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Abstract
We establish the existence in the sense of sequences of solutions for certain systems of
integro-differential equations which involve the drift terms and the square root of the
one dimensional negative Laplace operator, on the whole real line or on a finite interval
with periodic boundary conditions in the corresponding H2 spaces. The argument
is based on the fixed point technique when the elliptic systems contain first order
differential operators with and without Fredholm property. It is proven that, under the
reasonable technical conditions, the convergence in L1 of the integral kernels yields
the existence and convergence in H2 of the solutions. We emphasize that the study
of the systems is more complicated than of the scalar case and requires to overcome
more cumbersome technicalities.
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1 Introduction

Let us recall that a linear operator L acting from aBanach space E into another Banach
space F satisfies the Fredholm property if its image is closed, the dimension of its
kernel and the codimension of its image are finite. Consequently, the problem Lu = f
is solvable if and only if φi ( f ) = 0 for a finite number of functionals φi from the
dual space F∗. Such properties of the Fredholm operators are broadly used in many
methods of the linear and nonlinear analysis.

Elliptic equations in bounded domains with a sufficiently smooth boundary satisfy
the Fredholm property if the ellipticity condition, proper ellipticity and Lopatinskii
conditions are fulfilled (see e.g. [1, 9, 24, 27]). This is the main result of the theory
of linear elliptic problems. In the situation of unbounded domains, these conditions
may not be sufficient and the Fredholm property may not be satisfied. For instance,
the Laplace operator, Lu = �u, in R

d fails to satisfy the Fredholm property when
considered in Hölder spaces, L : C2+α(Rd) → Cα(Rd), or in Sobolev spaces, L :
H2(Rd) → L2(Rd).

Linear elliptic equations in unbounded domains satisfy the Fredholmproperty if and
only if, in addition to the conditions listed above, the limiting operators are invertible
(see [28]). In some trivial cases, the limiting operators can be constructed explicitly.
For example, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

where the coefficients of the operator have limits at infinity,

a± = lim
x→±∞ a(x), b± = lim

x→±∞ b(x), c± = lim
x→±∞ c(x),

the limiting operators are given by:

L±u = a±u′′ + b±u′ + c±u.

Since the coefficients are constants, the essential spectrum of the operator, that is the
set of complex numbers λ for which the operator L − λ does not satisfy the Fredholm
property, can be explicitly found by means of the Fourier transform:

λ±(ξ) = −a±ξ2 + b±iξ + c±, ξ ∈ R.

The invertibility of the limiting operators is equivalent to the condition that the origin
does not belong to the essential spectrum.

In the case of general elliptic equations, the same assertions hold true. The Fred-
holm property is satisfied if the essential spectrum does not contain the origin or if
the limiting operators are invertible. However, such conditions may not be explicitly
written.

In the case of non-Fredholm operators the usual solvability relations may not be
applicable and the solvability conditions are, in general, not known. There are certain
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classes of operators for which the solvability conditions are obtained. We illustrate
them with the following example. Consider the equation

Lu ≡ �u + au = f (1.1)

inR
d , where a is a positive constant. Such operator L coincides with its limiting opera-

tors. The homogeneous problemhas a nontrivial bounded solution. Thus, the Fredholm
property is not satisfied. However, since the operator has constant coefficients, we can
apply the Fourier transform and find the solution explicitly. The solvability conditions
can be formulated as follows. If f ∈ L2(Rd) and x f ∈ L1(Rd), then there exists a
solution of this problem in H2(Rd) if and only if

(
f (x),

eipx

(2π)
d
2

)
L2(Rd )

= 0, p ∈ Sd√a a.e.

(see [35]). Here Sd√
a
denotes the sphere in R

d of radius
√
a centered at the origin.

Therefore, though the operator fails to satisfy the Fredholm property, the solvability
relations are formulated analogously. However, this similarity is only formal because
the range of the operator is not closed.

In the case of the operator with a scalar potential,

Lu ≡ �u + a(x)u = f ,

the Fourier transform is not directly applicable.Nevertheless, the solvability conditions
inR

3 can be obtained by a rather sophisticated application of the theory of self-adjoint
operators (see [32]). As before, the solvability relations are formulated in terms of the
orthogonality to the solutions of the homogeneous adjoint equation. There are several
other examples of linear elliptic non Fredholm operators for which the solvability
relations can be derived (see [13, 17, 28, 29, 32, 34, 35]).

The solvability conditions play a significant role in the analysis of the nonlinear
elliptic equations. In the case of non-Fredholm operators, in spite of some progress
in the understanding of the linear problems, there exist only few examples where the
nonlinear non-Fredholm operators are analyzed (see [8, 12, 15, 33, 35], [38]). The
article [10] is devoted to the studies of the finite and infinite dimensional attractors for
evolution equations of mathematical physics. The large time behavior of solutions of
a class of fourth-order parabolic equations defined on unbounded domains using the
Kolmogorov ε-entropy as a measure was studied in [11]. In [18] the authors consider
the attractor for a nonlinear reaction-diffusion system in an unbounded domain in
R
3. The articles [19, 26] deal with the understanding of the Fredholm and properness

properties of the quasilinear elliptic systems of second order and of the operators of
this kind onR

N . In [20] the authors establish the exponential decay and investigate the
Fredholm properties in second order quasilinear elliptic systems. In the present work
we consider another class of stationary nonlinear systems of equations for which the
Fredholm property may not be satisfied:
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−
√

− d2

dx2
uk + bk

duk
dx

+ akuk

+
∫

	

Gk(x − y)Fk(u1(y), u2(y), ..., uN (y), y)dy = 0, x ∈ 	, (1.2)

where ak ≥ 0, bk ∈ R, bk 
= 0 are the constants, 1 ≤ k ≤ N , N ≥ 2 and 	 ⊆ R.
Here and throughout the article the vector function

u := (u1, u2, ..., uN )T ∈ R
N . (1.3)

The nonlocal operator

√
− d2

dx2
: H1(	) → L2(	) is defined bymeans of the spectral

calculus and is actively used, for example in the studies of the superdiffusion problems
(see e.g. [36, 37] and the references therein). Superdiffusion can be described as a
random process of particlemotion characterized by the probability density distribution
of the jump length. Themoments of this density distribution are finite in the case of the
normal diffusion, but this is not the case for the superdiffusion. Asymptotic behavior
at the infinity of the probability density function determines the value of the power
of the negative Laplace operator (see [25]). For the simplicity of the presentation we
restrict ourselves to the one dimensional situation (themultidimensional cases aremore
technical andwill be considered in our forthcoming article). The studyof the solvability
of the integro- differential system (1.2) is more complicated than in the single nonlocal
equation case covered in [16]. It requires the use of the Sobolev spaces for the vector
functions, which is more cumbersome, especially in the situation on the finite interval
with periodic boundary conditions,whereweuse the constrained subspaces.Moreover,
in the argument in our system case we use the auxiliary expressions (5.4), (5.10),
(5.27), (5.32) depending on the additional index 1 ≤ k ≤ N , N ≥ 2, which is
an extra technicality. In the population dynamics the integro-differential equations
describe the models with the intra-specific competition and the nonlocal consumption
of resources (see e.g. [2, 4]). We use the explicit form of the solvability conditions and
study the existence of solutions of this nonlinear system. The studies of the solutions of
the integro-differential problems with the drift terms are crucial for the understanding
of the emergence and propagation of patterns in the theory of speciation (see [30]).
The solvability of the linear equation containing the Laplacian with the transport term
was considered in [34], see also [5]. In the situation when the drift terms are absent,
namely when bk = 0, 1 ≤ k ≤ N , the system analogous to (1.2) was discussed in
[37] (see also [36]). Verification of biomedical processes with anomalous diffusion,
transport and interaction of species was accomplished in [14]. Existence of nontrivial
steady states for populations structured with respect to space and a continuous trait
was established in [3]. Trend to equilibrium for reaction-diffusion systems arising
from complex balanced chemical reaction networks was studied in [7]. The entropy
method for generalized Poisson-Nernst-Planck equations was developed in [21].
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2 Formulation of the results

The technical assumptions of the present article will be analogical to the ones of
Efendiev and Vougalter [16], adapted to the work with vector functions. It is also
more difficult to perform the analysis in the Sobolev spaces for vector functions,
especially in the system on our finite interval with periodic boundary conditions when
the constraints are imposed on some of the components. The nonlinear part of problem
(1.2) will satisfy the following regularity conditions.

