed operators (see [6, Sect. III.3])
yields the general formulae

D(B∗) = D(A)+̇N((A∗ − λ̄I )(B∗ − λI )) ,

D(A∗) = D(B)+̇N((B∗ − λI )(A∗ − λ̄I )) .

Moreover, if def(A − λI ) and def(B − λ̄I ) are finite, then

dim(D(B∗)/D(A)) = dim(D(A∗)/D(B)) = def(A − λI ) + def(B − λ̄I ) .

In our case, if λ ∈ �(H), then

def(A − λI ) = nul(H∗ − λ̄I )

= nul(C−1(H∗ − λ̄I )C)

= nul(C−1H∗C − λI )

= def((C−1H∗C)∗ − λ̄I )

= def(B − λ̄I ) .

We therefore obtain the following generalisation of [6, Thm. III.5.6].

Theorem 3 Let H be a closed C-symmetric operator with �(H) �= ∅. Then, for any
λ ∈ �(H),

D(C−1H∗C) = D(H)+̇N((H∗ − λ̄I )(C−1H∗C − λI )) .

If def(H − λI ) < ∞,

dim(D(C−1H∗C)/D(H)) = 2def(H − λI ) .

An immediate consequence of this theorem is the following generalisation of [6,
Thm. III.5.7].

Corollary 1 If H is a closed complex-symmetric operator, then λ �→ def(H − λI ) is
constant on �(H).

We leave as an open problem whether any C-symmetric operator has a C-self-
adjoint extension. This is well known to hold if C is involutive (see [6, Thm. III.5.8]).
However, the proof of [6, Thm. III.5.8] does not seem to extend to the general situation
of the present paper.

4 Refined polar decomposition

Following [12, Sect. V.2.2],wefirst extend the notion of isometric operators introduced
above.We say that a (linear or antilinear) operator A defined onH is partially isometric
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if there exists a closed subspace M ⊂ H such that ‖Aψ‖ = ‖ψ‖ for ψ ∈ M while
Aψ = 0 forψ ∈ M⊥. The closed subspacesM andM′ := AM are called the initial
and final sets of A, respectively. Then we say that a partially isometric operator A is
partially unitary or partially antiunitary depending onwhether A is linear or antilinear,
respectively.

It is well known (see, e.g., [12, Sect. VI.2.7]) that any densely defined, closed
linear operator H in H admits a unique polar decomposition H = U |H |, where
|H | := (H∗H)1/2 is non-negative andU is partially unitary with the initial set R(|H |)
and the final set R(H). One has D(|H |) = D(H) and N(|H |) = N(H). At the same
time, the polar decomposition of the adjoint reads H∗ = |H |U∗.

The following refinement shows that if H is complex-self-adjoint, then U is also
complex-self-adjoint (with respect to the same antiunitary operator C). Furthermore,
U is a composition of another partially antiunitary operator commuting with H and
the inverse of the original antiunitary operator. In the case of involutive antiunitary
operators C , the result is due to [10, Thm. 2 & Thm. 9] and [10, Thm. 9]. If H is
unbounded, however, it is assumed as an extra hypothesis in [10, Thm. 9] that zero is
in the resolvent set of H . In our version of the theorem below, C does not need to be
involutive and H can be unbounded without any further properties.

Theorem 4 Let H be a linear operator which is C-self-adjoint. Then

H = C−1 J |H | , (7)

where J is a partially antiunitary operator with the initial set R(|H |) and the final set
R(|H |), which commutes with |H |.

Before proving the theorem, let us argue that the result indeed implies that the
partially unitary map from the polar decomposition of H is complex-self-adjoint.

Corollary 2 Let H be a linear operator which is C-self-adjoint. If H = U |H | is its
polar decomposition, then U is C-self-adjoint, too.

Proof By Theorem 4, one has U = C−1 J . The complex-self-adjointness of H , iden-
tity (7) and the commutativity of |H | and J imply H∗ = CHC−1 = J |H |C−1 =
|H |JC−1 = |H |U∗. From this and the uniqueness of the polar decomposition of H∗,
we deduce that U∗ = JC−1 = CUC−1, which is the desired claim. �	

The “hidden symmetry” J shares the same involutive properties as the “obvious
symmetry” C .

Corollary 3 Assume the hypotheses and notations of Theorem 4. If C is involutive
(respectively, anti-involutive), then the restriction of J on R(|H |) is involutive (respec-
tively, anti-involutive).

Proof As in the proof of the previous corollary, one has U∗ = JC−1 where
U := C−1 J . Consequently, for every ψ ∈ R(|H |), one has J 2ψ = U∗CCUψ =
±U∗Uψ = ±ψ , where the plus (respectively, minus) sign holds if C is involutive
(respectively, anti-involutive). �	
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Now we proceed with the proof of Theorem 4.

Proof of Theorem 4 We extend the proof of [10, Thm. 2] to the case of C being not
necessarily involutive. Write the polar decomposition H = U |H | and note that the
complex-self-adjointness of H implies

H = C−1H∗C = C−1|H |U∗C = C−1(U∗U )|H |U∗C = (C−1U∗C)
︸ ︷︷ ︸

=:W
(C−1U |H |U∗C)
︸ ︷︷ ︸

=:A
.

