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Abstract
Let M and N be doubly connected Riemann surfaces with C 1,α boundaries and with
nonvanishing conformal metrics σ and ℘ respectively, and assume that ℘ is a smooth
metric with bounded Gauss curvature K and finite area. Assume that H℘(M, N ) is
the class of all W 1,2 homeomorphisms between M and N and assume that E℘ :
H℘(M, N ) → R is the Dirichlet-energy functional, where H℘

(M, N ) is the closure
of H℘(M, N ) in W 1,2(M, N ). By using a result of Iwaniec, Kovalev and Onninen
in Iwaniec et al. (Duke Math J 162(4):643–672, 2013) that the minimizer, is locally
Lipschitz, we prove that the minimizer, of the energy functional E℘ , which is not a
diffeomorphism in general, is a globally Lipschitz mapping of M onto N . Note that,
this result is new also for flat Riemann surfaces, i.e. for the planar domains furnished
with the Euclidean metric.
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1 Introduction

The primary goal of this paper is to study the Lipschitz behavior of stationary defor-
mations of the Dirichlet energy of mappings between doubly-connected Riemann
surfaces. The existence part has been proved. More precisely, Iwaniec, Koh, Kovalev,
and Onninen in [8] proved that there exists so-called deformation f that maps a double
connected domain X onto a doubly connected domain Y in the complex plane and
which minimizes the Dirichlet energy integral throughout the class of deformations
D(X,Y)which contains the class of all SobolevW 1,2(X) homeomorphisms. Themin-
imizer is a harmonic diffeomorphism, provided that the conformal moduli satisfy the
relation Mod(X) ≤ Mod(Y). Moreover, the Dirichlet energy is invariant under con-
formal change of the original domain. This is why the original domain can be chosen
to be equal to X = A(r , R) := {z : r < |z| < R}. The Hopf’s differential defined by
Hopf( f ) = fz f z has very special form for so-called stationary deformations namely

Hopf( f )(z) = c

z2
, z ∈ A(r , R).

Later this result has been generalized by the author in [14] for certain metrics ℘

satisfying some general conditions in Y.
In this case Hopf’s differential is defined by

Hopf( f ) = ℘2( f (z)) fz f z

and has a very special form for a so-called stationary deformation namely

Hopf( f )(z) = c

z2
, z ∈ A(r , R),

see Sect. 2.1 below.
Further, in [9], Iwaniec, Kovalev, and Onninen proved that every stationary defor-

mation is locally Lipschitz in the domain.
In [12] the author proved that if f : X

onto−→ Y is a ρ-harmonic diffeomorphic
minimizer, and ∂X, ∂Y ∈ C 2 then f is Lipschitz continuous up to the boundary.

In [15] the author and Lamel proved that a minimizer of the Euclidean Dirichlet
energy that is a diffeomorphic surjection of X onto Y has smooth extension up to the
boundary. More precisely, they proved that if f : X onto−→ Y is a Euclidean diffeomor-
phic minimizer, so that ∂X, ∂Y ∈ C 1,α , then the f ∈ C 1,α′

(X), where α′ = α, if
Mod(X) ≥ Mod(Y) and α′ = α/(2 + α) if Mod(X) < Mod(Y).

In [13] the author extended the main result in [15] and proved the following exten-
sion of the Kellogg theorem. Every diffeomorphic minimiser of Dirichlet energy of
Sobolev mappings between doubly connected Riemannian surfaces (X, σ ) and (Y, ρ)

having C n,α boundary, 0 < α < 1, is C n,α up to the boundary, provided the metric
ρ is smooth enough. Here n is a positive integer. It is crucial that every diffeomor-
phic minimizer of Dirichlet energy is a harmonic mapping with a very special Hopf
differential and this fact is used in the proof.
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1.1 Harmonic mappings between Riemann surfaces

Let M = (X, σ ) and N = (Y, ℘) be Riemann surfaces with metrics σ and ℘,
respectively, where X and Y are planar domains. If a mapping f : M → N , is C2,
then f is said to be harmonic (to avoid confusion we will sometimes say ℘-harmonic)
if

fzz + (log℘2)w ◦ f · fz fz̄ = 0, (1.1)

where z and w are the local parameters on M and N respectively. Also f satisfies
(1.1) if and only if its Hopf differential