Assumption 1 Let 1 ≤ k ≤ N . Functions Fk(u, x) : R
N × 	 → R are satisfying the

Caratheodory condition (see [23]), so that

√∑N

k=1
F2
k (u, x) ≤ K |u|RN + h(x) f or u ∈ R

N , x ∈ 	 (2.1)

with a constant K > 0 and h(x) : 	 → R
+, h(x) ∈ L2(	). Furthermore, they are

Lipschitz continuous functions, so that for any u(1),(2) ∈ R
N , x ∈ 	:

√∑N

k=1
(Fk(u(1), x) − Fk(u(2), x))2 ≤ L|u(1) − u(2)|RN , (2.2)

with a constant L > 0.

Here and further down the norm of a vector function given by (1.3) is:

|u|RN :=
√∑N

k=1
u2k .

The work [6] deals with the solvability of a local elliptic problem in a bounded domain
in R

N . The nonlinear function involved there was allowed to have a sublinear growth.
Note that Assumption 1 is actively used in the proofs of our theorems. We require
the sublinear growth for our nonlinear functions, so that the boundedness and the
continuity of the nonlinear maps from L2 to L2 are equivalent. In order to establish
the solvabity of (1.2), we will use the auxiliary system with 1 ≤ k ≤ N , namely

√
− d2

dx2
uk − bk

duk
dx

− akuk =
∫

	

Gk(x − y)Fk(v1(y), v2(y), ..., vN (y), y)dy,

(2.3)

where ak ≥ 0, bk ∈ R, bk 
= 0 are the constants. Let us denote

( f1(x), f2(x))L2(	) :=
∫

	

f1(x) f̄2(x)dx, (2.4)

with a slight abuse of notations when these functions are not square integrable, like
for instance those involved in orthogonality relations (5.6) below. Indeed, if f1(x) ∈
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L1(	) and f2(x) ∈ L∞(	), then the integral in the right side of (2.4) is well defined.
In the first part of the article we consider the situation on the whole real line, 	 = R,
so that the appropriate Sobolev space is equipped with the norm

‖φ‖2H2(R)
:= ‖φ‖2L2(R)

+
∥∥∥∥d

2φ

dx2

∥∥∥∥
2

L2(R)

. (2.5)

Then for a vector function given by (1.3), we have

‖u‖2H2(R,RN )
:=

N∑
k=1

‖uk‖2H2(R)
=

N∑
k=1

{
‖uk‖2L2(R)

+
∥∥∥∥d

2uk
dx2

∥∥∥∥
2

L2(R)

}
. (2.6)

We also use the norm

‖u‖2L2(R,RN )
:=

N∑
k=1

‖uk‖2L2(R)
.

By means of Assumption 1 above, we are not allowed to consider the higher powers
of our nonlinearities, than the first one. This is restrictive from the point of view of
the applications. But this guarantees that our nonlinear vector function is a bounded
and continuous map from L2(	, R

N ) to L2(	, R
N ). The main issue for our system

of equations above is that in the absence of the drift terms we were dealing with the
self-adjoint, non Fredholm operators

√
− d2

dx2
− ak : H1(R) → L2(R), ak ≥ 0,

which was the obstacle to solve our system (see [36, 37]). The similar situations but
in linear problems, both self- adjoint and non self-adjoint containing the differential
operators without the Fredholm property have been treated extensively in recent years
(see [28, 29, 32, 34, 35]). However, the situation is different when the constants in the
drift terms bk 
= 0. For 1 ≤ k ≤ N , the operators

La, b, k :=
√

− d2

dx2
− bk

d

dx
− ak : H1(R) → L2(R), (2.7)

with ak ≥ 0 and bk ∈ R, bk 
= 0 contained in the left side of the system of Eq. (2.3)
are non-selfadjoint. By means of the standard Fourier transform, it can be trivially
obtained that the essential spectra of such operators La, b, k are given by

λa, b, k(p) = |p| − ak − ibk p, p ∈ R.

Clearly, for ak > 0 the operators La, b, k satisfy the Fredholm property, since their
essential spectra do not contain the origin. But when ak = 0, our operators La, b, k fail
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to satisfy the Fredholm property because the origin belongs to their essential spectra.
We establish that under the reasonable technical conditions system (2.3) defines a map
Ta, b : H2(R, R

N ) → H2(R, R
N ), which is a strict contraction.

Theorem 1 Let 	 = R, N ≥ 2, 1 ≤ l ≤ N − 1, 1 ≤ k ≤ N , bk ∈ R, bk 
= 0 and
Gk(x) : R → R, Gk(x) ∈ W 1,1(R) and Assumption 1 holds.

(I) Let ak > 0 for 1 ≤ k ≤ l.
(II) Let ak = 0 for l + 1 ≤ k ≤ N, additionally xGk(x) ∈ L1(R), orthogonality

conditions (5.6) hold and 2
√

πNa, bL < 1, where Na, b is defined in (5.5) below.
Then the map v �→ Ta,bv = u on H2(R, R

N ) defined by system (2.3) has a
unique fixed point v(a,b), which is the only solution of the system of Eq. (1.2) in
H2(R, R

N ).

The fixed point v(a,b) is nontrivial provided that for a certain 1 ≤ k ≤ N the intersec-
tion of supports of the Fourier transforms of functions suppF̂k(0, x) ∩ suppĜk is a
set of nonzero Lebesgue measure in R.
Note that in the case (I) of the theorem above, when ak > 0, as distinct part (I) of
Assumption 2 of [37] describing the problem without the drift term, the orthogonality
conditions are not needed. Let us introduce the sequence of approximate systems of
equations related to problem (1.2) on the whole real line, namely

−
√

− d2

dx2
u(m)
k + bk

du(m)
k

dx
+ aku

(m)
k

+
∫ ∞

−∞
Gk,m(x − y)Fk(u

(m)
1 (y), u(m)

2 (y), ..., u(m)
N (y), y)dy = 0 (2.8)

with the constants ak ≥ 0, bk ∈ R, bk 
= 0, 1 ≤ k ≤ N and m ∈ N. Each sequence
of kernels {Gk,m(x)}∞m=1 tends to Gk(x) as m → ∞ in the appropriate function
spaces discussed below.We establish that, under the given technical conditions, each of
systems of Eq. (2.8) has a unique solution u(m)(x) ∈ H2(R, R

N ), limiting system (1.2)
possesses a unique solution u(x) ∈ H2(R, R

N ), and u(m)(x) → u(x) in H2(R, R
N )

as m → ∞. This is the so-called existence of solutions in the sense of sequences. In
such case, the solvability conditions can be formulated for the iterated kernels Gk,m .
They yield the convergence of the kernels in terms of the Fourier transforms (see the
Appendix) and, consequently, the convergence of the solutions (Theorems 2, 4). The
analogical ideas in the sense of the standard Schrödinger type operators were exploited
in [13, 31]. Our second main statement is as follows.

Theorem 2 Let 	 = R, N ≥ 2, 1 ≤ l ≤ N − 1, 1 ≤ k ≤ N , bk ∈ R, bk 
= 0, m ∈
N, Gk,m(x) : R → R, Gk,m(x) ∈ W 1,1(R), so that Gk,m(x) → Gk(x) in W 1,1(R)

as m → ∞. Let Assumption 1 hold.

(I) Let ak > 0 for 1 ≤ k ≤ l.
(II) Let ak = 0 for l + 1 ≤ k ≤ N. Assume that xGk,m(x) ∈ L1(R), xGk,m(x) →

xGk(x) in L1(R) as m → ∞, orthogonality conditions (5.12) are valid along
with upper bound (5.13). Then each system (2.8) possesses a unique solution
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u(m)(x) ∈ H2(R, R
N ), and limiting problem (1.2) admits a unique solution

u(x) ∈ H2(R, R
N ), so that u(m)(x) → u(x) in H2(R, R

N ) as m → ∞.