(8)
Here the last but one equality employs that U∗Uψ = ψ for every ψ ∈ R(|H |), the
initial set of U .

First, we observe that W is partially isometric. Indeed, using that W ∗ = C−1UC ,
it is easily seen that WW ∗W = C−1U∗UU∗C = W , so the desired property holds
due to the criterion [12, Prob. V.2.6]. Second, we claim that A is non-negative. Indeed,
using (2), one has (ψ, Aψ) = (U |H |U∗Cψ,Cψ) = (U∗Cψ, |H |U∗Cψ) for every
ψ ∈ D(H), so the desired property follows by the non-negativity of |H |. Then the
strategy of the proof is to show that the initial set of W coincides with the initial set
ofU . By the uniqueness of the polar decomposition of H , it will allow us to conclude
that

W = U and A = |H | . (9)

To show that the initial set of W coincides with the initial set of U , it is enough to
prove that N(W ) = N(U ) = N(H). Obviously, N(W ) = N(U∗C). At the same time,
N(A) = N(U |H |U∗C) = N(|H |U∗C) = N(U∗C) ,where the last two equalities hold
due to the facts that U and U∗ have R(H) as their initial and final sets, respectively,
and the last equality also employs that |H | is self-adjoint. Hence, N(W ) = N(A). It
remains to show that N(A) = N(H). The inclusion N(A) ⊂ N(H) is clear from (8).
Conversely, if ψ ∈ N(H), then (8) implies that ψ ∈ N(A) or Aψ ∈ N(W ). But
the latter is impossible unless Aψ = 0, because of the previously established fact
N(W ) = N(A) and the self-adjointness of A. In summary, we have proved (9).

The first equality of (9) shows that U is C-self-adjoint. Moreover, defining J :=
CU , one has J = U∗C . It follows that J is partially antiunitary with R(|H |) being
both the initial and the final set. As a consequence of the second equality of (9) and
the formula J−1 = C−1U , one has |H | = J−1|H |J . Hence, J |H | = |H |J , so J
commutes with |H |. �	

5 Refined singular-value decomposition

We now turn to compact operators. Before stating and proving the refined singular-
value decomposition, we establish an elementary result.

Lemma 2 Let m ∈ N
∗ := N \ {0}. Let E be an m-dimensional subspace of H, let J

be an antiunitary operator on E and assume that E is invariant under J . There exists
an orthonormal basis (φ1, . . . , φm) of E which is fixed by J , i.e. Jφ j = φ j for every
j ∈ {1, . . . ,m}, provided one of the following conditions hold:

(i) J is involutive;
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(ii) m = 1.

Proof The situation (i) is well known (see, e.g., [9, Lem. 1]), so we only prove (ii).
Let ψ ∈ E be such that ‖ψ‖ = 1. Since E = span(ψ) in invariant under isometric J ,
there exists α ∈ R such that Jψ = eiαψ . Let us define φ := eiβψ , where β ∈ R is to
be chosen by requiring Jφ = φ. An obvious solution is given by β := α/2. �	
Remark 3 The conclusion of Lemma 2 does not hold for a general non-involutive
antiunitary J unless the extra hypothesis (ii) is assumed. Indeed, since E is invariant
under the isometry J , it is easily seen that, if (ψ1, . . . , ψm) is an orthonormal basis
of E , then (Jψ1, . . . , Jψm) is one, too. Hence, there exist complex numbers a jk

with j, k ∈ {1, . . . ,m} such that Jψk = ∑m
j=1 a jkψ j and the matrix A := (a jk) is

unitary. In fact, a jk = (ψ j , Jψk). Let B := (b jk) be another unitary matrix and set
φk := ∑m

j=1 b jkψ j . Then the requirement Jφ j = φ j for every j ∈ {1, . . . ,m} is
equivalent to the matrix identity

B∗AB̄ = I , (10)

where I denotes the identity matrix in C
m×m . Using the unitarity of B, (10) is equiva-

lent to AB̄ = B. Since B̄T = B∗ = B−1 = (det B)−1(cof B)T , where cof B denotes
the cofactor matrix of B, it follows that (10) is equivalent to

A cof B = (det B)B . (11)

If m = 2, then (11) can be written as the homogeneous system
⎛

⎜⎜
⎝

− det B −a12 0 a11
a12 − det B −a11 0
0 −a22 − det B a21
a22 0 −a21 − det B

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

b11
b12
b21
b22

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠ .

A necessary condition to guarantee the existence of a non-trivial solution is that the
determinant of the square matrix equals zero:

(det A)2 + (det B)4 − (det B)2 (2a11a22 − a212 − a221) = 0 .

Using that (10) implies (det B)2 = det A, the last condition reads

det A (a12 − a21)
2 = 0 ,

whence a12 = a21. Using the antiunitarity of J (cf. (2)), this symmetry requirement
is equivalent to (ψ1, Jψ2) = (ψ1, J−1ψ2), which cannot be guaranteed in general
unless J−1 = J .