Hopf( f ) = ℘2 ◦ f fz fz̄ (1.2)

is the holomorphic quadratic differential on M . Let

|∂ f |2 := ℘2( f (z))

σ 2(z)

∣
∣
∣
∣

∂ f

∂z

∣
∣
∣
∣

2

and |∂̄ f |2 := ℘2( f (z))

σ 2(z)

∣
∣
∣
∣

∂ f

∂ z̄

∣
∣
∣
∣

2

where ∂ f
∂z and ∂ f

∂ z̄ are standard complex partial derivatives. The ℘-Jacobian is defined
by

J ( f ) := |∂ f |2 − |∂ f̄ |2.

If u is sense preserving, then the ℘-Jacobian is positive. The Hilbert-Schmidt norm
of differential d f is the square root of the energy e( f ) and is defined by

|d f | =
√

2|∂ f |2 + 2|∂ f̄ |2. (1.3)

For g : M �→ N the ℘-Dirichlet energy is defined by

E℘[g] =
∫

M
|dg|2dVσ , (1.4)

where ∂g, and ∂̄g are the partial derivatives taken with respect to the metrics � and σ ,
and dVσ , is the volume element on (M, σ ), which in local coordinates takes the form
σ 2(w)du ∧ dv, w = u + iv. Assume that the energy integral of f is bounded. Then
a stationary point f of the corresponding functional where the homotopy class of f
is the range of this functional is a harmonic mapping. In order to derive the equation
(1.1), we have to use the outer variation, namely: gt = f + th, t ∈ (−ε, ε), where
h has a compact support in X. Recall that M = (X, σ ). For the last definition and
some important properties of harmonic maps see [10, Chapter 8]. We refer to Sect. 2.1
below, for type another variation, the so-called inner variation, where a different class
of stationary mappings is derived.
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It follows from the definition that, if a is conformal and f is harmonic, then f ◦ a
is harmonic. Moreover if b is conformal, b ◦ f is also harmonic but with respect to
(possibly) an another metric ℘1.

Notice that the harmonicity and Dirichlet energy do not depend on metric σ on
a domain so we will assume from now on σ(z) ≡ 1. This is why throughout this
paper M = (X, 1) and N = (Y, ℘) will be doubly connected domains in the complex
plane C (possibly unbounded), where 1 is the Euclidean metric. Moreover ℘ is a
nonvanishing smooth metric defined in Y with bounded Gauss curvature K where

K(z) = −	 log℘(z)

℘2(z)
, (1.5)

(we put κ := supz∈Y |K(z)| < ∞) and with a finite area defined by

A(℘) =
∫

Y

℘2(w)dudv, w = u + iv.

We call a metric ρ an admissible one if there is a constant C℘ > 0 so that

|∇℘(w)| ≤ C℘℘(w), w ∈ Y i .e. ∇ log℘ ∈ L∞(Y) (1.6)

which means that ℘ is so-called approximately analytic function (c.f. [5]).
Assume that the domain of ℘ is the unit disk D := {z : |z| < 1} ⊂ C. From

(1.6) and boundedness of ℘, it follows that it is Lipschitz, and so it is continuous up
to the boundary. Again by using (1.6), the function ψ(t) = ℘(teiβ), 0 < t < 1,
β ∈ [0, 2π ] satisfies the differential inequalities −C℘ ≤ ∂t logψ(t) ≤ C℘ , which by
integrating in [0, t] imply that ψ(0)e−C℘ t ≤ ψ(t) ≤ ψ(0)eC℘ t . Therefore under the
above conditions there holds the double inequality

0 < ℘(0)e−C℘ ≤ ℘(w) ≤ ℘(0)eC℘ < ∞, w ∈ D. (1.7)

