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Abstract
We give some characterizations of Lipschitz type spaces of slice regular functions in
the unit ball of the skew field of quaternions with prescribed modulus of continuity.

Keywords Quaternionic slice regular functions - Lipschitz type spaces -
Schwarz-Pick lemma - Equivalent norms

Mathematics Subject Classification 30G30 - 30G35 - 35R11 - 51F30

1 Introduction

The quaternionic valued functions of a quaternionic variable, often referred to as slice
regular functions, was born in [1, 2]. This class of functions, which would somehow
resemble the classical theory of holomorphic functions of one complex variable, has
been studied extensively in the last years, see [2-8] and the references given there.

It was shown in [9, 10] some characterization of generalized Lipschitz type spaces
of holomorphic functions with prescribed behavior near the unit circle centered at the
origin, determined by a regular majorant in terms of the moduli of their members.
Rather surprisingly, several authors attempted to extend the aforementioned charac-
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terizations to (holomorphic) smoothness spaces of both complex and vector-valued
functions, see [11-16] and the references therein.

This paper is devoted to establish some analogous results of Dyakonov’s paper [9]
for the theory of slice regular quaternionic functions. The main results are Propo-
sition 3.5 and Corollary 3.15 of Proposition 3.14 as well as Corollary 3.18 of
Proposition 3.17.

2 Preliminaries
2.1 Antecedents in standard complex analysis

For the convenience of the reader, we recall the relevant material from [9, 10] and
provide some additional notations and terminology, thus making our exposition self-
contained.

Let ID stand for the unit disc in the complex plane C, S! be the unit circle and
D := DUS!. The algebra Hol (D) consists of those holomorphic functions on I that
are continuous up to st

A continuous function w : [0, 2] — R4 with @(0) = 0 will be called a regular

t
majorant if w () is increasing, ? is decreasing for ¢ € [0, 2] and such that

ot 2wt
/?dﬂrx/ %d;gcw(x), 0<x<2.
0 X

Here and subsequently C stands for a positive real constant, not necessarily the same
at each occurrence. When necessary, we will use subscripts to differentiate several
constants.

Given a regular majorant the Lipschitz type space, denoted by A, (D), consists (by
definition) of all complex valued functions f defined on ID such that

If@ = (Ol =Co(lz—¢D, Yz, eD.

The class A, (S"), is defined similarly.
Let us state the main results of [9] as Theorems A and B, the proofs of which were
considerably shorted in [10].

Theorem A Let w be a regular majorant. A function f holomorphic in D is in A, (D)
if and only if so is its modulus | f|.

If f € Hol(DD), then | f| is a subharmonic function, hence the Poisson integral of
| f1, denoted by P[| f|], is equal to the smallest harmonic majorant in ID. In particular,
PlIfI1=1f1=0inD.

Theorem B Let w be a regular majorant, f € Hol(D), and assume the boundary
function of | f| belongs to Ay (S"). Then f is in Ay, (D) if and only if

PlIfI1@) = 1 f (@] = Co(l — |z]).
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The following notation will be needed

lf @) — f©O)

I flIA, @) = supf w(lz—2)) | 2,6 eD, z#¢} VfeCDO).

The notation 2 < B means that there exist positive constants C1 and C» such that
Ci12l < B < Gl

Let w be a majorant and f € Hol(D) N C (D, C). We introduce the following
notations:

P _
N =171 ||Aw<sl)+sup{ ”Q]((f)_ |Z'|{'(Z) Ize]DJ},
N>(f) = 1] ||Aw(sl)+sup{' 'f'(i)(l‘_'i')(“” | ces! 0<r< 1},

N3(f) =l 1 o, @)

In particular, we have:

1. If w and w? are regular majorants then

(PIFRIG) — 1 @)

Il flla,m@ < su | zeDy. 2.1
O =3 o(1— 2]
2. If w is a regular majorant then

I f A, @) < N1(f) < Na(f) < N3(f), (2.2)

forany f € Hol(D) N c(D, C).