Let H be a compact linear operator on H. Recall that the eigenvalues of the self-
adjoint operator |H | are called the singular values of H . They will be denoted by
σ1, σ2, . . . , arranged so thatσ1 ≥ σ2 ≥ · · · ≥ 0, and repeated according tomultiplicity.
With the convention that σ j is defined to be zero for all sufficiently large j if H (and
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hence |H |) is of finite rank, we see that in all cases, μ j → 0 as j → ∞. It is well
known that H and H∗ have the same singular values (cf. [6, Thm. II.5.7]).

In the case of involutive antiunitary operators, the following result is due to [10,
Thm. 3].

Theorem 5 Let H be a compact linear operator onH which is C-self-adjoint. Assume
that all the non-zero singular values σ j of H have multiplicity one or that C is invo-
lutive. There exist orthonormal eigenvectors φ j of |H | corresponding to the non-zero
eigenvalues σ j such that

H =
∞∑

j=1

σ j C
−1φ j (φ j , ·) and H∗ =

∞∑

j=1

σ j φ j (C
−1φ j , ·) . (12)

Proof It is well known (see, e.g., [6, Thm. II.5.7]) that any compact linear operator H
onH and its adjoint H∗ admit the decompositions

H =
∞∑

j=1

σ j ξ j (ψ j , ·) and H∗ =
∞∑

j=1

σ j ψ j (ξ j , ·) , (13)

where ψ j are orthonormal eigenvectors of |H | corresponding to the eigenvalues σ j

and ξ j := σ−1
j Hψ j (σ j �= 0). The series in (13) are finite if H is of finite rank. Using

Theorem 4, we get

ξ j = C−1 Jψ j .

Moreover, since J commutes with |H |, it follows that Jψ j is an eigenvector of |H |,
too.

Since H is compact, the mutually orthogonal eigenspaces En of |H | corresponding
to the distinct non-zero eigenvalues μn are finite dimensional, say of dimension mn .
Relabelling the terms in the known decompositions (13), we may write

H =
∞∑

n=1

μn

mn∑

k=1

C−1 Jψn,k (ψn,k, ·) and H∗ =
∞∑

n=1

μn

mn∑

k=1

ψn,k (C−1 Jψn,k, ·) ,

where (ψn,1, . . . , ψn,mn ) is an orthonormal basis of En . On each spectral subspace En
of |H |, J restricts to an antiunitary operator and JEn = En . By Lemma 2, there exists
another orthonormal basis (φn,1, . . . , φn,mn ) of En which is fixed by J . Consequently,

H =
∞∑

n=1

μn

mn∑

k=1

C−1φn,k (φn,k, ·) and H∗ =
∞∑

n=1

μn

mn∑

k=1

φn,k (C−1φn,k, ·) .

The desired representation (12) follows upon a suitable relabelling of terms. �	
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Remark 4 If H is C-self-adjoint, then H∗ is C−1-self-adjoint. Therefore one also has
the alternative decomposition

H∗ =
∞∑

j=1

σ j Cη j (η j , ·) , (14)

whereη j are orthonormal eigenvectors of |H∗| corresponding to the non-zero eigenval-
uesσ j (recall that H and H∗ have the same singular values). The seconddecomposition
of (12) is consistent with (14). Indeed, from the formula |H∗| = U |H |U∗ (cf. [12,
Eq. (VI.2.25)]), where U is the partially unitary operator from the polar decomposi-
tion of H , it is clear that φ j is an eigenvector of |H | if, and only if, η j := Uφ j is an
eigenvector of |H∗|. However, in our case, η j = C−1 Jφ j = C−1φ j , where the last
equality holds because φ j has been fixed by J in the proof of Theorem 5.

6 Antilinear eigenfunction expansions

There is no spectral-type theorem for complex-self-adjoint operators in general. In
fact, there are well known examples of complex-self-adjoint operators with compact
resolvent and empty spectrum (see, e.g., [17, Sect. VII.A]). Nevertheless, even for such
pathological operators, there is always a canonically associated antilinear eigenvalue
problem which has a complete set of mutually orthogonal eigenfunctions. This is the
message of the following result, which is due to [10, Thm. 7] in the case of involutive
antiunitary operators.

Theorem 6 Let H be a C-self-adjoint linear operator in an infinite-dimensional H.
Assume that H has a compact resolvent R(z) := (H − z I )−1 for some complex
number z. Furthermore, assume that all the singular values of R(z) have multiplicity
one or that C is involutive. There exists an orthonormal basis (ψ j )

∞
j=1 ofH consisting

of solutions of the antilinear eigenvalue problem

(H − z I )ψ j = λ jCψ j , (15)

where (λ j )
∞
j=1 is an increasing sequence of positive numbers tending to +∞.