The unique solution u(m)(x) of each system (2.8) is nontrivial provided that for a
certain 1 ≤ k ≤ N the intersection of supports of the Fourier images of functions
suppF̂k(0, x) ∩ suppĜk,m is a set of nonzero Lebesgue measure in R. Similarly, the
unique solution u(x) of limiting system (1.2) does not vanish identically on the real
line if suppF̂k(0, x) ∩ suppĜk is a set of nonzero Lebesgue measure in R for some
1 ≤ k ≤ N .
The second part of the article is devoted to the studies of the analogical system of
equations on the finite interval 	 = I := [0, 2π ] with periodic boundary conditions.
The appropriate function space is given by

H2(I ) = {v(x) : I → R | v(x), v′′(x) ∈ L2(I ), v(0) = v(2π), v′(0) = v′(2π)}.

We aim at uk(x) ∈ H2(I ), 1 ≤ k ≤ l. For the technical purposes, we will use the
following auxiliary constrained subspace

H2
0 (I ) = {v(x) ∈ H2(I ) | (v(x), 1)L2(I ) = 0}, (2.9)

which is a Hilbert space as well (see e.g. Chapter 2.1 of [22]). The aim is to have
uk(x) ∈ H2

0 (I ), l + 1 ≤ k ≤ N . Similarly,

H1
0 (I ) = {v(x) ∈ H1(I ) | (v(x), 1)L2(I ) = 0}.

The resulting space used to establish the existence in the sense of sequences of solutions
u(x) : I → R

N of system (1.2) will be the direct sum of the spaces given above,
namely

H2
c (I , R

N ) = ⊕l
k=1H

2(I ) ⊕N
k=l+1 H2

0 (I ).

The corresponding Sobolev norm is given by

‖u‖2H2
c (I ,RN )

:=
N∑

k=1

{
‖uk‖2L2(I ) + ‖u′′

k‖2L2(I )

}
,

with u(x) : I → R
N . Another useful norm is

‖u‖2L2(I ,RN )
:=

N∑
k=1

‖uk‖2L2(I ).

We establish that system (2.3) in this case defines a map τa,b : H2
c (I , R

N ) →
H2
c (I , R

N ). This map will be a strict contraction under the stated technical condi-
tions.
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Theorem 3 Let 	 = I , N ≥ 2, 1 ≤ l ≤ N − 1, 1 ≤ k ≤ N , bk ∈ R, bk 
= 0 and

Gk(x) : I → R, Gk(x) ∈ C(I ),
dGk(x)

dx
∈ L1(I ), Gk(0) = Gk(2π), Fk(u, 0) =

Fk(u, 2π) for u ∈ R
N and Assumption 1 holds.

(I) Let ak > 0 for 1 ≤ k ≤ l.
(II) Let ak = 0 for l + 1 ≤ k ≤ N, orthogonality relations (5.29) hold and

2
√

πNa, bL < 1 with Na, b defined in (5.28). Then the map τa,bv = u on
H2
c (I , R

N ) defined by system of Eq. (2.3) has a unique fixed point v(a,b), the only
solution of system (1.2) in H2

c (I , R
N ).

Thefixedpointv(a,b) is nontrivial on the interval I provided that theFourier coefficients
Gk,n Fk(0, x)n 
= 0 for some 1 ≤ k ≤ N and a certain n ∈ Z.

Remark 1 We use the constrained subspace H2
0 (I ) in the direct sum of spaces

H2
c (I , R

N ), such that the Fredholm operators
√

− d2

dx2
− bk

d
dx : H1

0 (I ) → L2(I ) for
l + 1 ≤ k ≤ N have the trivial kernels.

To show the existence in the sense of sequences of solutions for our integro-differential
system of equations on the interval I , we consider the sequence of approximate sys-
tems, similarly to the situation on the whole real line with m ∈ N, 1 ≤ k ≤ N and
the constants ak ≥ 0, bk ∈ R, bk 
= 0, so that

−
√

− d2

dx2
u(m)
k + bk

du(m)
k

dx
+ aku

(m)
k

+
∫ 2π

0
Gk,m(x − y)Fk(u

(m)
1 (y), u(m)

2 (y), ..., u(m)
N (y), y)dy = 0. (2.10)

The final main statement of the article is as follows.

Theorem 4 Let	= I , N ≥2, 1≤ l≤ N − 1, 1 ≤ k ≤ N , bk ∈ R, bk 
= 0, m ∈ N,

Gk,m(x) : I → R, Gk,m(0) = Gk,m(2π), Gk,m(x) ∈ C(I ),
dGk,m(x)

dx
∈ L1(I ),

so that

Gk,m(x) → Gk(x) in C(I ),
dGk,m(x)

dx
→ dGk(x)

dx
in L1(I ) as m → ∞,

Fk(u, 0) = Fk(u, 2π) for u ∈ R
N . Let Assumption 1 hold.

(I) Let ak > 0 for 1 ≤ k ≤ l.
(II) Let ak = 0 for l + 1 ≤ k ≤ N. Assume that orthogonality relations (5.34) are

valid along with upper bound (5.35). Then each system (2.10) possesses a unique
solution u(m)(x) ∈ H2

c (I , R
N ) and the limiting system of Eq. (1.2) has a unique

solution u(x) ∈ H2
c (I , R

N ), so that u(m)(x) → u(x) in H2
c (I , R

N ) as m → ∞.
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The unique solution u(m)(x) of each system of Eq. (2.10) does not vanish identically
on the interval I provided that the Fourier coefficients Gk,m,n Fk(0, x)n 
= 0 for some
1 ≤ k ≤ N and a certain n ∈ Z. Similarly, the unique solution u(x) of limiting system
(1.2) is nontrivial on I if Gk,n Fk(0, x)n 
= 0 for a certain 1 ≤ k ≤ N and some n ∈ Z.

Remark 2 In the work we deal with the real valued vector functions by means of the
assumptions on Fk(u, x), Gk,m(x) and Gk(x) contained in the integral terms of the
approximate and limiting systems of equations discussed above.

Remark 3 The significance of Theorems 2 and 4 of the article is the continuous depen-
dence of the solutions of our systems with respect to the integral kernels.

Remark 4 Such issues as the spectral properties of the corresponding linearized prob-
lems, the stability of the stationary solutions, the generalization of our approaches to
the multidimensional spaces will be discussed in our consecutive articles.

3 The whole real line case

Proof of Theorem 1 First we suppose that in the case of 	 = R for some v ∈
H2(R, R

N ) there exist two solutions u(1),(2) ∈ H2(R, R
N ) of system (2.3). Then

their difference w(x) := u(1)(x) − u(2)(x) ∈ H2(R, R
N ) will satisfy the homoge-

neous system of equations

√
− d2

dx2
wk − bk

dwk

dx
− akwk = 0, 1 ≤ k ≤ N .

Since each operator La, b, k : H1(R) → L2(R) defined in (2.7) does not have any
nontrivial zero modes, w(x) vanishes identically in R.

Let us choose arbitrarily v(x) ∈ H2(R, R
N ) and apply the standard Fourier trans-

form (5.1) to both sides of system (2.3). Thus, we obtain

ûk(p)=
√
2π

Ĝk(p) f̂k(p)

|p| − ak − ibk p
, p2ûk(p)=

√
2π

p2Ĝk(p) f̂k(p)

|p| − ak − ibk p
, 1 ≤ k ≤ N ,

(3.1)

where f̂k(p) stands for the Fourier image of Fk(v(x), x). Evidently, we have the upper
bounds

|ûk(p)|≤
√
2πNa, b, k | f̂k(p)| and |p2ûk(p)|≤

√
2πNa, b, k | f̂k(p)|, 1≤k≤ N .