2.2 Brief introduction to slice regular functions

A quaternion is given by g = xo + x1e1 + x2e2 + x3e3 where xo, x1, x2, x3 are real

values and the imaginary units satisfy: e% = e% = e% = —1,e1ep = —epe| = e3,
erez = —ezey = eq, e3e] = —eje3 = ep. The skew field of quaternions is denoted

by H. The sets {e1, ez, e3} and {1, ey, e, e3} are called the standard basis of R3 and
H, respectively. The vector part of ¢ € H is q = xje; + x2e2 + x3e3 and its real
part is go = xo. The quaternionic conjugation of g is ¢ = go — q and its norm is

lgll = \/x§+xl2+x§’+x§ =499 =/4qq.

By abuse of notation, the unit open ball in H will be denoted by D* = {q €
H | Jlgll < 1} so will the unit spheres in R3 (in H) by ST = {qeR||qI =1}
(S? := {g e H| |lg|| = 1}), respectively.

The quaternionic structure allows us to see that i> = —1, for every i € S?. Then
C@d) := {x +1iy; | x,y € R} ZC as fields, and any g € H \ R may be rewritten by
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x+ 1,y wherex,y e Rand I, := lqll~'q € S*;ie., q € C(,). Note that g € R
belongs to every complex plane.

Given u € S?, the mapping q — uqi for all q € R? is a quaternionic rotation that
preserves R?, see [17, 18]. For any i € S? we will write

D; := D* N Ca)
and
Si := SN CG).

Now, we recall few aspects of the slice regular functions theory of [4-6, 8, 19].

Definition 2.1 Let Q C H be an open domain. A real differentiable function f : Q@ —
H is called (left) slice regular function on €2 if

_ 1/0 .0 .
oif |m<C(i) = 5 (a +1£) [ |smcc<i) =0 onQ; := QNCOH),

for all i € S? and its derivative, or Cullen derivative, see [1], is given by

I
fr=aof |Qm@(i)= af |mC(i)= ax f |Qﬂ<C<i) :

Let SR(£2) denote the right linear space of slice regular functions on 2.

Definition 2.2 A set U C H is called axially symmetric if x +iy € U with x, y € R,
then {x +jy | j € S?} C Uand UNR # @. A domain U C His called slice domain,
or s-domain, if U; = U N C(i) is a domain in C(i) for all i € S2.

Let @ C H an axially symmetric s-domain. A function f € SR(2) is said to be
intrinsic if f(g) = f(q) for all ¢ € 2. The real linear space of intrinsic slice regular
functions on Q will be denoted by N (£2), see [7, 19]. We will denote by Z 1 the set of
zeroes of function f.

Theorem 2.3 Let Q C H be an axially symmetric s-domain and f € SR(R2).

1. (Splitting Property) For every i, j € S, orthogonal to each other, there exist holo-
morphic functions F, G : Qi — C(i) such that f\szi = F + Gj on 4, see [4].

2. (Representation Formula) For every g = x + 1,y € Qwithx,y € Rand]1, € S?
the following identity holds

1 1
S +1Iy) = E[f(x +iy) + f(x —iy)] + Elqi[f(x —iy) — f(x +iy)],

foralli € S, see [5].
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In the case of @ = D* and given f,g € SR(D*) there exist two sequences of
quaternions (a,) and (b,) such that

f@ =) q"an, g@) =) q"bn.
n=0 n=0

The product f * g is defined as f * g(q) := Y oo q" > t_oakbn—x forall g € D*.
For f(g) # 0 the following property holds

Fre@) = f@e(f@ 'qf @),

see [4]. What is more, if f* has no zeroes, the x-inverse of f is given by

and
Y ==fxfxf
where f°(q) 1= > poq"ay forallq € D*and f* := fx f<= f¢x f,see [4, 20,
21].
3 Main results

Definition 3.1 Let  be a regular majorant and i € S?. The set of all functions f :
D* — H such that

/)= fOI = Colllx —ylD), Vx,yeDy

will be denoted by ; A, (D).
We write iAw(S3) for the set of all functions f : S3 — H such that

Ifx) = fODI < Collx —yl), Vx,y€S;.
The norm of a function f € A, (D*) is defined as

ILf &) = FOII

, Dy, .
o(x—yp 7€ x#y}

”f”iAw(]D4) = sup {

Definition 3.2 Let ), w; be regular majorants and i, j € S* orthogonal to each other.
We write i Ay ,m, (ID)4) for the set of all functions f : D* — H such that