Proof First of all, notice that z̄ belongs to the resolvent set of the adjoint H∗ and
R(z)∗ = (H∗ − z̄ I )−1 is a compact operator on H, too. Indeed, since the residual
spectrum of H is empty (cf. Proposition 1), z̄ /∈ σp(H∗) and the operator H∗ − z̄ I is
invertible. Since H∗ is also complex-self-adjoint, its residual spectrum is empty, too,
so R(H∗ − z̄ I ) is dense in H. Since R(H∗ − z̄ I ) is closed if, and only if, R(H − z I )
is closed (cf. [6, Thm. I.3.7]) and z belongs to the resolvent set of H , it follows that
actually R(H∗ − z̄ I ) = H. Hence, R(z)∗ is defined on H. This fact enables us to
conclude that R(z) is C-self-adjoint:

CR(z)C−1 = C(H − z I )−1 C−1(H∗ − z̄ I )C︸ ︷︷ ︸
H−z I

C−1(H∗ − z̄ I )−1 = R(z)∗ .
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Now, by Theorem 5 applied to R(z), there exists an orthonormal basis (φ j )
∞
j=1 ofH

(composed of eigenvectors of |R(z)|) such that

R(z)φ j = σ jC
−1φ j , (16)

where σ j are the singular values of R(z). Recall that (σ j )
∞
j=1 is a decreasing sequence

of positive numbers such that σ j → 0 as j → ∞. Since each C−1φ j belongs to
R(R(z)) = D(H), we apply H − z I to both sides of (16) and the desired result (15)
follows with λ j := σ−1

j and ψ j := C−1φ j . �	
Corollary 4 Under the hypotheses of Theorem 6,

‖R(z)‖ = 1

λ1
.

This corollary is a useful tool for the study of pseudospectral properties of complex-
self-adjoint operators. Recall that, given any positive number ε, the pseudospectrum
σε(H) of a closed linear operator H is the union of its spectrum σ(H) and all the
complex numbers z such that ‖R(z)‖ > ε−1.

Corollary 5 Under the hypotheses of Theorem 6, if λ1 > ε, then z ∈ σε(H).

7 Toymodel: spinorial Hilbert space

In this section we introduce a one-parameric family of generically non-self-adjoint
operators which are complex-self-adjoint with respect to an antiunitary operator, but
the latter cannot be chosen, in any obvious way, to be involutive. Our motivation is
the anti-involutive time-reversal operator for fermionic systems.

We begin with the self-adjoint one-dimensional Pauli operator in the Hilbert space
H := L2(R; C

2) defined by

H0 :=
(
p2 0
0 p2

)
, D(H0) := W 2,2(R; C

2) ,

where pϕ := −iϕ′ with D(p) := W 1,2(R) is the (self-adjoint) momentum operator
in L2(R). It is well known that H0 is self-adjoint and σ(H0) = [0,+∞). Physically,
H0 represents the quantum Hamiltonian of a non-relativistic spin 1

2 particle on a line.
Obviously, H0 is complex-self-adjoint with respect to a variety of antiunitary oper-

ators on H, for instance,

Kψ := ψ̄ , C1 := σ1K , C2 := −iσ2K , C3 := σ3K ,

where

σ1 :=
(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
,
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are the Pauli matrices. Here K ,C1,C3 are involutive, while C2 is anti-involutive.
For the Schrödinger equation generated by the scalar Hamiltonian p2 in L2(R), the
time-reversal operator is represented by the complex conjugation K . For the Pauli
equation, however, it is rather C2 (or its multiple) which plays the role of the time-
reversal operator (see, e.g., [19, Sect. 3]).

Now, let us consider the off-diagonal perturbation

Vα :=
(

0 p
α p 0

)
, D(V ) := W 1,2(R; C

2) ,

where α is a real parameter. For every α ∈ R, it is easy to see that Vα is relatively
bounded with respect to H0 with the relative bound less than one (actually, the bound
can be chosen arbitrarily small). Consequently, Hα := H0 + Vα with its natural
domain D(Hα) = D(H0) ∩ D(Vα) = W 2,2(R; C

2) is closed. Hα is not self-adjoint
unless α = 1. Indeed,

H∗
α =

(
p2 α p
p p2

)
, D(H∗

α ) = D(Hα) = W 2,2(R; C
2) .

It is straightforward to check that Hα is not C1-self-adjoint, irrespectively of the
value of α. At the same time, Hα is not complex-self-adjoint with respect to K (respec-
tively, C3), unless α = −1 (respectively, α = 1). However, Hα is C2-self-adjoint, for
every α ∈ R. What is more, there is no obvious conjugation with respect to which Hα

is complex-self-adjoint, unless α = ±1.

Proposition 2 Let α ∈ R\{±1}. There exists no antiunitary operator of multiplication
by a constant matrix C satisfying C2 = I and H∗

α = CHαC−1.

Proof By contradiction, let us assume that there exists an antiunitary operator of mul-
tiplication by a constant matrix C satisfying C2 = I and H∗

α = CHαC−1. Writing
C = AK , where K is the complex conjugation, it follows that A is necessarily a
unitary matrix of multiplication, say

A =
(
a11 a12
a21 a22

)
, a11, a12, a21, a22 ∈ C .