A similar inequality to (1.7) can be proved for Y instead of D. The Euclidean met-
ric (℘ ≡ 1) is an admissible metric. The Riemannian metric defined by ℘(w) =
1/(1 + |w|2)2 is admissible as well. The Hyperbolic metric h(w) = 1/(1 − |w|2)2 is
not an admissible metric on the unit disk neither on the annuli A(r , 1) := {z : r <

|z| < 1}, but it is admissible in A(r , R) := {z : r < |z| < R}, where 0 < r < R < 1.
We call such a metric allowable one (cf. [1, P. 11]). If ℘ is a given metric in Y, we
conventionally extend it to be equal to 0 in ∂Y. As we already pointed out, we will
study the minimum of Dirichlet integral of mappings between certain sets. We refer
to the introduction of [8] and references therein for a good setting of this problem and
some connection with the theory of nonlinear elasticity. Notice first that a change of
variables w = f (z) in (1.4) yields

E℘[ f ] = 2
∫

X

℘2( f (z))J f (z) dz + 4
∫

X

℘2( f (z))| fz̄ |2dz ≥ 2A(℘) (1.8)
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where J f is the Jacobian determinant and A(℘) is the area of Y and dz := dx ∧ dy
is the area element w.r. to Lebesgue measure on the complex plane. A conformal
mapping of f : X onto−→ Y; that is, a homeomorphic solution of the Cauchy-Riemann
system fz̄ = 0, would be an obvious choice for the minimizer of (1.8). For arbitrary
multiply connected domains there is no such mapping.

Any energy-minimal diffeomorphism satisfies Euler-Lagrange equation, since one
can perform first variations while preserving the diffeomorphism property. However,
in the case of Euclidean metric ℘ ≡ 1, the existence of a harmonic diffeomorphism
between certain sets does not imply the existence of an energy-minimal one, see
[8, Example 9.1]. Example 9.1 in [8] has been constructed with help of affine self-
mappings of the complex plane. For a general metric ℘, affine transformations are not
harmonic, thus we cannot produce a similar example.

1.2 Statement of results

Assume that X and Y are doubly-connected domains, whose boundary components
are Jordan curves, and let ℘ be an admissible metric in Y.

Assume thatW 1,2
℘ (X,Y) is the class of mappings that belongs toW 1,2

loc and satisfy
the inequality

∫

X

℘2( f (z))(| fz|2 + | fz̄ |2)dxdy +
∫

X

℘2( f (z))| f (z)|2dxdy < ∞.

Assume that H℘(X,Y) ⊂ W 1,2
℘ (X,Y) is the class of homeomorphic mappings

betweenX andY, that maps the inner boundary onto inner boundary and outer bound-
ary onto the outer boundary.

Let H℘
(X,Y) be the closure of H℘(X,Y) in the strong topology of W 1,2

℘ (X,Y).
Now in view of (1.7), we can see that

W 1,2
℘ (X,Y) = W 1,2(X,Y)

and

H℘(X,Y) = H(X,Y),

where the class H(X,Y) stands for the corresponding class for the case ℘ = 1, i.e.
when ℘ is the Euclidean metric.

Then by [6, eq. 2.4] (or [7]), we have that H(X,Y) coincides with the closure in
the weak topology of H(X,Y) of W 1,2(X,Y) and as well as with the weak limit of
homeomorphisms h j : X onto−→ Y in the Sobolev space W 1,2(X,Y), provided that the
target annulus is Lipschitz regular.

The main result of this paper is the following extension of the main result in [12].

Theorem 1.1 Suppose that X and Y are doubly connected domains in C with C 1,α

boundaries. In other words, the boundaries ofX andY are two pairs of smooth Jordan
curves. Let℘ be an admissiblemetric inY. Then there exists amappingw ∈ H℘

(X,Y)
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that minimizes℘-energy throughout the classH℘(X,Y) and it is Lipschitz continuous
up to the boundary of X. For Mod(X) ≤ Mod(Y), the minimizer w is a ρ-harmonic
diffeomorphism of X onto Y.

Remark 1.2 In contrast to the main result obtained in [12], in Theorem 1.1 the mini-
mizer is not necessarily a diffeomorphism, and such a minimizer exists almost always
except in some degenerate cases (see Proposition 2.2 below). Note that this result is
also new for ℘ ≡ 1 i.e. for the Euclidean metric.