I fe(x) = fiDIl = Crax(llx — ylD),  Vx,y €Dy,
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for k = 1,2, where f |p,= fi + foj with fi, fo : Di — C(i). The set Ay, 0, (S)
consists of all f : S* — H such that

I fie(x) = fiWIl = Crax(llx — yl),  Vx,y €S,

for k = 1,2, where f |p,= f1 + faoj with fi, f> : S; — C(i). For f € iAwl,wz(D4)
we define

IAG) = AMIE A& — HOI?
wi(lx — ylH? wr(|lx — yl)?

”f”izAwl,wz(]D)“)zsup{ | X,)’GDL x;éy}

Giveni € S?, the i-Poisson integral of u € C(Sj, R) is

Pilul(q) = szn u(ei’)%dt cD*
M= 0 S lg—en 2 1T

Remark3.3 1. Let f € D* — Hand f = f; + foj on I with f, f> : Dj — Dj.
Then

2fi=f—ifi, 2oj= f+ifi, on Dy,
where i, j € S? are orthogonal to each other.
If j’ is another orthogonal vector toi and f = g1 + g2j' on Dj then f] = g1, fo» =

—g-j'j and due to the usage of the quaternionic norm in the previous definitions
we see that theses do not depends of the choose of j, since

If2(0) = 2Ol = llg2(x) — g2, Vx, y € Dy

2. Let w, w1, wp regular majorants and f : D* — H with f Io;= f1 + f2J, where
fi, f> : Dj = C(i), with i, j € S? are orthogonal to each other. Due to inequalities

/1) = finl

1A — HOI } =IfG) = fI = A& = AT+ 120 = L2001

for all x, y € Dy, we get that
iMoo = iA, (DY)
and
iAo, (DY) CiAwyta, D).

Similar relationships are obtained for iAy(S?) and iMoo (S$®.
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Definition 3.4 The symbol GA,,(D*) stands for the set of all quaternionic-valued
functions f defined on D* such that

If () = FDI < Co(llx —yl), V¥x,y D™

Meanwhile, G A, (S?) denotes the set of all quaternionic-valued functions f defined
on S3 such that

If(x) — fFODIl < Co(llx —yI), V¥x,yeS>.

Proposition 3.5 Let wy, wy regular majorants and i € S*. Then
iMooy DHNSRMY) C GAwytan (D NSRMY) C iAw1an (DY) NSRD?).

Proof The relationship G Ay, 40, (D*) N SRD*) C iAw w0, (D) N SR(D?) is a
direct consequence of Definition 3.4.

On the other hand, we shall see that given f € i Ay, w, (D*) N SR(D?) there exists
a constant L > 0 such that

2
If(p) = F@I =LY ex(llp —ql). ¥p.q eD*
k=1

Given p, g € D* consider the following cases:
1. Suppose that p and q are both the zero vector. By the Splitting Property we get

If(p) = F@DI =llfip) = i@l + 1 f2(p) = f2(@)l
=G (o1llp = gqlD) +wa2(llp —qlD)

where C3 = max{Cy, C»}. B
2. Suppose p is not the zero vector while q is. Consider z = po+i|p|and¢ = ¢ = ¢.
Combining the Representation Formula with Splitting Property we obtain

20£(p) — F@l =l (1 Py
Ipl

<2/f @ = FOI+215@) = fQOI

) (f@) = @)+ (1 n ”:%”n) f@ = f@Ol

2
§2Z(||fk(z) — @I+ 1@ = i)

k=1
=4Cs (o1(llp = ql) +w2(llp —qlD) .

where ||z — ¢ || = ||p — ¢]| is used.
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3. Consider p, g € D* such that neither p nor q is the zero vector. Set z = pg + i|p|
and ¢ = qo + i|q|. Representation Formula gives

21f(p) = f@I

:H{<1 ||p||>f()+( o) 10 (1 _||q||>f(o ( la ||i>f©}H

- H{(l - ﬂl) @ = 7en+ (1 + 7-> HEEFI3)

ol
P

+(— _ 4 ) (@) - f(c))}H
TIRRTT

<20f) = FOI+20FG) - f(C)II+Hm—m‘IIf(£) @I
<403Zwk(||z—;||>+H———H 32 op(IE = ¢
= el gl