Hence, it is enough to show that the equations

H∗
α A = AK HαK , AĀT = I and AĀ = I (17)

cannot be satisfied simultaneously. From the last two equations of (17), we particularly
deduce that a12 = a21. Then, using p̄ = −p, the first equation of (17) reads

(
a11 p2 + a12α p a12 p2 + a22α p
a11 p + a12 p2 a12 p + a22 p2

)
=
(
a11 p2 − a12α p −a11 p + a12 p2

a12 p2 − a22α p −a12 p + a22 p2

)
.
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From the equations on the diagonal we deduce a12 = 0, while the off-diagonal equa-
tions yield a22α = −a11 and a11 = −αa22. Taking the absolute value and using that
|a11| = 1 = |a22|, it follows that |α| = 1. �	

We leave as an open problem whether Hα admits a more refined involutive antiu-
nitary operator with respect to which it is complex-self-adjoint.

Using the Fourier transform, the spectrum of Hα can be computed explicitly:

σ(Hα) =
{[

−α

4
,+∞

)
if α ≥ 0 ,

{
λ ∈ C : �λ ≥ 0 ∧ |�λ|2 = |α| �λ

}
if α < 0 .

It is interesting that the spectrum is purely real for all non-negative α despite the fact
that the operator Hα is self-adjoint only if α = 1. Since the reality of the spectrum is
usually associatedwith some symmetries, let usmention that Hα is “PC2-symmetric”,
i.e. [Hα, PC2] = 0, with P := σ1. When α = 0, there is an abrupt transition to a
parabolic curve which converges to the imaginary axis as α → −∞.

Pseudospectral properties of Hα aswell as perturbations bymatrix-valued potentials
should constitute an interesting area of a future research.

8 Further examples

The objective of this last section is to collect other examples of complex-self-adjoint
operators with no obvious involutive conjugations, in a different Hilbert-space setting.
We refer to [7] for more details on the present functional setup.

In what follows, L2(T) =: L2 denotes the Lebesgue space of all complex-valued,
square-integrable functions on the unit circle T. The Hardy space H2(D) =: H2+ of
the unit disk D is defined by

H2(D) := { f ∈ L2 : f̂ (n) = 0 for n < 0} ,

where f̂ (n) is the nth Fourier coefficient of f ∈ L2. We also introduce

H2− := z̄H2+ = { f ∈ L2 : f̂ (n) = 0 for n ≥ 0} .

Wehave L2 = H2+⊕H2−. The orthogonal projections from L2 to H2± will be denoted by
P±. By L∞ we denote the space of all complex-valued, essentially bounded functions
onT. By H∞ wedenote the space of all functions analytic and bounded onD, identified
with a closed subspace of L∞.

Given an inner function (i.e. γ ∈ H∞ and |γ | = 1 a.e. on T), we associate to it the
model space

Kγ := H2 � γ H2 = { f+ ∈ H2+ : γ̄ f+ = f− ∈ H2−} .
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If γ1 is another inner function such that γ /γ1 ∈ H∞, we say that γ1 divides γ (we
write γ1 � γ ) and we can decompose

Kγ = Kγ1 ⊕ γ1Kγ /γ1 .

In each model space Kγ we can define a natural involutive conjugation Cγ given
by

Cγ f := γ z̄ f̄ (18)

for every f ∈ Kγ .

8.1 Example 1

Let γ, α, β be inner functions, with γ = αβ. Then Kγ admits two orthogonal decom-
positions,

Kγ = Kα ⊕ αKβ , Kγ = Kβ ⊕ βKα .

Consequently, every function f ∈ Kγ admits two representations

f = f1,α + α f2,β , f = f1,β + β f2,α ,

with f1,α, f2,α ∈ Kα and f1,β , f2,β ∈ Kβ .
Let ξ ∈ R and define the antilinear operator Cα,β on Kγ by setting, for every

f ∈ Kγ ,

Cα,β( f ) = Cα,β( f1,α + α f2,β) := eiξCβ f2,β + βCα f1,α ,

where Cβ(ϕ) = β z̄ϕ̄ for ϕ ∈ Kβ and Cα(ϕ) = αz̄ϕ̄ for ϕ ∈ Kα , according to (18).

Proposition 3 One has, for every f ∈ Kγ ,

C∗
α,β( f ) = C∗

α,β( f1,β + β f2,α) = Cα f2,α + eiξ αCβ f1,β .

Proof Let us abbreviate Cα,β =: C . For any f , g ∈ Kγ with f = f1,α + α f2,β and
g = g1,β + βg2,α , one has

(g,C f ) = (g1,β + βg2,α,C( f1,α + α f2,β)
) = (g1,β + βg2,α, eiξCβ f2,β + βCα f1,α

)
.
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Since eiξCβ f2,β ∈ Kβ⊥βH2+ and βCα f1,α ∈ βH2+⊥Kβ , we get

(g,C f ) = (g1,β , eiξCβ f2,β) + (βg2,α, βCα f1,α)

= (e−iξ g1,β ,Cβ f2,β) + (g2,α,Cα f1,α)

= ( f2,β ,Cβ(e−iξ g1,β)
)+ ( f1,α,Cαg2,α)

= ( f2,β , eiξCβg1,β) + ( f1,α,Cαg2,α)

= (α f2,β , αeiξCβg1,β) + ( f1,α,Cαg2,α)

= ( f1,α + α f2,β ,Cαg2,α + αeiξCβg1,β)

= ( f ,C∗g) ,

as required by the adjoint of an antilinear operator. �	
Proposition 4 Cα,β is antiunitary.