Note that Na, b, k < ∞ by virtue of Lemma A1 of the Appendix without any orthog-
onality conditions if ak > 0 and under orthogonality relation (5.6) for ak = 0. This
allows us to derive the estimate from above on the norm

‖u‖2H2(R,RN )
=

N∑
k=1

{‖ûk(p)‖2L2(R)
+ ‖p2ûk(p)‖2L2(R)

}
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≤ 4πN 2
a, b

N∑
k=1

‖Fk(v(x), x)‖2L2(R)
(3.2)

with Na, b defined in (5.5). Clearly, the right side of (3.2) is finite via inequality (2.1)
of Assumption 1 above since |v(x)|RN ∈ L2(R). Hence, for an arbitrary v(x) ∈
H2(R, R

N ) there exists a unique solution u(x) ∈ H2(R, R
N ) of system (2.3) with

its Fourier image given by (3.1) and the map Ta,b : H2(R, R
N ) → H2(R, R

N ) is
well defined. This allows us to choose arbitrary v(1),(2)(x) ∈ H2(R, R

N ), so that
their images u(1),(2) = Ta,bv

(1),(2) ∈ H2(R, R
N ). By means of (2.3), we have for

1 ≤ k ≤ N

√
− d2

dx2
u(1)
k − bk

du(1)
k

dx
− au(1)

k

=
∫ ∞

−∞
Gk(x − y)Fk(v

(1)
1 (y), v(1)

2 (y), ..., v(1)
N (y), y)dy, (3.3)

√
− d2

dx2
u(2)
k − bk

du(2)
k

dx
− au(2)

k

=
∫ ∞

−∞
Gk(x − y)Fk(v

(2)
1 (y), v(2)

2 (y), ..., v(2)
N (y), y)dy. (3.4)

We apply the standard Fourier transform (5.1) to both sides of systems (3.3) and (3.4).
This yields for 1 ≤ k ≤ N

û(1)
k (p) = √

2π
Ĝk(p)

̂
f (1)
k (p)

|p| − ak − ibk p
, p2û(1)

k (p) = √
2π

p2Ĝk(p)
̂
f (1)
k (p)

|p| − ak − ibk p
,

û(2)
k (p) = √

2π
Ĝk(p)

̂
f (2)
k (p)

|p| − ak − ibk p
, p2û(2)

k (p) = √
2π

p2Ĝk(p)
̂
f (2)
k (p)

|p| − ak − ibk p
.

Here
̂
f (1)
k (p) and

̂
f (2)
k (p) denote the Fourier transforms of Fk(v(1)(x), x) and

Fk(v(2)(x), x) respectively. Evidently, we have the upper bounds

∣∣∣û(1)
k (p) − û(2)

k (p)
∣∣∣ ≤ √

2πNa, b, k

∣∣∣̂f (1)
k (p) −̂

f (2)
k (p)

∣∣∣,
∣∣∣p2û(1)

k (p) − p2û(2)
k (p)

∣∣∣ ≤ √
2πNa, b, k

∣∣∣̂f (1)
k (p) −̂

f (2)
k (p)

∣∣∣,
where 1 ≤ k ≤ N . This allows us to derive the inequality for the norms

‖u(1) − u(2)‖2H2(R,RN )
≤ 4πN 2

a, b

N∑
k=1

‖Fk(v(1)(x), x) − Fk(v
(2)(x), x)‖2L2(R)

.
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Obviously, v(1),(2)
k (x) ∈ H2(R) ⊂ L∞(R) due to the Sobolev embedding. By means

of (2.2) of Assumption 1 we easily derive

‖Ta,bv1 − Ta,bv2‖H2(R,RN ) ≤ 2
√

πNa, bL‖v1 − v2‖H2(R,RN ). (3.5)

The constant in the right side of (3.5) is less than via the one of our assumptions.
By virtue of the Fixed Point Theorem, there exists a unique vector function v(a,b) ∈
H2(R, R

N ), such that Ta,bv
(a,b) = v(a,b). This is the only solution of the system of

Eq. (1.2) in H2(R, R
N ). Suppose v(a,b)(x) vanishes identically in R. This will be a

contradiction to our assumption that for some 1 ≤ k ≤ N the Fourier transforms of
Gk(x) and Fk(0, x) are nontrivial on a set of nonzero Lebesgue measure on the real
line. ��
We turn our attention to establishing the existence in the sense of sequences of the
solutions for our system of integro-differential equation on R.

Proof of Theorem 2 By means of the result of Theorem 1 above, each system of equa-
tions (2.8) admits a unique solution u(m)(x) ∈ H2(R, R

N ), m ∈ N. Limiting system
(1.2) has a unique solution u(x) ∈ H2(R, R

N ) by virtue of Lemma A2 below along
with Theorem 1. We apply the standard Fourier transform (5.1) to both sides of prob-
lems (1.2) and (2.8). This gives us for 1 ≤ k ≤ N , m ∈ N

ûk(p) = √
2π

Ĝk(p)ϕ̂k(p)

|p| − ak − ibk p
,

̂
u(m)
k (p) = √

2π
Ĝk,m(p)ϕ̂k,m(p)

|p| − ak − ibk p
. (3.6)

Here ϕ̂k(p) and ϕ̂k,m(p) denote the Fourier transforms of Fk(u(x),
x) and Fk(u(m)(x), x) respectively. Evidently,

∣∣∣̂u(m)
k (p) − ûk(p)

∣∣∣ ≤ √
2π

∥∥∥∥ Ĝk,m(p)

|p| − ak − ibk p
− Ĝk(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

|ϕ̂k(p)|

+√
2π

∥∥∥∥ Ĝk,m(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

|ϕ̂k,m(p) − ϕ̂k(p)|.

Hence,

‖u(m)
k − uk‖L2(R) ≤ √

2π

∥∥∥∥ Ĝk,m(p)

|p| − ak − ibk p
− Ĝk(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

‖Fk(u(x), x)‖L2(R)

+√
2π

∥∥∥∥ Ĝk,m(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

‖Fk(u(m)(x), x) − Fk(u(x), x)‖L2(R).

By means of inequality (2.2) of Assumption 1 above we arrive at

√∑N

k=1
‖Fk(u(m)(x), x) − Fk(u(x), x)‖2

L2(R)
≤ L‖u(m)(x) − u(x)‖L2(R,RN ). (3.7)
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Obviously, u(m)
k (x), uk(x) ∈ H2(R) ⊂ L∞(R) for 1 ≤ k ≤ N , m ∈ N via the

Sobolev embedding. We derive

‖u(m)(x) − u(x)‖2L2(R,RN )

≤ 4π
N∑

k=1

∥∥∥∥ Ĝk,m(p)

|p| − ak − ibk p
− Ĝk(p)

|p| − ak − ibk p

∥∥∥∥
2

L∞(R)

‖Fk(u(x), x)‖2L2(R)

+ 4π

[
N (m)
a, b

]2
L2‖u(m)(x) − u(x)‖2L2(R,RN )

,

so that via (5.13), we have ‖u(m)(x) − u(x)‖2L2(R,RN )
≤

≤ 4π

ε(2 − ε)

N∑
k=1

∥∥∥∥ Ĝk,m(p)

|p| − ak − ibk p
− Ĝk(p)

|p| − ak − ibk p

∥∥∥∥
2

L∞(R)

‖Fk(u(x), x)‖2L2(R)
.

Upper bound (2.1) of Assumption 1 above gives us that Fk(u(x), x) ∈ L2(R), 1 ≤
k ≤ N for u(x) ∈ H2(R, R

N ). Thus,

u(m)(x) → u(x), m → ∞ (3.8)

in L2(R, R
N ) by means of the result of Lemma A2 of the Appendix. Clearly, for

1 ≤ k ≤ N , m ∈ N we have

p2ûk(p) = √
2π

p2Ĝk(p)ϕ̂k(p)

|p| − ak − ibk p
, p2

̂
u(m)
k (p) = √

2π
p2Ĝk,m(p)ϕ̂k,m(p)

|p| − ak − ibk p
.

Hence, we obtain

∣∣∣p2̂u(m)
k (p)− p2ûk(p)

∣∣∣≤ √
2π

∥∥∥∥ p2Ĝk,m(p)

|p| − ak − ibk p
− p2Ĝk(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

|ϕ̂k(p)|

+√
2π

∥∥∥∥ p2Ĝk,m(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

|ϕ̂k,m(p) − ϕ̂k(p)|.