Note that ||z — ¢ ]| = v/(po — g0)* + (Ipll = laD? < p — ¢ll and as @} and w)
are increasing functions then

21 f(p) = f(@)] =4C3 {

2
> (wk<||p —ql)+ 4”ﬂ - ﬂ” ok (2 nqn))}

k=1
(3.1)
If 2llqll < llp — qll then wr 2|lql)) < @ (llp —qll), fork =1,2, and
2
If(p) — f@I <3C3 Zwk(llp —qlD.
k=1
On the other hand, if ||p — ¢q|| < 2]|q]|, from (3.1), we get
- 1 2 2
||2f(P) F@ll <2314t P aqa szlclwk( llqlD
Zkzl wr(lp —ql) 4 1 lpll lqll Zk:l wr(lp —ql)
1 2. wCllgl)
<205 {14 | B Iy Tl
400el gl = exlip =4l
wrllql)
2
<204 H_ _ _H lql 2|lqll
Ipll  lallf llp— 61|| wk(llp ql)
Clp—al
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t
As wkt( ) is decreasing, for k = 1,2, and || p — ¢|| < 2|/q|| then
, wr 2liql)
Z 2lql <2
2 o(lp =4I
lp —qll
and
P a lal |+
If(p) = f(@)] <2C3 {1 + H— - —H —} > axlllp = ql.
el lalli ip —qll} =
It is easily seen that
LI S C [ HL _P P LH lal
el lall "l =gl — I lel fdall— lall gl ff 1 — ¢l
- lllall — liplll  Ilpqll Ip — all <2,
Iplilall llp =gl llp—qll
and
2
1F(p) = F@] <6C3 ) axllp —ql),
k=1
which completes the proof by choosing L = 6C3. O

Remark 3.6 We have proved more, namely that for w| = w; = w we are lead to
iro(DH NSRMY = GA, (DY NSRDY).

Therefore, every slice regular function space associated to a majorant on a fix slice, it is
also associated to the same majorant on the four-dimensional unit ball and reciprocally.

We proceed to describe some algebraic properties of the previously introduced func-
tions sets.

Proposition 3.7 Seri e S%.

1. Given a regular majorant w, the sets i Ao,(DY) NSR(D*) and G A,,(D*) NSR(D*)
are quaternionic right linear spaces.

2. Let w1, wy be two regular majorants and let f, g € iAw,,w, (ID)4). Foreverya e H
we have f 4+ g € iAw;,w (D% and

. 4
fa € iljayfjor+lallws, lazlloi+larllor D7),

where a = ay + axj with ay, ay € C(i) and j is orthogonal to i.
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Proof 1. Given f, g € jA,(D*) NSR(D*) and a € H we see that

[(fa+g)x) = (fa+ W <llalllf(x) = fFDI+lgx) =gl
=Co(llx —yl), Vx,y € Di.

Similar inequalities are used to see that GAw(]D)4) N SR(I[))4) is a quaternionic right
linear space.

2. Given f,g € iAw,.w,(D*) we have f + g € Ay 0, (D*) following a similar
computation to the above. Denote a = ai +a2j, f o= f1+ f2), & I;y= &1 + 82i
with j € S? orthogonal to i and a;, a, € C(i) and f1, f2, g1, &2 € Hol(D;). We
obtain that

falp,= (fia1 — fra) + (fiazx + fra1)j
and

(frar — fra2)(x) — (frar — f2a2) (W] = Cr(wr(llx — yIDllarl
+ w2 (llx — yIDllazlD,

I(fiaz + fra1)(x) — (fiaz + faa) (W) < Co(wr(lx — yIDllazll
+ wa(llx = ylDllarl).

for all x, y € ;.
Note that picking out max{||a; ||, |laz2||} we can prove that

4 4
iNaror+lallw, lazllor+larles D7) C iAo+, (D).
O
Corollary 3.8 Let w1, wy be two regular majorants and f € A, (D*) NN (D*). Then
”f”iAwl DY = ||f||kAw1 DY = ||f||iAw1,w2(D4)’

forallk € S2.