Proof For every f ∈ Kγ , one has (again abbreviating Cα,β =: C)

C∗C f = C∗C( f1,α + α f2,β) = C∗(eiξCβ f2,β + βCα f1,α)

= Cα(Cα f1,α) + eiξ αCβ(eiξCβ f2,β)

= f1,α + α f2,β = f .

Analogously, one can show that CC∗ f = f . �	
Remark 5 If α = β, we have Cα,α( f1,α + α f2,α) = eiξ f2,α + α f1,α and

C2
α,α( f1,α + α f2,α) = eiξ f1,α + αe−iξ f2,α .

If eiξ = 1, thenC2
α,α = I and it turns out thatCα,α is the usual (involutive) conjugation

Cα2 on Kα2 , see (18). On the other hand, if eiξ = −1, then we have C2
α,α = −I , with

Cα,α f = −Cα f2,α + αCα f1,α .

As an example of an operator on a model space Kα2 which is Cα,α-self-adjoint, but
not Cα2 -self-adjoint, consider the case eiξ = −1, α := z2 and the operator H defined
on Kz4 (the space of polynomials of degree not greater than 3) by (with respect to the
standard basis of Kz4 )

H :=

⎛

⎜⎜
⎝

a11 a12 a13 0
a21 a22 0 −a13
a31 0 a22 a12
0 −a31 a21 a11

⎞

⎟⎟
⎠ ,

where a jk with j, k ∈ {1, 2, 3} are complex numbers. Then (abbreviating Cα,α =: C)

CHC−1 = −CHC = H∗ .
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8.2 Example 2

Let C be the antilinear operator defined on L2 by

C f := z − z̄

2
f (z̄) + z + z̄

2
f (−z̄) = z

f (z̄) + f (−z̄)

2
− z̄

f (z̄) − f (−z̄)

2
.

Proposition 5 C∗ = −C.

Proof For every f , g ∈ L2, one has

(g,C f ) =
(
g(z) + g(−z)

2
+ g(z) − g(−z)

2
, z

f (z̄) + f (−z̄)

2
− z̄

f (z̄) − f (−z̄)

2

)

.

Noting that

g(z) + g(−z)

2
⊥ z

f (z̄) + f (−z̄)

2
and

g(z) − g(−z)

2
⊥ z̄

f (z̄) − f (−z̄)

2
,

we get

(g,C f ) =
(
g(z) − g(−z)

2
, z

f (z̄) + f (−z̄)

2

)

−
(
g(z) + g(−z)

2
, z̄

f (z̄) − f (−z̄)

2

)

=
(

z̄
g(z) − g(−z)

2
,
f (z̄) + f (−z̄)

2

)

−
(

z
g(z) + g(−z)

2
,
f (z̄) − f (−z̄)

2

)

=
(

f (z̄) + f (−z̄)

2
, z

g(z) − g(−z)

2

)

−
(

f (z̄) − f (−z̄)

2
, z̄

g(z) + g(−z)

2

)

=
(

f (z) + f (−z)

2
, z̄

g(z̄) − g(−z̄)

2

)

+
(

f (z) − f (−z)

2
,−z

g(z̄) + g(−z̄)

2

)

=
(

f (z), z̄
g(z̄) − g(−z̄)

2
− z

g(z̄) + g(−z̄)

2

)

= ( f ,−Cg) ,
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so the desired claim follows by the definition of the adjoint of an antilinear operator.
�	

It is straightforward to verify the following claims.

Proposition 6 C is antiunitary and C2 = −I .

It is perhaps less obvious that the Hardy space H2+ is left invariant by C .

Proposition 7 C(H2+) = H2+.

Proof The claim follows from the observation that for f ∈ H2+ with f (z) = a0 +
a1z + a2z2 + a3z3 + . . . we have that C f (z) = −ā1 + ā0z − ā3z2 + ā2z3 + . . . �	
Remark 6 The usual conjugation in H2+ is given by (cf. [4, 13])

C̃ f (z) := f (z̄) ,

so that for f (z) = a0 +a1z+a2z2 + . . . we have that C̃ f (z) = ā0 + ā1z+ ā2z2 + . . .

Corollary 6 CP± = P±C.

From Proposition 7, the restriction C |H2+ is an anti-involutive conjugation on H2+,
which we will also denote by C .

Proposition 8 If θ is an inner function such that

θ(z̄) = θ(−z̄) = θ(z) (19)

for all z ∈ D, then C(Kθ ) = Kθ and C̃θ := C |Kθ defines an anti-involutive conjuga-
tion on Kθ .