Using inequality (3.7), we arrive at

∥∥∥∥d
2u(m)

k

dx2
− d2uk

dx2

∥∥∥∥
L2(R)

≤ √
2π

∥∥∥∥ p2Ĝk,m(p)

|p| − ak − ibk p
− p2Ĝk(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

‖Fk(u(x), x)‖L2(R)

+√
2π

∥∥∥∥ p2Ĝk,m(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

L‖u(m)(x) − u(x)‖L2(R,RN ).
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By virtue of the result of Lemma A2 of the Appendix along with (3.8), we establish
that

d2u(m)

dx2
→ d2u

dx2
in L2(R, R

N ), m → ∞.

Definition (2.6) of the norm implies that u(m)(x) → u(x) in H2(R, R
N ) as m → ∞.

We suppose that the unique solution u(m)(x) of the system of Eq. (2.8) studied
above vanishes on the whole real line for some m ∈ N. This will contradict to our
assumption above that for some 1 ≤ k ≤ N the Fourier transforms of Gk,m(x) and
Fk(0, x) are nontrivial on a set of nonzero Lebesgue measure on the real line. The
similar reasoning holds for the unique solution u(x) of limiting system of Eq. (1.2). ��

4 The problem on the finite interval

Proof of Theorem 3 Evidently, each operator contained in the left side of the system of
Eq. (2.3)

La, b, k :=
√

− d2

dx2
− bk

d

dx
− ak : H1(I ) → L2(I ), 1 ≤ k ≤ l (4.1)

with the constants ak > 0, bk ∈ R, bk 
= 0 is Fredholm, non-selfadjoint. Its set of
eigenvalues is given by

λa,b,k(n) = |n| − ak − ibkn, n ∈ Z. (4.2)

Its eigenfunctions are the standard Fourier harmonics
einx√
2π

, n ∈ Z.When ak = 0, we

will exploit the analogous ideas in the constrained subspace (2.9) instead of H2(I ).
Clearly, the eigenvalues of each operator La, b, k are simple, as distinct from the
analogical situation without the drift term, when the eigenvalues corresponding to
n 
= 0 are two-fold degenerate (see [37]).

Let us suppose that for a certain v(x) ∈ H2
c (I , R

N ) there exist two solutions
u(1),(2)(x) ∈ H2

c (I , R
N ) of system (2.3) with 	 = I . Then the vector function

w(x) := u(1)(x) − u(2)(x) ∈ H2
c (I , R

N ) will satisfy the homogeneous system of
equations

√
− d2

dx2
wk − bk

dwk

dx
− akwk = 0, 1 ≤ k ≤ N .

Because the operator La, b, k : H1(I ) → L2(I ) with ak > 0 for 1 ≤ k ≤ l discussed
above does not have any nontrivial zero modes, we obtain that w(x) is trivial in I .
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Let us choose an arbitrary v(x) ∈ H2
c (I , R

N ) and apply the Fourier transform
(5.23) to system (2.3) studied on the interval I . This gives us

uk,n = √
2π

Gk,n fk,n
|n| − ak − ibkn

,

n2uk,n = √
2π

n2Gk,n fk,n
|n| − ak − ibkn

, 1 ≤ k ≤ N , n ∈ Z, (4.3)

where fk,n := Fk(v(x), x)n . We easily obtain the estimates from above

|uk,n| ≤ √
2πNa, b, k | fk,n|, |n2uk,n| ≤ √

2πNa, b, k | fk,n|.

Clearly, Na, b, k < ∞ under the stated conditions via the result of Lemma A3 of the
Appendix. Therefore,

‖u‖2H2
c (I ,RN )

=
N∑

k=1

[ ∞∑
n=−∞

|uk,n|2 +
∞∑

n=−∞
|n2uk,n|2

]

≤ 4πN 2
a, b

N∑
k=1

‖Fk(v(x), x)‖2L2(I ) (4.4)

with Na, b defined in (5.28). Evidently, the right side of (4.4) is finite via inequality
(2.1) of Assumption 1 for |v(x)|RN ∈ L2(I ). Thus, for an arbitrary v(x) ∈ H2

c (I , R
N )

there exists a unique u(x) ∈ H2
c (I , R

N ), which satisfies system (2.3) and its Fourier
image is given by (4.3). Therefore, the map τa,b : H2

c (I , R
N ) → H2

c (I , R
N ) is well

defined.
We consider any v(1),(2)(x) ∈ H2

c (I , R
N ), so that their images under the map

mentioned above u(1),(2) = τa,bv
(1),(2) ∈ H2

c (I , R
N ). By means of (2.3), we have for

1 ≤ k ≤ N that

√
− d2

dx2
u(1)
k − bk

du(1)
k

dx
− aku

(1)
k

=
∫ 2π

0
Gk(x − y)Fk(v

(1)
1 (y), v(1)

2 (y), ..., v(1)
N (y), y)dy, (4.5)

√
− d2

dx2
u(2)
k − bk

du(2)
k

dx
− aku

(2)
k

=
∫ 2π

0
Gk(x − y)Fk(v

(2)
1 (y), v(2)

2 (y), ..., v(2)
N (y), y)dy, (4.6)

where ak ≥ 0, bk ∈ R, bk 
= 0 are the constants. By virtue of Fourier transform
(5.23) applied to both sides of the systems of Eqs. (4.5) and (4.6), we easily derive for
1 ≤ k ≤ N , n ∈ Z that
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u(1)
k,n = √

2π
Gk,n f

(1)
k,n

|n| − ak − ibkn
, u(2)

k,n = √
2π

Gk,n f
(2)
k,n

|n| − ak − ibkn
,

n2u(1)
k,n = √

2π
n2Gk,n f

(1)
k,n

|n| − ak − ibkn
, n2u(2)

k,n = √
2π

n2Gk,n f
(2)
k,n

|n| − ak − ibkn
,

with f ( j)
k,n := Fk(v( j)(x), x)n, j = 1, 2. Thus,

|u(1)
k,n − u(2)

k,n | ≤ √
2πNa, b| f (1)

k,n − f (2)
k,n |, |n2(u(1)

k,n − u(2)
k,n)| ≤ √

2πNa, b| f (1)
k,n − f (2)

k,n |.

Hence, we estimate the norm as

‖u(1) − u(2)‖2H2
c (I ,RN )

=
N∑

k=1

[ ∞∑
n=−∞

|u(1)
k,n − u(2)

k,n|2 +
∞∑

n=−∞
|n2(u(1)

k,n − u(2)
k,n)|2

]

≤ 4πN 2
a, b

N∑
k=1

‖Fk(v(1)(x), x) − Fk(v
(2)(x), x)‖2L2(I ).

Evidently, v
(1),(2)
k (x) ∈ H2(I ) ⊂ L∞(I ), 1 ≤ k ≤ N by means of the Sobolev

embedding. Using inequality (2.2) of Assumption 1, we derive

‖τa,bv
(1) − τa,bv

(2)‖H2
c (I ,RN ) ≤ 2

√
πNa, bL‖v(1) − v(2)‖H2

c (I ,RN ). (4.7)

The constant in the right side of estimate (4.7) is less than due to the one of our
assumptions. Then the Fixed Point Theorem gives us the existence and uniqueness of
a vector function v(a,b) ∈ H2

c (I , R
N ) satisfying τa,bv

(a,b) = v(a,b). This is the only
solution of system (1.2) in H2

c (I , R
N ). Ifwe suppose that v(a,b)(x) vanishes identically

in I , we will obtain the contradiction to our condition that Gk,n Fk(0, x)n 
= 0 for a
certain 1 ≤ k ≤ N and some n ∈ Z. ��
Let us turn our attention to establishing the final main result of the work.

Proof of Theorem 4 Obviously, the limiting kernels Gk(x), 1 ≤ k ≤ N are periodic
as well on our interval I (see the argument of Lemma A4 of the Appendix). Each
system (2.10) admits a unique solution u(m)(x) ∈ H2

c (I , R
N ), m ∈ N by means of

the result of Theorem 3 above. The limiting system of equations (1.2) has a unique
solution u(x) ∈ H2

c (I , R
N ) due to Lemma A4 below along with Theorem 3.