Proof Note that given f € N() there exists a sequence of real numbers (a,,);’lozo,

see [7, 19], such that f(g) = Z:O:o q"a, for all ¢ € D*. Therefore for all u € S* one
has that

1f ) = FOI = llu (Z x"ay =Y y%) il =Y uxi)"an — »_(uyit)"ay||
n=0

n=0 n=0 n=0

= |If(uxit) — f(uyw)]|.

Choosing u € S? such that uiii = k one obtains the first equality and for the second
one we see that f |p,= f |p; +0j,i.e., fi = f Ip; and f> = 0 in Definition 3.2. O
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Remark 3.9 Note that if f € iAw(]]])4) N C(Dj, H), then f |p, can be extended to a
continuous function on Dj. Similarly, 1_f f € GA,(D*) N C(D* H), then f can be
extended to a continuous function on D#.

Now, we shall extend [9, Theorems 1 and 2] to slice regular function theory.
Proposition 3.10 1. Seti e S? and f € SR(D*) N C(D*, H). Let w and * regular

majorants. Then

P 2 _ 2
1712y = sop | AT OE | ey

Pl AIP1x) = [ A2
““p{ (1 — x])? 'XEDi}’

where f |p;= f1 + fajwith € S? orthogonal to i and fi, f> € Hol(D;).
2. Setie S* and f e SR(D*) N C(D*, H). Let w be a regular majorant. Then

112y, s = NiUD? + Ni(f2)? < Na(f)> + Na(f2)* = N3(f)* + N3(f2)°,

where f |p;= f1 + fajwith € S? orthogonal to i and fi, f> € Hol(D;).
3. Seti, k € S? and consider the regular majorants w, w1, w.

(a) If f € iAp(DY) N SRDM* N C(D?, H), then
1f lia,@* < 20 lea,@* < 41 F 1A, @*-
(b) If f € iAw.o (DY), then
11 Apo@ = 1 A, @
If f €iMgy.cn (DY) then
NS A sy @) = WA, 0 @)

Proof 1. By (2.1) and the fact that « =< B and § < y imply a? 482 < B2+ y2. Also,
the application of inequalities

112 oty < WAl @0 + 1208, @y < 207120, e)-

2. By (2.2) and the properties stated above.
3. Fact (a) follows from direct computations and the idea of the ensuing Fact (b) is
the following:

IA1) — AWM 1A — LI
w(llx — yl)? w(lx —y[)?2

1F Iy, o) = SuP{ | x,yeDy, x # y}
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_ {IIf(X)—f(y)II2
=supy ——————

Sy | e eDi #y} = 1712, -
O

Corollary 3.1 1. Seri € S?> and f € N(D* N C(W, H). If @ and w* are regular
majorant, then

{P[Ilf oy 1210) = 1 f |y OI2
sup

|x€D~}x||f||. 4.
w(l = [|x]) ' 140 0%

2. Supposei € S?, feNDYHN C(N, H) and w a regular majorant. Then
112, sy = Ni(f Ip) < N2(f Ipp) = N3(f Iy,

Proof Both facts follow from f; = fi |p, and f> = 0 in Definition 3.2 since f €
N(D*) and flg) = Zi’,io q"a, forall g € D* iff a, € R for all n, see [7, 19]. O

As the function sets given in Definitions 3.1, 3.2 and 3.4 depend of unit vectors the
following proposition shows some relationships between them.

Proposition 3.12 Seri e S? and consider the regular majorants w, w1, w.

If f €ibo DY) then | f1I, || f £ifill € iAu(D?).
iAw(]D)4) = iAw,w(D4)-

iBor,0r (DY) CiApytar (D).

iAoy (DH NSRMDY) = jA,LD*Y) NSRD).