Proof Wehave that f+ ∈ Kθ if, and only if, f+ ∈ H2+ and θ̄ f+ = f− where f− ∈ H2−.
Let f+ be any element of Kθ . Then

θ(z) f+(z) = f−(z) ⇐⇒ θ(z̄) f+(z̄) = f−(z̄)

⇐⇒ θ(z) f+(z̄) = f−(z̄)

⇐⇒ θ(−z) f+(−z̄) = f−(−z̄)

⇐⇒ θ(z) f+(−z̄) = f−(−z̄) .

Consequently,

θ̄C̃θ f (z) = θ(z)

(

z
f+(z̄) + f+(−z̄)

2
− z̄

f+(z̄) − f+(−z̄)

2

)

= z
f−(z̄) + f−(−z̄)

2
− z̄

f−(z̄) − f−(−z̄)

2
∈ H2− .

Therefore C(Kθ ) ⊂ Kθ and since C2 = −I we have also Kθ ⊂ C(Kθ ). �	
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Remark 7 It follows that C |Kθ is also an anti-involutive conjugation on Kθ if θ satis-
fies (19).

For example, if θ := z4 and f+(z) = a0 + a1z + a2z2 + a3z3 ∈ Kz4 , where
a0, a1, a2, a3 are complex numbers, then C f+(z) = −ā1 + ā0z − ā3z2 + ā2z3 ∈
Kz4 . (Comparing with the conjugation Cz2,z2 on Kz4 , defined in Sect. 8.1, we have
Cz2,z2 f+(z) = −ā3 − ā2z + ā1z2 + ā0z3.) An operator H defined on Kz4 is C-self-
adjoint if it is defined by a complex matrix of the form

H :=

⎛

⎜⎜
⎝

a11 0 a13 a14
0 a11 a23 a24
a24 −a14 a33 0

−a23 a13 0 a33

⎞

⎟⎟
⎠ .

As an example of an operator on H2+ which isC-self-adjoint (denotingC |H2+ =: C),
one can consider the following natural generalisation of Toeplitz operators (defined,
for ϕ ∈ L∞, as Tϕ : H2+ → H2+, Tϕ f+ := P+ϕ f+), with ϕ1, ϕ2 ∈ L∞:

Tϕ1,ϕ2 : H2+ → H2+,

Tϕ1,ϕ2 ( f+):= P+
(

ϕ1(z)
f+(z) + f+(−z)

2
+ ϕ2(z)

f+(z) − f+(−z)

2

)

= P+
(

ϕ1(z) + ϕ2(z)

2
f+(z) + ϕ1(z) − ϕ2(z)

2
f+(−z)

)
.

We shall occasionally abbreviate Tϕ1,ϕ2 =: T .
Proposition 9 Tϕ1,ϕ2 = 0 if, and only if, ϕ1 = ϕ2 = 0.

Proof We have Tϕ1,ϕ2 = 0 if, and only if, N(Tϕ1,ϕ2) = H2+, i.e., for any f+ ∈ H2+

ϕ1(z)
f+(z) + f+(−z)

2
+ ϕ2(z)

f+(z) − f+(−z)

2
∈ H2− .

In particular, this must hold for any even function f+ ∈ H2+. Taking f+ = 1, this
implies that ϕ1 ∈ H2−; taking f+ = z2n with n ∈ N, we conclude that ϕ1 ∈ (z̄2)nH2−
for all n ∈ N and, therefore, ϕ1 = 0. Analogously, taking f+ to be any odd function
in H2+, we conclude that ϕ2 = 0. �	
Corollary 7 For ϕ1, ϕ2, ϕ̃1, ϕ̃2 ∈ L∞, we have

Tϕ1,ϕ2 = Tϕ̃1,ϕ̃2 ⇐⇒ (ϕ1 = ϕ̃1 ∧ ϕ2 = ϕ̃2) .

Proposition 10 We have, for every f+ ∈ H2+,

T ∗
ϕ1,ϕ2

( f+) = P+
(

ϕ1(z) + ϕ2(z)

2
f+(z) + ϕ1(−z) − ϕ2(−z)

2
f+(−z)

)

.
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Proof For any f+, g+ ∈ H2+, we have

(g+, T f+) =
(
g+(z), P+

(
ϕ1(z) + ϕ2(z)

2
f+(z) + ϕ1(z) − ϕ2(z)

2
f+(−z)

))

=
(
g+(z),

ϕ1(z) + ϕ2(z)

2
f+(z)

)
+
(
g+(z),

ϕ1(z) − ϕ2(z)

2
f+(−z)

)

=
(

ϕ1(z) + ϕ2(z)

2
g+(z), f+(z)

)

+
(

ϕ1(z) − ϕ2(z)

2
g+(z), f+(−z)

)

=
(

ϕ1(z) + ϕ2(z)

2
g+(z), f+(z)

)

+
(

ϕ1(−z) − ϕ2(−z)

2
g+(−z), f+(z)

)

=
(

P+ ϕ1(z) + ϕ2(z)

2
g+(z), f+(z)

)

+
(

P+ ϕ1(−z) − ϕ2(−z)

2
g+(−z), f+(z)

)

,

which establishes the desired claim. �	
Proposition 11 We have CTϕ1,ϕ2C

−1 = T ∗
ϕ1,ϕ2

if, and only if,

− z̄ϕ1(z)+ zϕ2(z) = zϕ1(z̄)− z̄ϕ2(z̄) and z̄ϕ1(z)+ zϕ2(z) = zϕ1(−z̄)+ z̄ϕ2(−z̄) .