We apply Fourier transform (5.23) to both sides of systems (1.2) and (2.10). This
gives us

uk,n = √
2π

Gk,nϕk,n

|n| − ak − ibkn
, u(m)

k,n = √
2π

Gk,m,nϕ
(m)
k,n

|n| − ak − ibkn
, (4.8)

with 1 ≤ k ≤ N , n ∈ Z, m ∈ N. Here ϕk,n and ϕ
(m)
k,n stand for the Fourier images of

Fk(u(x), x) and Fk(u(m)(x), x) respectively under transform (5.23). We have a trivial
estimate from above
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|u(m)
k,n − uk,n| ≤ √

2π

∥∥∥∥ Gk,m,n

|n| − ak − ibkn
− Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

|ϕk,n|

+√
2π

∥∥∥∥ Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

|ϕ(m)
k,n − ϕk,n|.

Thus,

‖u(m)
k − uk‖L2(I ) ≤ √

2π

∥∥∥∥ Gk,m,n

|n| − ak − ibkn
− Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

‖Fk(u(x), x)‖L2(I )

+√
2π

∥∥∥∥ Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

‖Fk(u(m)(x), x) − Fk(u(x), x)‖L2(I ).

Inequality (2.2) of Assumption 1 above implies that

√∑N

k=1
‖Fk(u(m)(x), x) − Fk(u(x), x)‖2

L2(I )
≤ L‖u(m)(x) − u(x)‖L2(I ,RN ).

(4.9)

Evidently, u(m)
k (x), uk(x) ∈ H2(I ) ⊂ L∞(I ), 1 ≤ k ≤ N due to the Sobolev

embedding. Obviously,

‖u(m)(x) − u(x)‖2L2(I ,RN )

≤ 4π
N∑

k=1

∥∥∥∥ Gk,m,n

|n| − ak − ibkn
− Gk,n

|n| − ak − ibkn

∥∥∥∥
2

l∞
‖Fk(u(x), x)‖2L2(I )

+ 4π
[
N (m)

a, b

]2
L2‖u(m)(x) − u(x)‖2L2(I ,RN )

.

Hence, we arrive at ‖u(m)(x) − u(x)‖2
L2(I ,RN )

≤

≤ 4π

ε(2 − ε)

N∑
k=1

∥∥∥∥ Gk,m,n

|n| − ak − ibkn
− Gk,n

|n| − ak − ibkn

∥∥∥∥
2

l∞
‖Fk(u(x), x)‖2L2(I ).

Evidently, Fk(u(x), x) ∈ L2(I ), 1 ≤ k ≤ N for u(x) ∈ H2
c (I , R

N ) via inequality
(2.1) of Assumption 1. By means of the result of Lemma A4 of the Appendix we
derive that

u(m)(x) → u(x), m → ∞ (4.10)

in L2(I , R
N ). Clearly,

|n2u(m)
k,n − n2uk,n| ≤ √

2π

∥∥∥∥ n2Gk,m,n

|n| − ak − ibkn
− n2Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

|ϕk,n|
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+√
2π

∥∥∥∥ n2Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

|ϕ(m)
k,n − ϕk,n|.

Using (4.9) we arrive at

∥∥∥∥d
2u(m)

k

dx2
− d2uk

dx2

∥∥∥∥
L2(I )

≤ √
2π

∥∥∥∥ n2Gk,m,n

|n| − ak − ibkn
− n2Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

‖Fk(u(x), x)‖L2(I )

+√
2π

∥∥∥∥ n2Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

L‖u(m)(x) − u(x)‖L2(I ,RN ).

By virtue of Lemma A4 along with (4.10), we obtain that d2u(m)

dx2
→ d2u

dx2
as m → ∞

in L2(I , R
N ). Therefore, u(m)(x) → u(x) in the H2

c (I , R
N ) norm as m → ∞.

Suppose that u(m)(x) is trivial in the interval I for a certain m ∈ N. This will yield
a contradiction to our assumption that Gk,m,n Fk(0, x)n 
= 0 for a certain 1 ≤ k ≤ N
and some n ∈ Z. The analogical reasoning holds for the solution u(x) of the limiting
system of Eq. (1.2). ��
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Appendix

Let Gk(x) be a function, Gk(x) : R → R, for which we denote its standard Fourier
transform using the hat symbol as

Ĝk(p) := 1√
2π

∫ ∞

−∞
Gk(x)e

−i pxdx, p ∈ R. (5.1)

Clearly,

‖Ĝk(p)‖L∞(R) ≤ 1√
2π

‖Gk(x)‖L1(R) (5.2)
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and Gk(x) = 1√
2π

∫ ∞

−∞
Ĝk(q)eiqxdq, x ∈ R. By means of (5.2), we have

‖pĜk(p)‖L∞(R) ≤ 1√
2π

∥∥∥∥dGk(x)

dx

∥∥∥∥
L1(R)

. (5.3)

For the technical purposes we will use the auxiliary quantities

Na, b, k := max
{∥∥∥ Ĝk(p)

|p| − ak − ibk p

∥∥∥
L∞(R)

,

∥∥∥ p2Ĝk(p)

|p| − ak − ibk p

∥∥∥
L∞(R)

}
, (5.4)

where ak ≥ 0, bk ∈ R, bk 
= 0 are the constants, 1 ≤ k ≤ N , N ≥ 2. Under the
assumptions of Lemma A1 below, all the quantities (5.4) will be finite, so that

Na, b := max1≤k≤N Na, b, k < ∞. (5.5)

The auxiliary lemmas below are the adaptations of the ones proved in [16] in order to
study the single integro-differential equation with drift and superdiffusion, analogical
to system (1.2). Let us provide them for the convenience of the readers.

Lemma A1 Let N ≥ 2, 1 ≤ k ≤ N , bk ∈ R, bk 
= 0 and Gk(x) : R → R, Gk(x) ∈
W 1,1(R) and 1 ≤ l ≤ N − 1.

a) Let ak > 0 for 1 ≤ k ≤ l. Then Na, b, k < ∞.
b) Let ak = 0 for l + 1 ≤ k ≤ N and additionally xGk(x) ∈ L1(R). Then N0, b, k <

∞ if and only if

(Gk(x), 1)L2(R) = 0 (5.6)

is valid.

Proof First of all, it can be trivially checked that in both cases a) and b) of the lemma,
under our assumptions the expressions

p2Ĝk(p)

|p| − ak − ibk p
∈ L∞(R), 1 ≤ k ≤ N . (5.7)

Evidently, the functions
p

|p| − ak − ibk p
are bounded and pĜk(p) ∈ L∞(R) via

inequality (5.3) above, which yields (5.7). We turn our attention to establishing the
result of the part a) of our lemma. Let us estimate the expressions

|Ĝk(p)|√
(|p| − ak)2 + b2k p

2
, 1 ≤ k ≤ l. (5.8)
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Clearly, the numerator of (5.8) can be bounded from above via (5.2) and the denomi-
nator in (5.8) can be trivially estimated below by a finite, positive constant, so that

∣∣∣∣ Ĝk(p)

|p| − ak − ibk p

∣∣∣∣ ≤ C‖Gk(x)‖L1(R) < ∞

as assumed. Here and below C will stand for a finite, positive constant. This implies
that under the given conditions, if ak > 0 we have Na, b, k < ∞. In the cases of
ak = 0, we will use that

Ĝk(p) = Ĝk(0) +
∫ p

0

dĜk(s)

ds
ds.

Thus,

Ĝk(p)

|p| − ibk p
= Ĝk(0)

|p| − ibk p
+

∫ p
0

dĜk (s)
ds ds

|p| − ibk p
. (5.9)

Using definition (5.1) of the standard Fourier transform, we easily obtain

∣∣∣∣dĜk(p)

dp

∣∣∣∣ ≤ 1√
2π

‖xGk(x)‖L1(R).