Sl

Proof 1. Given f € jA,(D* set f = fi + f>j on I, where j € S? is orthogonal to
iand f1, f> : Dj — Dj. Then we see that

2fi = f—ifi, 2foj= f+ifi, on Dj. (3.2)

From inequalities

IS = IFODII T = 1Lf ) = FOI,
max{| [ 1O = 1AL TR0 = 12D < 1f ) = FO.

for all x, y € Iy, it follows that || [, || f £ ifi] € iAo (D).
2. and 3. With the previous notation the identity

£ = FDIF = 1A — ADI* + 1A — LD, Vx,y eDi, (3.3)

holds, allowing us to see that

iAp(DY) = iAo (DY
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and

iAoy n (DY) C iy tan (D).

4. Given f € jAu(DH)NSR(D*) and j € S2, according to the Representation
Formula, we have for every xo + x1J, yo + y1j € Dj with xo, x1, y0, y1 € R

Il f (xo +x1J) — f(yo + yid)ll
1
= EII(1 — i) = fON+ A+ = FODI

SIf@ = O+ = fDI <2Co(lx — yID
< 2Cw(ll(xo + x1J) — (yo + y1) 1D,

where x = xo + xjiand y = yg + yii.

O

Remark 3.13 Repeating the computations presented in Propositions 3.7 and 3.12
enables us to see that jA,(S?), iAoy .o (S*) and GA,(S?) have similar properties
of i A, (DY), iNowy (D*) and GA,,(D%), respectively, and that is why they are omit-

ted.

Let w, w1 and w; be regular majorant. The next propositions characterize the elements
of S R(D4) N iAw(ID)4) and of SR(]D“) NiAw,w; (]D)4), which extend results contained

in [9, 10].

Proposition 3.14 1. Set f € SR(D*). Then f € iA,(D?Y) if and only if

(1 —lx])

If' () £if il < € .
1 —lx]|

for C independent of x € Dj.
2. Set f € SR(D*) N C(D*, H). Then

1
5(1 — I IDILF () £1f Ol + [1Lf (x) £if (0ill < 2My,
for C independent of x € D, where

My =sup{llf DIl | ly —xll =1 —Ilxl, y € Di}.
3. Set f € SR(DY). Then f € jAy,(D*) if and only if

o —|lx[)

! C
IF 0l < C

)

for C independent of x € Dj.
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4. Set f € SR(D*) NiAgy,.cp (D). Then

el < C (/wl(l — xID> + a1 — ||x||)2>

(I —lxID
for C independent of x € Dj.
5. Set f € SR(D*) N C(D*, H). Then
1
20— IXDIF @I+ 1LF @)1
< (Ixll = DCHACUA N+ I A A1) + fo + M22,x’
for x € Dy, where f |p,= f1 + f2j with f1, f» € Hol(Dj) N C(ﬁi, C(@i)) and
My x = sup{ll DI | Iy —xll =1 —|xll, y € Di},

fork=1,2. o
6. Consider f € SR(D*) N C(D*, H). Let us introduce one more piece of notation:

M = sup{|| f(w)|| | w € Dj}.
If there exists i € S* and a regular majorant w such that
IM? = FE)f@E] < CU+ xIDe(l — [x]),
for C independent of x € D; \ Z y1, where
F=0@) T @) ) F).
g(x) =1— f(x)* f(x),
where Ty(q) = (g°(q)) " 'qg°(q) for all ¢ € D* such that g*(q) # O, then

C ol = |xIh.

lf ol < Ml——||x||’

that is, f € iAo, (DY), see Fact 3. of the present proposition.

Proof 1. With the Splitting Property in mind, consider fi, fo € Hol(Dj) such that
f o= fi+ foj where j € S? is orthogonal to i. From Fact 2. of Proposition 3.12
one has that f € iAw(]D)4) if and only if f1, f2 € Aw.»(Di), that s,

1£00 £ i il < c 22D
=]

for C independent of x € Dj, where we use [10, Lemma 1]. The result is obtained
from (3.2) applied to f’.
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2. Splitting Property implies that f |p,= f1+ f2j where fi, f> € Hol(Dj) and j € S?
is orthogonal to i. From Fact 2. of Proposition 3.12 one has that f € jA,,(D*) if and
only if f1, fo € Ay, »(Dj). Applying [10, Lemma 2] to the complex components
of f |p; and using (3.2) in f and f” to finish the proof.

3. It follows from Fact 1. commbining with the following consequence of the paral-
lelogram identity:

A1F O = I1F @) +if i + 1L/ (x) —if @il

for all x € IDj.