The minimizer of the energy is not always a homeomorphism. In fact, for the mini-
mizer to be a homeomorphism, the domains X and Y need to satisfy some conditions.
As it is said before the conditionMod(X) ≤ Mod(Y) that theminimizer is a certain har-
monic diffeomorphism of X onto Y. The example below (Example 1.3) is taken from
[14] for general radial metric. It shows that the minimizer of the energy is not always
a homeomorphism between X and Y. For a corresponding example for the Euclidean
metric see [8]. The same result can be stated for somehow more general setting under
the additional condition Mod(X) ≤ Mod(Y), namely we can minimize the Dirich-
let energy throughout the class of all deformations D℘(X,Y) ⊇ H(X,Y), where
D℘(X,Y) is the so-called class of deformations [8, 14]. In that case, the minimizer is
a harmonic diffeomorphism. We believe that the same conclusion of Theorem 1.1 still
holds if we replace Sobolev homeomorphisms by deformations, without imposing the
inequality between moduli of annuli. Indeed the only important thing we need for the
proof is that the minimizer has a continuous extension up to the boundary, and we
were able to get such behavior for the limit of homeomorphisms (see the last part of
Proposition 2.2).

Example 1.3 Assume that ℘(w) = ρ(|w|) is a radial metric defined in the annulus
�∗ = A(1, R). Assume that � = A(1, r). Choose

r < r� = exp

(
∫ R

1

ρ(y)dy
√

y2ρ2(y) − R2ρ2(R)

)

.

Then r < r� < 1.
Further for γ = −δ2ρ2(δ), we have well-defined function

q�(s) = exp

(
∫ s

σ

dy
√

y2 − δ2ρ2(δ)�2

)

, δ ≤ s ≤ σ. (1.9)

Then the infimum Eρ(�,�∗) is realized by a non-injective deformation h : �
onto−→

�∗

h(z) =
{

R z
|z| for r < |z| ≤ r�

h�(z) for r� ≤ |z| < 1

where h�(z) = p�(|z|)eit = (q�)−1(|z|)eit , z = |z|eit and q� is defined in (1.9) below
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Here the radial projection z �→ Rz/|z| hammers A(r , r�) onto the circle |z| = R
while the critical ρ-Nitsche mapping h� takes A(r�, 1) homeomorphically onto �∗.

2 Preliminary results

2.1 Stationary mappings

We call a mapping h ∈ H℘
(X,Y) stationary if

d

dt

∣
∣
∣
∣
t=0

E℘[h ◦ φ−1
t ] = 0 (2.1)

for every family of diffeomorphisms t → φt : X → X which depends smoothly
on the parameter t ∈ R and satisfy φ0 = id. The latter mean that the mapping
X × [0, ε0] � (z, t) → φt (z) ∈ X is a smooth mapping for some ε0 > 0. We now
have.

Lemma 2.1 [14]LetX = A(r , R)bea circular annulus,0 < r < R < ∞, andassume
that Y is a doubly connected domain. If h ∈ H℘

(X,Y) is a stationary mapping, then

℘2(h(z))hzhz̄ ≡ c

z2
in X (2.2)

where c ∈ R is a constant. Moreover c ≥ 0 if Mod(X) ≤ Mod(Y) and c < 0 if
Mod(X) > Mod(Y).

Notice that the corresponding lemma in [14] is for deformations, but the proofworks
as well for the class H℘

(X,Y) ⊂ D℘(X,Y). We can also prove this by following
the lines of the corresponding Proposition 3.4 in [6]. The only difference is that the
corresponding Hopf differential contains ℘2( f (z)). For the definition of D℘(X,Y)

and related concepts we refer to [8, 14].
Now we have the following general result

Proposition 2.2 LetX andY be bounded doubly connected planar domains, such that
Y is a Lipschitz domain. Assume that the boundary components ofX do not degenerate
into points.