Hence,

∣∣∣∣
∫ p
0

dĜk (s)
ds ds

|p| − ibk p

∣∣∣∣ ≤ ‖xGk(x)‖L1(R)√
2π(1 + b2k )

< ∞

due to our assumptions. Therefore, the expression in the left side of (5.9) is bounded
if and only if Ĝk(0) = 0, which is equivalent to orthogonality relation (5.6). ��
We introduce the following technical expressions, which will help us to study systems
(2.8).

N (m)
a, b, k := max

{∥∥∥ Ĝk,m(p)

|p| − ak − ibk p

∥∥∥
L∞(R)

,

∥∥∥ p2Ĝk,m(p)

|p| − ak − ibk p

∥∥∥
L∞(R)

}
,

(5.10)

where ak ≥ 0, bk ∈ R, bk 
= 0 are the constants, 1 ≤ k ≤ N , N ≥ 2 and m ∈ N.
Under the conditions of Lemma A2 below, expressions (5.10) will be finite. This will
enable us to define

N (m)
a, b := max1≤k≤N N

(m)
a, b, k < ∞ (5.11)

with m ∈ N. We have the following technical proposition.
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Lemma A2 Let m ∈ N, N ≥ 2, 1 ≤ k ≤ N , bk ∈ R, bk 
= 0 and Gk,m(x) : R →
R, Gk,m(x) ∈ W 1,1(R), so that Gk,m(x) → Gk(x) in W 1,1(R) as m → ∞ and
1 ≤ l ≤ N − 1.

(a) Let ak > 0 for 1 ≤ k ≤ l.
(b) Let ak = 0 for l + 1 ≤ k ≤ N and in addition xGk,m(x) ∈ L1(R), so that

xGk,m(x) → xGk(x) in L1(R) as m → ∞ and

(Gk,m(x), 1)L2(R) = 0, m ∈ N (5.12)

is valid. Let in addition

2
√

πN (m)
a, bL ≤ 1 − ε (5.13)

for all m ∈ N as well with a certain fixed 0 < ε < 1. Then, for all 1 ≤ k ≤ N, we
have

Ĝk,m(p)

|p| − ak − ibk p
→ Ĝk(p)

|p| − ak − ibk p
, m → ∞, (5.14)

p2Ĝk,m(p)

|p| − ak − ibk p
→ p2Ĝk(p)

|p| − ak − ibk p
, m → ∞ (5.15)

in L∞(R), so that

∥∥∥∥ Ĝk,m(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

→
∥∥∥∥ Ĝk(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

, m → ∞, (5.16)

∥∥∥∥ p2Ĝk,m(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

→
∥∥∥∥ p2Ĝk(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

, m → ∞. (5.17)

Furthermore,

2
√

πNa, bL ≤ 1 − ε. (5.18)

Proof By means of inequality (5.2), we easily obtain for 1 ≤ k ≤ N that

‖Ĝk,m(p) − Ĝk(p)‖L∞(R) ≤ 1√
2π

‖Gk,m(x) − Gk(x)‖L1(R) → 0, m → ∞
(5.19)

due to the one of our assumptions. Evidently, (5.16) and (5.17) will trivially follow
from the statements of (5.14) and (5.15) respectively by virtue of the standard triangle
inequality.
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We use the fact that the functions
p

|p| − ak − ibk p
∈ L∞(R) along with the analog

of bound (5.3). This yields

∣∣∣∣ p2Ĝk,m(p)

|p| − ak − ibk p
− p2Ĝk(p)

|p| − ak − ibk p

∣∣∣∣ ≤ C‖p[Ĝk,m(p) − Ĝk(p)]‖L∞(R)

≤ C√
2π

∥∥∥∥dGk,m(x)

dx
− dGk(x)

dx

∥∥∥∥
L1(R)

.

Thus,

∥∥∥∥ p2Ĝk,m(p)

|p| − ak − ibk p
− p2Ĝk(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

≤ C√
2π

∥∥∥∥dGk,m(x)

dx
− dGk(x)

dx

∥∥∥∥
L1(R)

→0

as m → ∞ via the one of our assumptions, so that (5.15) is valid. Let us establish
(5.14) in the situation a) when ak > 0. For that purpose we need to consider

|Ĝk,m(p) − Ĝk(p)|√
(|p| − ak)2 + b2k p

2
, 1 ≤ k ≤ l. (5.20)

Evidently, the denominator in fraction (5.20) can be bounded from below by a positive
constant and the numerator in (5.20) can be estimated from above by means of (5.19).
Hence,

∥∥∥∥ Ĝk,m(p)

|p| − ak − ibk p
− Ĝk(p)

|p| − ak − ibk p

∥∥∥∥
L∞(R)

≤ C‖Gk,m(x) − Gk(x)‖L1(R) → 0

as m → ∞ due to the one of the assumptions, so that (5.14) is valid in the case a)
of the lemma. Then we turn our attention to proving (5.14) in the situation b) when
ak = 0. In this case orthogonality conditions (5.12) are valid as assumed. We easily
derive that the analogical statements will hold in the limit. Evidently,

|(Gk(x), 1)L2(R)| = |(Gk(x) − Gk,m(x), 1)L2(R)| ≤ ‖Gk,m(x) − Gk(x)‖L1(R) → 0

as m → ∞ by virtue of the one of our assumptions. Thus,

(Gk(x), 1)L2(R) = 0, l + 1 ≤ k ≤ N (5.21)

is valid. Obviously, we have

Ĝk(p) = Ĝk(0) +
∫ p

0

dĜk(s)

ds
ds, Ĝk,m(p) = Ĝk,m(0) +

∫ p

0

dĜk,m(s)

ds
ds,
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with l + 1 ≤ k ≤ N , m ∈ N. Formulas (5.21) and (5.12) imply that

Ĝk(0) = 0, Ĝk,m(0) = 0, l + 1 ≤ k ≤ N , m ∈ N.

Hence,

∣∣∣∣ Ĝk,m(p)

|p| − ibk p
− Ĝk(p)

|p| − ibk p

∣∣∣∣ =
∣∣∣∣
∫ p
0

[
dĜk,m(s)

ds − dĜk(s)
ds

]
ds

|p| − ibk p

∣∣∣∣. (5.22)

Using the definition of the standard Fourier transform (5.1) we easily derive

∣∣∣∣dĜk,m(p)

dp
− dĜk(p)

dp

∣∣∣∣ ≤ 1√
2π

‖xGk,m(x) − xGk(x)‖L1(R).

This allows us to obtain the estimate from above on the right side of (5.22) as

‖xGk,m(x) − xGk(x)‖L1(R)√
2π(1 + b2k )

,

such that

∥∥∥∥ Ĝk,m(p)

|p| − ibk p
− Ĝk(p)

|p| − ibk p

∥∥∥∥
L∞(R)

≤ ‖xGk,m(x) − xGk(x)‖L1(R)√
2π(1 + b2k )

→ 0, m → ∞

as assumed. Therefore, (5.14) is valid in the case b) of the lemma when ak = 0.
Evidently, under the stated conditions we have

Na, b, k < ∞, N (m)
a, b, k < ∞, m ∈ N, 1 ≤ k ≤ N , ak ≥ 0, bk ∈ R, bk 
= 0

by means of the result of Lemma A1 above. We have inequalities (5.13). An trivial
limiting argument using (5.16) and (5.17) gives us (5.18). ��
Consider the functionGk(x) : I → R, so thatGk(0) = Gk(2π). Its Fourier transform
on our finite interval is given by

Gk,n :=
∫ 2π

0
Gk(x)

e−inx

√
2π

dx, n ∈ Z, (5.23)

such that Gk(x) =
∑∞

n=−∞ Gk,n
einx√
2π

. Obviously, the upper bound

‖Gk,n‖l∞ ≤ 1√
2π

‖Gk(x)‖L1(I ) (5.24)
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is valid. Evidently, if our function is continuous on the interval I , we have the estimate
from above

‖Gk(x)‖L1(I ) ≤ 2π‖Gk(x)‖C(I ). (5.25)

The upper bound

‖nGk,n‖l∞ ≤ 1√
2π

∥∥∥∥dGk(x)

dx

∥∥∥∥
L1(I )

(5.26)

trivially comes from (5.24). Analogously to the whole real line case, we define

Na, b, k := max

{∥∥∥∥ Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

,

∥∥∥∥ n2Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

}
, (5.27)

where ak ≥ 0, bk ∈ R, bk 
= 0 are the constants, 1 ≤ k ≤ N , N ≥ 2. Let
N0, b, k denote (5.27) when ak vanishes. Under the conditions of Lemma A3 below,
the expressions Na, b, k will be finite. This will enable us to introduce

Na, b := max1≤k≤NNa, b, k < ∞. (5.28)

We have the following elementary statement.