4. Kipping in mind the Splitting Property, set fi, f> € Hol(IDj) such that f |p,=
f1 + f2j where j € S? is orthogonal to i. From Fact 2. of Proposition 3.12 one has
that f € jA,(D*) if and only if f1, f> € Aw.o(Dy), ie.,

wr(1 —lxID

! C
Il = =0

’

for C independent of x € s and for k = 1, 2, see [10, Lemma 1]. Applying (3.3)
to f' yields

w1 (1 = IxID? + w2 (1 — ||x||)2>

/ 2 C2 <
IF ol < Ty

5. Given f Ip,= f1+ f2j with f1, fo € Hol(IDy) ﬁC(ID)i,(C(i)) from [10, Lemma 2]
we see that

1
S - I DA+ fieCONl < M,

for x € Dj, where My x = sup{llfiIl | lly —xll <1 —|x|l, y € Dy} for
k=1,2.
Therefore

1
24 XD 1A G+ (= DA N AN+ 1Ll < ME

for k = 1, 2. Adding terms in the previous inequalities and using (3.3) applied to
f and f’, the main result follows.

6. Let f € SRMY N C(W, H). With the notation F(x) =
rewrite the hypothesis as follows:

fx)
M

for all x € D*

—_— C
N =FOF@I = 570+ IxDod = [x]D).
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for C independent of x, or equivalently

L—lxI> = M> 1—|x]

11— F)F®)| = € od—lxb

Equation (3.10) of [22, Theorem 3.7 (Schwarz-Pick lemma)] shows that if f :
D* — D* is a slice regular function and go € D* implies that

— % 1
19 f (1 = f(q0) * f(g) "I, = 1——|610|2

One can also see [23]. This finally yields

C w(l - |x)
F' < —
IF@N < 37—
that is
C ol — x|
I < ——-+77>
M 11— x|

and Fact 6. is proved

Corollary 3.15 1. Ser f € SR(D*). Then f € iAy,(D*) if and only if

o —llgl)

! C
I @l = C

’

for some C independent of the choice of q € D*.
2. Set f € SR(D*) N C(D*, H) then

1
S - lgIDILF @I+ 1Lf (@]

=< SUP{IIf(y)II | \/(my —q0)* +Qy—1lah? =1—llgll, y € Di}

+Sup{||f(y)|| I \/(-‘Ry —q0)*+Qy+lah* < 1—lqll, y € Di}-

3. If f € SR(DY NiAw.a, (DY) then

1 (@l < C <w1(1 —llgl) + w2(1 - ||qll)>

= 1gl)

for C independent of the choice of g € D*.
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Proof 1. The sufficient condition is a direct consequence of the previous proposition
and

£/ o) £if" il < 21/ ll,  Yx € Dy

On the other hand, let f € iAw(]D)4) N SR(I[))4) and g € D* such that q is not the
vector zero. Applying Representation Formula we deduce that

2 @1 = 21 Ol + 21 N = 1L/ +if" Coill + ILf () — i f ol
+ LG +if @i+ 1L @) —if (il
o —Ixl) _  od—Ilgl)

<4c =4C ,
I — x| I —lql

where x = qo + i|q| € Dj.
2. For fixed g € D* such that q is not the zero vector, let x = xo + i|q| € Dj. By the
Representation Formula we obtain

1
S - lgIDIF @1+ 11f (@]
1 1
=< (5(1 = IXIDIS O+ 1Lf Gl ) + ( S = IEIDILFGON + 1L GOl )

=<

1
(L= IxIDILf o) +if il + SIF @) +if R )

+ o+ -
NS NN B =
=

FN-

Bl —

1
(= IxDILf ) = if Coill + S I ) —if Gl )

1
(L= IXDIS ) +1f COill + AR A )

+

1
(L= IXDIS ) = if GOill + S @) = if (O )

IA
=
+
S

where

M, = {Ilf(y)ll | \/(my —q0)*+ Ry —1lah* < 1—lqll, y € Di}-

M; = {Ilf(y)ll | \/(5ﬁy—610)2+(3y+Itll)2 <1—laql. yEDi}-

3. It follows in a similar way like Fact 1.

Here are some properties of P; and its dependence on i.