(20)

Proof On the one hand, we have

TC f+ = P+
[
ϕ1(z) + ϕ2(z)

2

(
z − z̄

2
f+(z̄) + z + z̄

2
f+(−z̄)

)

+ ϕ1(z) − ϕ2(z)

2

(
− z − z̄

2
f+(−z̄) − z + z̄

2
f+(−z̄)

)]

= 1

2
P+ [(−z̄ϕ1(z) + zϕ2(z)) f+(z̄) + (z̄ϕ1(z) + zϕ2(z)) f+(−z̄)

]
.

On the other hand, we have

CT ∗ f+ = CP+
[

ϕ1(z) + ϕ2(z)

2
f+(z) + ϕ1(−z) − ϕ2(−z)

2
f+(−z)

]

= P+C
[

ϕ1(z) + ϕ2(z)

2
f+(z) + ϕ1(−z) − ϕ2(−z)

2
f+(−z)

]
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= P+
[
z − z̄

2

(
ϕ1(z̄) + ϕ2(z̄)

2
f+(z̄) + ϕ1(−z̄) − ϕ2(−z̄)

2
f+(−z̄)

)

+ z + z̄

2

(
ϕ1(−z̄) + ϕ2(−z̄)

2
f+(−z̄) + ϕ1(z̄) − ϕ2(z̄)

2
f+(z̄)

)]

= 1

2
P+ [(zϕ1(z̄) − z̄ϕ2(z̄)) f+(z̄) + (zϕ1(−z̄) + z̄ϕ2(−z̄)) f+(−z̄)

]
.

Consequently, taking Corollary 7 into account, we have TC = CT ∗ if, and only
if, (20) holds. �	

Remark 8 Condition (20) is particularly satisfied if

ϕ1(z̄) = ϕ2(z) and
ϕ1(z) − ϕ1(−z)

z
= −ϕ1(z̄) − ϕ1(−z̄)

z̄
.

8.3 Example 3

Let Dj , with j ∈ {1, 2, 3, 4}, be antilinear operators on a Hilbert spaceH and consider
the antilinear operator defined onH ⊕ H (which we identify with H2) by

C :=
(
D1 D2
D3 D4

)
.

We have

C∗ =
(
D∗
1 D∗

3
D∗
2 D∗

4

)
.

Consequently,

CC∗ = I ⇐⇒

⎧
⎪⎨

⎪⎩

D1D
∗
1 + D2D

∗
2 = I ,

D3D
∗
3 + D4D

∗
4 = I ,

D1D
∗
3 + D2D

∗
4 = 0 ,

and

C∗C = I ⇐⇒

⎧
⎪⎨

⎪⎩

D∗
1D1 + D∗

3D3 = I ,

D∗
2D2 + D∗

4D4 = I ,

D∗
1D2 + D∗

3D4 = 0 .

Involutive conjugations of this form forH := H2+ were studied in [5, 14]. Here we
allow for a more abstract setting as well as for not necessarily involutive conjugations.



Complex-self-adjointness... Page 23 of 24 6

In particular, C will be antinunitary and anti-involutive if, and only if,

⎧
⎪⎨

⎪⎩

D1 = −D∗
1 ,

D4 = −D∗
4 ,

D3 = −D∗
2 ,

and

⎧
⎪⎨

⎪⎩

D2D
∗
2 − D2

1 = I ,

D∗
2D2 − D2

4 = I ,

D1D2 + D2D4 = 0 .

For example, if D is antiunitary and anti-involutive, then

C1 := 1√
2

(−D D
D D

)

is also antiunitary and anti-involutive. Another example is given with D1 = 0 = D4,
D2 antiunitary and involutive, and D3 = −D∗

2 = −D2; then

C2 := 1√
2

(
0 D2

−D2 0

)

is an anti-involutive conjugation on H ⊕ H.

Proposition 12 For any operator p on H such that D2 pD2 = −p∗, we have that

Tα :=
(
p2 α p
p p2

)
, α ∈ R ,

is C2-self-adjoint.

Proof We have

C2TαC
−1
2 =

(
0 D2

−D2 0

)(
p2 α p
p p2

)(
0 −D2
D2 0

)

=
(

D2 p2D2 −D2 pD2

−αD2 pD2 D2 p2D2

)

=
(

(p∗)2 p∗
α p∗ (p∗)2

)
= T ∗

α ,

which establishes the desired result. �	
Remark 9 The example of Proposition 12 is of the type of the toy model considered
in Sect. 7, except that in the former only bounded operators are considered.
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