Lemma A3 Let N ≥ 2, 1 ≤ k ≤ N , bk ∈ R, bk 
= 0, 1 ≤ l ≤ N − 1 and
Gk(x) : I → R, Gk(x) ∈ C(I ), dGk (x)

dx ∈ L1(I ), Gk(0) = Gk(2π).

(a) Let ak > 0 for 1 ≤ k ≤ l. Then Na, b, k < ∞.

(b) If ak = 0 for l + 1 ≤ k ≤ N then N0, b, k < ∞ if and only if the orthogonality
relation

(Gk(x), 1)L2(I ) = 0 (5.29)

holds.

Proof It can be easily checked that in both cases (a) and (b) of our lemma under the
given conditions we have

n2Gk,n

|n| − ak − ibkn
∈ l∞, 1 ≤ k ≤ N . (5.30)

Clearly, n
|n|−ak−ibkn

∈ l∞ and nGk,n ∈ l∞ via inequality (5.26) along with the one of
the stated assumptions. Hence (5.30) is valid.

Let us establish the statement of the part a) of the lemma. For that purpose, we need
to consider the expression

|Gk,n|√
(|n| − ak)2 + b2kn

2
, 1 ≤ k ≤ l. (5.31)
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Evidently, the denominator in (5.31) can be easily bounded from below by a positive
constant. The numerator in (5.31) can be trivially estimated from above by means
of (5.24) along with (5.25). Hence, Na, b, k < ∞ in the case when ak > 0. Let us
demonstrate the validity of the result of the lemma in the situation when ak = 0.
Obviously,

∣∣∣∣ Gk,n

|n| − ibkn

∣∣∣∣, l + 1 ≤ k ≤ N

is bounded if and only if Gk,0 = 0. This is equivalent to orthogonality condition
(5.29). In this case we easily arrive at for l + 1 ≤ k ≤ N that

∣∣∣∣ Gk,n

|n| − ibkn

∣∣∣∣ ≤ 1√
2π |n|

‖Gk(x)‖L1(I )√
1 + b2k

≤ √
2π

‖Gk(x)‖C(I )√
1 + b2k

< ∞

by virtue of (5.24) and (5.25) under our assumptions. ��
In order to study the systems of Eq. (2.10), we will use

N (m)
a, b, k := max

{∥∥∥∥ Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

,

∥∥∥∥ n2Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

}
, (5.32)

where ak ≥ 0, bk ∈ R, bk 
= 0 are the constants, 1 ≤ k ≤ N , N ≥ 2 and m ∈ N.
Under the assumptions of Lemma A4 below, we have that allN (m)

a, b, k < ∞. This will
allow us to introduce

N (m)
a, b = max1≤k≤NN (m)

a, b, k, m ∈ N. (5.33)

We conclude the work with the following auxiliary proposition.

Lemma A4 Let m ∈ N, N ≥ 2, 1 ≤ k ≤ N , bk ∈ R, bk 
= 0, 1 ≤ l ≤ N − 1 and

Gk,m(x) : I → R, Gk,m(x) ∈ C(I ),
dGk,m(x)

dx
∈ L1(I ), Gk,m(0) = Gk,m(2π),

and

Gk,m(x) → Gk(x) in C(I ),
dGk,m(x)

dx
→ dGk(x)

dx
in L1(I )

as m → ∞.

(a) Let ak > 0 for 1 ≤ k ≤ l.
(b) Let ak = 0 for l + 1 ≤ k ≤ N and in addition

(Gk,m(x), 1)L2(I ) = 0, m ∈ N. (5.34)
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We also assume that

2
√

πN (m)
a, bL ≤ 1 − ε (5.35)

is valid for all m ∈ N as well with some fixed 0 < ε < 1. Then, for all 1 ≤ k ≤ N, we
have

Gk,m,n

|n| − ak − ibkn
→ Gk,n

|n| − ak − ibkn
, m → ∞, (5.36)

n2Gk,m,n

|n| − ak − ibkn
→ n2Gk,n

|n| − ak − ibkn
, m → ∞ (5.37)

in l∞, so that

∥∥∥∥ Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

→
∥∥∥∥ Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

, m → ∞, (5.38)

∥∥∥∥ n2Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

→
∥∥∥∥ n2Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

, m → ∞. (5.39)

Furthermore, the estimate

2
√

πNa, bL ≤ 1 − ε (5.40)

holds.

Proof Obviously, under the stated assumptions, the limiting kernels Gk(x), 1 ≤ k ≤
N are periodic as well. Indeed, we easily obtain

|Gk(0) − Gk(2π)| ≤ |Gk(0) − Gk,m(0)|
+ |Gk,m(2π) − Gk(2π)| ≤ 2‖Gk,m(x) − Gk(x)‖C(I ) → 0

as m → ∞ as assumed. Thus, Gk(0) = Gk(2π), 1 ≤ k ≤ N . By virtue of (5.24)
along with (5.25) we arrive at

‖Gk,m,n − Gk,n‖l∞ ≤ 1√
2π

‖Gk,m − Gk‖L1(I )

≤ √
2π‖Gk,m − Gk‖C(I ) → 0, m → ∞ (5.41)

due to the one of our assumptions. It can be trivially checked that the statements of
(5.36) and (5.37) will imply (5.38) and (5.39) respectively via the triangle inequality.
Using (5.26), we obtain the estimate from above

∥∥∥∥ n2Gk,m,n

|n| − ak − ibkn
− n2Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

≤ 1√
2π

∥∥∥∥ n

|n| − ak − ibkn

∥∥∥∥
l∞
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∥∥∥∥dGk,m(x)

dx
− dGk(x)

dx

∥∥∥∥
L1(I )

,

which tends to zero as m → ∞ as assumed, so that (5.37) is valid. Let us establish
(5.36) in the situation a) when ak > 0. For that purpose, we need to treat

|Gk,m,n − Gk,n|√
(|n| − ak)2 + b2kn

2
, 1 ≤ k ≤ l. (5.42)

Obviously, the denominator of (5.42) can be bounded frombelowby a positive constant
and the numerator estimated from above via (5.41). This gives us (5.36) for ak > 0.

Let us demonstrate the validity of (5.36) in the case case b) when ak = 0. By means
of the one of the given assumptions, we have orthogonality conditions (5.34). It can
be trivially checked that the analogical relations holds in the limit. Indeed,

|(Gk(x), 1)L2(I )| = |(Gk(x)

−Gk,m(x), 1)L2(I )| ≤ 2π‖Gk,m(x) − Gk(x)‖C(I ) → 0, m → ∞

via the one of our assumptions. Thus,

(Gk(x), 1)L2(I ) = 0, l + 1 ≤ k ≤ N .

This is equivalent to Gk,0 = 0, l + 1 ≤ k ≤ N . Evidently, Gk,m,0 = 0, l + 1 ≤ k ≤
N , m ∈ N by virtue of orthogonality condition (5.34). Using (5.41), we easily obtain
that

∣∣∣∣Gk,m,n − Gk,n

|n| − ibkn

∣∣∣∣ ≤
√
2π‖Gk,m(x) − Gk(x)‖C(I )√

1 + b2k

.

Since the norm in the right side of this estimate from above tends to zero as m → ∞,
(5.36) holds in the case when ak = 0 as well. Clearly, under the stated assumptions
we have

Na, b, k < ∞, N (m)
a, b, k < ∞, m ∈ N, 1 ≤ k ≤ N , ak ≥ 0, bk ∈ R, bk 
= 0

by virtue of the result of our LemmaA3 above. We assume the validity of upper bound
(5.35). A simple limiting argument using (5.38) and (5.39) gives us (5.40). ��
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