(1) There exists h ∈ H℘
(X,Y) such that

E℘[h] = E℘(X,Y) = inf{E℘[h] : h ∈ H℘(X,Y)}.

(2) IfMod(X) ≤ Mod(Y), then h is a ρ-harmonic diffeomorphism of X onto Y.
(3) The mapping h

(a) is a stationary mapping with respect to the definition (2.1)
(b) has a continuous extension up to the boundary of X.
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The first statement follows from [6, Theorem 1.1.] and [6, Lemma 2.9], in view
of (1.7). The second statement is already proved in [14]. The last statement of the
previous theorem follows from the inequality [6, Eq. 2.7]:

| f (x) − f (y)|2 ≤ C(X,Y)

log
(

e + diam(X)
|x−y|

)

∫

X

|Df |2dz, x, y ∈ X. (2.3)

The fact that
∫

X
|Df |2dz is finite follows from (1.7) and

∫

X

℘2( f )|Df |2dz < ∞.

3 Proof of themain result

We need the following important result concerning the local Lipschitz character of
certain mappings proved by Iwaniec et al. [9].

Proposition 3.1 Let h ∈ W 1,2(X) be a mapping with nonnegative Jacobian. Suppose
that the Hopf product hz hz̄ is bounded and Hölder continuous. Then h is locally
Lipschitz but not necessarily C 1-smooth.

We need also the following three results. To formulate the first one, let us define the
class of (K , K ′)− quasiconformal mappings, where K ≥ 1, K ′ ≥ 0. A mapping f :
X

onto−→ Y, between two planar domains X and Y is called (K , K ′)− quasiconformal
if f is continuous, f ∈ W 1,2

loc (X) and if | fz |2 + | fz̄ |2 ≤ K J ( f , z) + K ′ almost
everywhere in X.

Lemma 3.2 Every sense-preserving solution of Hopf equation so that Hopf( f ) is
bounded that maps A(1, R) into Y, mapping the inner/outer boundary to inner/outer
boundary is (K , K ′) quasiconformal, where

K = 1 and K ′ = sup
z∈A(1,R)

|c|
|z|2℘2( f )

.

Proof We have

|Df (z)|2 = | fz |2 + | fz̄ |2
≤ (| fz |2 − | fz̄ |2) + 2| fz̄ |2
≤ (| fz |2 − | fz̄ |2) + 2| fz̄ fz |.

Since

| fz̄ fz | = Hopf( f )

|℘( f (z))|2 = |c|
|z|2℘2( f )

≤ K ′.

This implies the claim. ��
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Further, we formulate the following local property of (K , K ′)-quasiconformalmap-
pings.

Proposition 3.3 [4, Theorem 12.3] Let K > 1, K ′ ≥ 0 and assume that f : X → C
is a (K , K ′)-quasiconformal mapping so that | f (z)| ≤ M, z ∈ X and assume that
X

′ � X and let d = dist(X′, ∂X). Then there is a constant C = C(K ) so that

| f (z) − f (z′)| ≤ C(K )(M + d
√
K ′)|z − z′|β, z, z′ ∈ X

′

where

β = K −
√

K 2 − 1.

If K = 1, then the above theorem can be formulated for K1 instead of K , where
K1 > 1 is an arbitrary constant. For example for K1 = 5/4, for which we get

β = K1 −
√

K 2
1 − 1 = 1/2.

We also need the following lemma

Lemma 3.4 [14]Assume thatXandYare doubly connected domainswithC 1,α bound-
aries, and assume that a : X onto−→ A(1, R) and b : A(1, ρ)

onto−→ Y are univalent
conformal mappings and define ℘1(w) = ℘(b(w))|b′(w)|, w ∈ A(1, ρ). Then

(a) E℘[b ◦ f ◦ a] = E℘1 [ f ] provided that one of the two sides exist.
(b) b ◦ f ◦ a ∈ H℘(X,Y) if and only if f ∈ H℘1(A(1, R),A(1, ρ))).
(c) ℘ is an admissible metric if and only if ℘1 is an admissible metric.
(d) b ◦ f ◦ a is ℘-harmonic if and only if f is ℘1-harmonic.