Proposition 3.16 Let i € S%. The following items hold
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1. Givenr € S3 write T, (q) = rqr forall ¢ € D*. Then
Pr,o[ul(g) = Pilu o T,1(T," (@),

forallu € C'(St,¢), R).
2. Given f € C(D*, H) we have on Dy that

Blllf £ifilll = 2R £ 11 = AllLS —ifilll + AllLf +ifilll.

3. Given f € SR(D*) N C(D*, H) and j € S it follows that

1 2 . X
2—/ Ix — &)™ % F() (1 — |x]IP)dr < 2B FI11(x),
7T Jo

Sfor all x € Dj.

Proof 1. Since "7 = rel'7 we have

S N s
PT,_(i)[u](q)=Efo u(e“”)—“q_e,m”z :

and it may be concluded that

1 — |lFgri?

1 2 i
Pr = — T, —— 5dl.
Tr(l)[u](Q) o /O\ uoT(e”) \Fgr — elt”Z

2. Itis due to (3.2) and (3.3)

3. Letx € Djandj € S*. According to the Representation Formula and the established
continuity we have

. . 1 . .
(x — )T 5 £ = L+ (x — e T2 f(e™
+(1 = ji)(x — ey f(el)].
Therefore

e — &)™) % F) I — [1x]1?) = llx — e 72 F eI - [1x]1?)
+ lx = N2 FED I =[x

and
1 2w . .
> / IGx — &)™ % f() (1 — [1x]1*)dt
T Jo

1 27 L i
< 2—/ lx — e 721 £ eI — [x)1*)dr
T Jo
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1 2w . X
+5- / lx — eI 72 £ DI — [|x)|*)dr
T Jo

= 2Rl fI1Cx).

Proposition 3.17 Set f € SR(D*) N C(D*).
1. Let w be a regular majorant such that || f|| € iAw(S?). Then f € jAy,(D*) if and
only if

Al £ifiDx) — I1f ) £if il < Co(l — |x]), Vx € Dj.

2. Let w1, wy be two regular majorant such that || f|| € iAw; w, (S3). Then f €
iNoy,wn (D*) if and only if

Bl f =ifil)(x) — [ f (x) =if ] < Cor(1 — Ix]D),
Pdlf +ifil)(x) — [ f () +if if < Con(d — [Ix[), Vx € Dj.

Proof 1. Combining (3.2) with Proposition 3.12 and Theorem B of Section 2 com-

pletes the proof.
2. It follows from identities (3.2) and Theorem B of Section 2.

Corollary 3.18 Consider f € SR(D*) N C(D%).

1. Let w be a regular majorant such that || f|| € iAo (S?). Iff € A, (DY andq € D4
satisfies

(g, é") < qocost +|q|sint, Vi € [0,2n],
then
Pl fID(@) =21l f(go £ilgDll < Co(1 — [igID.

2. Let w1, wr be two regular majorant such that || f| € iAw],wz(S3). If f €
iAwl,wz(D4) andq € D4 holds

(g, ") < qocost +|q|sint, Vi€ [0,2r],
then
Pi(ll fID(g) = 211 f (qo £ilgD | < C (w1(1 = lIlglD) + w2(1 = llg]))) .

Proof 1. Letx = go=ilq]. It follows easily that |g —el| > |x —e¥| forall 7 € [0, 27].
Of course,

2P (1 fID(g) = 2RI fID(x) = ALf +ifilD ) + AdLf —ifil)(x)
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< If ) +if il + [ f (x) —if il +2Co (1 — [lx]).

Therefore

FidlfID(g) = 2 f(qo £i

Dl + Co(l — liglD-

2. Similar arguments to those above.

4 Conclusions and future works

In summary, characterizations of the Lipschitz type spaces of slice regular functions
in the unit ball of the skew-field of quaternions with prescribed modulus of continuity,
despite the non-commutativity of quaternions, are presented. The main results go on
to the global case. Importantly, the present findings suggest the possibility to extend
the study to the theory of slice monogenic functions associated to Clifford algebras,
as a good starting point for further research.
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