In conclusion, b ◦ f ◦ a is a minimizer if and only if f is a minimizer.

Proof of Theorem 1.1 The existence part has been discussed in Proposition 2.2. We
will apply a self-improving argument. In view of Lemma 3.4, we can assume that
X = A(1, R) for a constant R > 1. Assume that f : A(1, R) → Y, has the following
Hopf differential

℘2( f (z)) fz f̄z = c

z2
.

Let � : Y → A(1, ρ) be a conformal diffeomorphism and let � = �−1.
Then F(z) = � ◦ f : A(1, R) → A(1, ρ) is a minimizer of ℘1-energy, between

A(1, R) and A(1, ρ), where ℘1(ζ ) = ℘(�(ζ ))|�′(ζ )| and

Hopf(F)(z) = ℘2
1 (F(z))Fz F̄z = c

z2
. (3.1)

Further for

F̃(z) =
⎧

⎨

⎩

F(z), 1 < |z| ≤ R;
ρ2/F(R2/z̄), R ≤ |z| < R2

1/F(1/z̄), 1/R ≤ |z| ≤ 1,
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let

℘̃(w) =
⎧

⎨

⎩

℘1(w), 1 ≤ |w| ≤ ρ;
℘1(ρ

2/w̄), ρ < |w| < ρ2,

℘1(1/w̄), 1/ρ < |w| ≤ 1.

Observe that F̃ is continuous. Namely, if F(Reit ) = ρeis, then

ρ2/F(R2/(Re−i t )) = ρeis .

Thus F̃ : A(1/R, R2) → A(1/ρ, ρ2) is continuous and belongs to the same class as
F , which mean it is in W 1,2. Then by direct calculation, we get

Hopf(F̃) = ℘̃2(F̃(z))F̃z F̃ z =

⎧

⎪⎨

⎪⎩

c
z2

, 1 < |z| ≤ R;
ρ4

|F(R2/z̄)|4
c
z2

, R ≤ |z| < R2.
1

|F(1/z̄)|4
c
z2

, 1/R ≤ |z| < 1.

Let us demonstrate for example

Hopf(F̃) = 1

|F(1/z̄)|4
c

z2

for 1/R ≤ |z| < 1.
We have

F̃z(z) = d

dz

(

1

F( 1z̄ )

)

= 1

F2( 1z̄ )
Fz

(
1

z̄

)
1

z2

and

F̃ z(z) = d

dz

(

1

F( 1z̄ )

)

= 1

F2( 1z̄ )
Fz

(
1

z̄

)
1

z2
.

Then from (3.1) we get

℘̃2(F̃(z))F̃z(z)F̃ z(z) = 1

|F( 1z̄ )|4
cz2

z4
= 1

|F( 1z̄ )|4
c

z2
.

From the Kellogg theorem for conformal mappings, we know that �′ is C α up to
the boundary of Y. This implies in particular that the function

F̃z F̃ z = Hopf(F̃)

℘̃2(F̃(z))
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is bounded in A(1/R, R2). From Lemma 3.2, in view of Proposition 2.2, we obtain
that F̃ is (1, K̃ )-quasiconformal. Now Proposition 3.3 implies that F is 1

2 -Hölder
continuous in A(1, R). More precisely

|F̃(z) − F̃(z′)| ≤ C

(

ρ2 + R2 − 1

R2

√

K̃

)

|z − z′|1/2.

So

|F(z) − F(z′)| ≤ C

(

ρ2 + R2 − 1

R2

√

K̃

)

|z − z′|1/2.

This implies that F̃z F̃ z is α · 1/2-Hölder continuous as a composition of two map-
pings which are α- and 1/2-Hölder continuous respectively in A(1/R, R2). Now
Theorem 3.1 implies that F̃ is locally Lipschitz. In particular F is Lipschitz in
A(1, R) � A(1/R, R2). Therefore f : A(1, R) → Y is Lipschitz continuous. Now
Lemma 3.4 and Kellogg theorem for conformal mappings imply the claim. This fin-
ishes the proof of the main result. ��
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